Alizade, R.,Bilhan G. and Smith, P.F., Modules whose maximal submodules have supple- ments, Comm. Algebra, (2001), 29(6), 2389-2405.
Alizade, R. and Büyüka¸sık, E., Co…nitely weak supplemented modules, Comm. Algebra, (2003), 31(11), 5377-5390.
Alizade, R. and Büyüka¸sık, E., Extensions of weakly supplemented modules, Math. Scand., (2008), 103(2), 161-168.
Anderson, F.W. and Fuller, K.R., Rings and Categories of Modules, New York, Springer- Verlag, 1974.
Büyüka¸sık, E. and Lomp, C., On a recent generalization of semiperfect rings, Bull. Aust. Math. Soc., (2008), 78(2), 317-325.
Büyüka¸sık, E. and Lomp, C., Rings whose modules are weakly supplemented are perfect. Applications to certain ring extensions., Math. Scand., (2009), 105(1), 25-30.
Byrd, K. A., Rings whose quasi-injective modules are injective, Proc. Amer. Math. Soc., (1972), 33, 235–240.
Eryılmaz, F.Y. and Eren, ¸S.,Totally co…nitely weak Rad-supplemented modules, Int. J. Pure Appl. Math., (2012), 80(5), 683-692.
Idelhadj, A. and Tribak, R.,On some properties of supplemented modules, Int. J. Math. Math. Sci., (2003), 69, 4373–4387.
Ko¸san, M.T., Generalized co…nitely semiperfect modules, Int. Electron J. Algebra, (2009), 5, 69.
Lomp, C., On semilocal modules and rings, Comm. Algebra,(1999), 27(4), 1921-1935.
Türkmen, E. and Pancar, A., Some properties of Rad-supplemented modules, Int. J. of Phy. Sci., (2011), 6(35), 7904-7909.
Wang, Y. and Ding, N., Generalized supplemented modules, Taiwanese J. Math., (2006), (6), 1589-1601.
Wisbauer, R., Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, Xue, W., Characterizations of semiperfect and perfect rings, Publ. Math.,(1996), 40(1), 115
Current address : Figen ERYILMAZ: Ondokuz Mayıs University, Faculty of Education, De- parment of Mathematics Education, 55139 Kurupelit, Samsun-TURKEY.
Year 2017,
Volume: 66 Issue: 1, 92 - 97, 01.02.2017
Alizade, R.,Bilhan G. and Smith, P.F., Modules whose maximal submodules have supple- ments, Comm. Algebra, (2001), 29(6), 2389-2405.
Alizade, R. and Büyüka¸sık, E., Co…nitely weak supplemented modules, Comm. Algebra, (2003), 31(11), 5377-5390.
Alizade, R. and Büyüka¸sık, E., Extensions of weakly supplemented modules, Math. Scand., (2008), 103(2), 161-168.
Anderson, F.W. and Fuller, K.R., Rings and Categories of Modules, New York, Springer- Verlag, 1974.
Büyüka¸sık, E. and Lomp, C., On a recent generalization of semiperfect rings, Bull. Aust. Math. Soc., (2008), 78(2), 317-325.
Büyüka¸sık, E. and Lomp, C., Rings whose modules are weakly supplemented are perfect. Applications to certain ring extensions., Math. Scand., (2009), 105(1), 25-30.
Byrd, K. A., Rings whose quasi-injective modules are injective, Proc. Amer. Math. Soc., (1972), 33, 235–240.
Eryılmaz, F.Y. and Eren, ¸S.,Totally co…nitely weak Rad-supplemented modules, Int. J. Pure Appl. Math., (2012), 80(5), 683-692.
Idelhadj, A. and Tribak, R.,On some properties of supplemented modules, Int. J. Math. Math. Sci., (2003), 69, 4373–4387.
Ko¸san, M.T., Generalized co…nitely semiperfect modules, Int. Electron J. Algebra, (2009), 5, 69.
Lomp, C., On semilocal modules and rings, Comm. Algebra,(1999), 27(4), 1921-1935.
Türkmen, E. and Pancar, A., Some properties of Rad-supplemented modules, Int. J. of Phy. Sci., (2011), 6(35), 7904-7909.
Wang, Y. and Ding, N., Generalized supplemented modules, Taiwanese J. Math., (2006), (6), 1589-1601.
Wisbauer, R., Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, Xue, W., Characterizations of semiperfect and perfect rings, Publ. Math.,(1996), 40(1), 115
Current address : Figen ERYILMAZ: Ondokuz Mayıs University, Faculty of Education, De- parment of Mathematics Education, 55139 Kurupelit, Samsun-TURKEY.
Eryılmaz, F., & Eren, Ş. (2017). ON COFINITELY WEAK RAD-SUPPLEMENTED MODULES. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 66(1), 92-97. https://doi.org/10.1501/Commua1_0000000778
AMA
Eryılmaz F, Eren Ş. ON COFINITELY WEAK RAD-SUPPLEMENTED MODULES. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2017;66(1):92-97. doi:10.1501/Commua1_0000000778
Chicago
Eryılmaz, Figen, and Şenol Eren. “ON COFINITELY WEAK RAD-SUPPLEMENTED MODULES”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66, no. 1 (February 2017): 92-97. https://doi.org/10.1501/Commua1_0000000778.
EndNote
Eryılmaz F, Eren Ş (February 1, 2017) ON COFINITELY WEAK RAD-SUPPLEMENTED MODULES. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66 1 92–97.
IEEE
F. Eryılmaz and Ş. Eren, “ON COFINITELY WEAK RAD-SUPPLEMENTED MODULES”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 66, no. 1, pp. 92–97, 2017, doi: 10.1501/Commua1_0000000778.
ISNAD
Eryılmaz, Figen - Eren, Şenol. “ON COFINITELY WEAK RAD-SUPPLEMENTED MODULES”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66/1 (February 2017), 92-97. https://doi.org/10.1501/Commua1_0000000778.
JAMA
Eryılmaz F, Eren Ş. ON COFINITELY WEAK RAD-SUPPLEMENTED MODULES. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2017;66:92–97.
MLA
Eryılmaz, Figen and Şenol Eren. “ON COFINITELY WEAK RAD-SUPPLEMENTED MODULES”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 66, no. 1, 2017, pp. 92-97, doi:10.1501/Commua1_0000000778.
Vancouver
Eryılmaz F, Eren Ş. ON COFINITELY WEAK RAD-SUPPLEMENTED MODULES. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2017;66(1):92-7.