BibTex RIS Cite

ON COFINITELY WEAK RAD-SUPPLEMENTED MODULES

Year 2017, Volume: 66 Issue: 1, 92 - 97, 01.02.2017
https://doi.org/10.1501/Commua1_0000000778

References

  • Alizade, R.,Bilhan G. and Smith, P.F., Modules whose maximal submodules have supple- ments, Comm. Algebra, (2001), 29(6), 2389-2405.
  • Alizade, R. and Büyüka¸sık, E., Co…nitely weak supplemented modules, Comm. Algebra, (2003), 31(11), 5377-5390.
  • Alizade, R. and Büyüka¸sık, E., Extensions of weakly supplemented modules, Math. Scand., (2008), 103(2), 161-168.
  • Anderson, F.W. and Fuller, K.R., Rings and Categories of Modules, New York, Springer- Verlag, 1974.
  • Büyüka¸sık, E. and Lomp, C., On a recent generalization of semiperfect rings, Bull. Aust. Math. Soc., (2008), 78(2), 317-325.
  • Büyüka¸sık, E. and Lomp, C., Rings whose modules are weakly supplemented are perfect. Applications to certain ring extensions., Math. Scand., (2009), 105(1), 25-30.
  • Byrd, K. A., Rings whose quasi-injective modules are injective, Proc. Amer. Math. Soc., (1972), 33, 235–240.
  • Clark, J., Lomp, C., Vajana, N., Wisbauer, R., Lifting modules, 1st. ed., Birkhauser Verlag Basel, Boston-Berlin, 2006.
  • Cohn, P.M., Algebra, Vol.2, Wiley&Sons, 1989.
  • Eryılmaz, F.Y. and Eren, ¸S.,Totally co…nitely weak Rad-supplemented modules, Int. J. Pure Appl. Math., (2012), 80(5), 683-692.
  • Idelhadj, A. and Tribak, R.,On some properties of supplemented modules, Int. J. Math. Math. Sci., (2003), 69, 4373–4387.
  • Ko¸san, M.T., Generalized co…nitely semiperfect modules, Int. Electron J. Algebra, (2009), 5, 69.
  • Lomp, C., On semilocal modules and rings, Comm. Algebra,(1999), 27(4), 1921-1935.
  • Türkmen, E. and Pancar, A., Some properties of Rad-supplemented modules, Int. J. of Phy. Sci., (2011), 6(35), 7904-7909.
  • Wang, Y. and Ding, N., Generalized supplemented modules, Taiwanese J. Math., (2006), (6), 1589-1601.
  • Wisbauer, R., Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, Xue, W., Characterizations of semiperfect and perfect rings, Publ. Math.,(1996), 40(1), 115
  • Zöschinger, H., Invarianten wesentlicher überdeckungen, Math. Ann., (1978), 237(3), 193-202.
  • Current address : Figen ERYILMAZ: Ondokuz Mayıs University, Faculty of Education, De- parment of Mathematics Education, 55139 Kurupelit, Samsun-TURKEY.
Year 2017, Volume: 66 Issue: 1, 92 - 97, 01.02.2017
https://doi.org/10.1501/Commua1_0000000778

References

  • Alizade, R.,Bilhan G. and Smith, P.F., Modules whose maximal submodules have supple- ments, Comm. Algebra, (2001), 29(6), 2389-2405.
  • Alizade, R. and Büyüka¸sık, E., Co…nitely weak supplemented modules, Comm. Algebra, (2003), 31(11), 5377-5390.
  • Alizade, R. and Büyüka¸sık, E., Extensions of weakly supplemented modules, Math. Scand., (2008), 103(2), 161-168.
  • Anderson, F.W. and Fuller, K.R., Rings and Categories of Modules, New York, Springer- Verlag, 1974.
  • Büyüka¸sık, E. and Lomp, C., On a recent generalization of semiperfect rings, Bull. Aust. Math. Soc., (2008), 78(2), 317-325.
  • Büyüka¸sık, E. and Lomp, C., Rings whose modules are weakly supplemented are perfect. Applications to certain ring extensions., Math. Scand., (2009), 105(1), 25-30.
  • Byrd, K. A., Rings whose quasi-injective modules are injective, Proc. Amer. Math. Soc., (1972), 33, 235–240.
  • Clark, J., Lomp, C., Vajana, N., Wisbauer, R., Lifting modules, 1st. ed., Birkhauser Verlag Basel, Boston-Berlin, 2006.
  • Cohn, P.M., Algebra, Vol.2, Wiley&Sons, 1989.
  • Eryılmaz, F.Y. and Eren, ¸S.,Totally co…nitely weak Rad-supplemented modules, Int. J. Pure Appl. Math., (2012), 80(5), 683-692.
  • Idelhadj, A. and Tribak, R.,On some properties of supplemented modules, Int. J. Math. Math. Sci., (2003), 69, 4373–4387.
  • Ko¸san, M.T., Generalized co…nitely semiperfect modules, Int. Electron J. Algebra, (2009), 5, 69.
  • Lomp, C., On semilocal modules and rings, Comm. Algebra,(1999), 27(4), 1921-1935.
  • Türkmen, E. and Pancar, A., Some properties of Rad-supplemented modules, Int. J. of Phy. Sci., (2011), 6(35), 7904-7909.
  • Wang, Y. and Ding, N., Generalized supplemented modules, Taiwanese J. Math., (2006), (6), 1589-1601.
  • Wisbauer, R., Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, Xue, W., Characterizations of semiperfect and perfect rings, Publ. Math.,(1996), 40(1), 115
  • Zöschinger, H., Invarianten wesentlicher überdeckungen, Math. Ann., (1978), 237(3), 193-202.
  • Current address : Figen ERYILMAZ: Ondokuz Mayıs University, Faculty of Education, De- parment of Mathematics Education, 55139 Kurupelit, Samsun-TURKEY.
There are 18 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Figen Eryılmaz This is me

Şenol Eren This is me

Publication Date February 1, 2017
Published in Issue Year 2017 Volume: 66 Issue: 1

Cite

APA Eryılmaz, F., & Eren, Ş. (2017). ON COFINITELY WEAK RAD-SUPPLEMENTED MODULES. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 66(1), 92-97. https://doi.org/10.1501/Commua1_0000000778
AMA Eryılmaz F, Eren Ş. ON COFINITELY WEAK RAD-SUPPLEMENTED MODULES. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2017;66(1):92-97. doi:10.1501/Commua1_0000000778
Chicago Eryılmaz, Figen, and Şenol Eren. “ON COFINITELY WEAK RAD-SUPPLEMENTED MODULES”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66, no. 1 (February 2017): 92-97. https://doi.org/10.1501/Commua1_0000000778.
EndNote Eryılmaz F, Eren Ş (February 1, 2017) ON COFINITELY WEAK RAD-SUPPLEMENTED MODULES. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66 1 92–97.
IEEE F. Eryılmaz and Ş. Eren, “ON COFINITELY WEAK RAD-SUPPLEMENTED MODULES”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 66, no. 1, pp. 92–97, 2017, doi: 10.1501/Commua1_0000000778.
ISNAD Eryılmaz, Figen - Eren, Şenol. “ON COFINITELY WEAK RAD-SUPPLEMENTED MODULES”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66/1 (February 2017), 92-97. https://doi.org/10.1501/Commua1_0000000778.
JAMA Eryılmaz F, Eren Ş. ON COFINITELY WEAK RAD-SUPPLEMENTED MODULES. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2017;66:92–97.
MLA Eryılmaz, Figen and Şenol Eren. “ON COFINITELY WEAK RAD-SUPPLEMENTED MODULES”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 66, no. 1, 2017, pp. 92-97, doi:10.1501/Commua1_0000000778.
Vancouver Eryılmaz F, Eren Ş. ON COFINITELY WEAK RAD-SUPPLEMENTED MODULES. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2017;66(1):92-7.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.