Research Article
BibTex RIS Cite
Year 2020, Volume: 69 Issue: 2, 1329 - 1335, 31.12.2020
https://doi.org/10.31801/cfsuasmas.635048

Abstract

References

  • Y. Agaoka, I-B. Kim, D.J. Yeom,On doubly warped product manifolds, Mem. Fac. Integrated Arts and Sci., Hiroshimo Univ., ser. IV. 24 (1998), 1-10.
  • R.L. Bishop and B. O'Neill, Manifolds of negative curvature, Trans. Amer. Mat. Soc. 145(1) (1969), 1-49.
  • R.A. Blumenthal and J.J. Hebda, An analogue of the holonomy bundle for a foliated manifold, Tohoku Math. J. 40(2) (1988), 189-197.
  • B.Y. Chen, Geometry of submanifolds and its applicaitons, Science University of Tokyo, Tokyo, 1981.
  • B.Y. Chen, Differential geometry of warped product manifolds and submanifolds, World Scientific, 2017.
  • P. E. Ehrlich, Metric deformations of Ricci and sectional curvature on compactRiemannian manifolds, Ph.D. dissertation, SUNY, Stony Brook, N.Y., 1974.
  • M. Fernandez Lopez , E. Garcia Rio , D.N. Küpeli, B. Ünal, A curvature condition for a twisted product to be a warped product, Manuscripta Math. 106 (2001), 213-217.
  • P. Gupta, On compact Einstein doubly warped product manifolds, Tamkang J. Math. 49(4) (2018), 267-275. doi:10.5556/j.tkjm.49.2018.2605.
  • G.I. Kruchkovich, On semi-reducible Riemannian spaces (in Russian), Dokl. Akad. Nauk SSSR 115 (1957), 862-865.
  • B. Olea, Doubly warped product structures on semi-Riemannian manifolds, Ph.D. thesis, Universty of Malaga, 2009.
  • B. O'Neill, Semi-Riemannian geometry with applications to relativity, Academic Press, San Diego, 1983.
  • R. Ponge and H. Reckziegel, Twisted products in pseudo- Riemannian geometry, Geom. Dedicata 48 (1993), 15-25.
  • B. Ünal, Doubly warped products, Ph.D. thesis, Universty of Missouri-Columbia, 2000.
  • K. Yano, M. Kon, Structures on Manifolds, Singapore: World Scientific, 1984.

On doubly warped products

Year 2020, Volume: 69 Issue: 2, 1329 - 1335, 31.12.2020
https://doi.org/10.31801/cfsuasmas.635048

Abstract

We give a new characterization for doubly warped products by using the geometry of their canonical foliations intersecting perpendicularly. We also give a necessary and sufficient condition for a doubly warped product to be a warped or a direct product. As a result, we prove the non-existence of Einstein proper doubly warped product pseudo-Riemannian manifold of dimension grater or equal than 4.                                                                                                    .







.







References

  • Y. Agaoka, I-B. Kim, D.J. Yeom,On doubly warped product manifolds, Mem. Fac. Integrated Arts and Sci., Hiroshimo Univ., ser. IV. 24 (1998), 1-10.
  • R.L. Bishop and B. O'Neill, Manifolds of negative curvature, Trans. Amer. Mat. Soc. 145(1) (1969), 1-49.
  • R.A. Blumenthal and J.J. Hebda, An analogue of the holonomy bundle for a foliated manifold, Tohoku Math. J. 40(2) (1988), 189-197.
  • B.Y. Chen, Geometry of submanifolds and its applicaitons, Science University of Tokyo, Tokyo, 1981.
  • B.Y. Chen, Differential geometry of warped product manifolds and submanifolds, World Scientific, 2017.
  • P. E. Ehrlich, Metric deformations of Ricci and sectional curvature on compactRiemannian manifolds, Ph.D. dissertation, SUNY, Stony Brook, N.Y., 1974.
  • M. Fernandez Lopez , E. Garcia Rio , D.N. Küpeli, B. Ünal, A curvature condition for a twisted product to be a warped product, Manuscripta Math. 106 (2001), 213-217.
  • P. Gupta, On compact Einstein doubly warped product manifolds, Tamkang J. Math. 49(4) (2018), 267-275. doi:10.5556/j.tkjm.49.2018.2605.
  • G.I. Kruchkovich, On semi-reducible Riemannian spaces (in Russian), Dokl. Akad. Nauk SSSR 115 (1957), 862-865.
  • B. Olea, Doubly warped product structures on semi-Riemannian manifolds, Ph.D. thesis, Universty of Malaga, 2009.
  • B. O'Neill, Semi-Riemannian geometry with applications to relativity, Academic Press, San Diego, 1983.
  • R. Ponge and H. Reckziegel, Twisted products in pseudo- Riemannian geometry, Geom. Dedicata 48 (1993), 15-25.
  • B. Ünal, Doubly warped products, Ph.D. thesis, Universty of Missouri-Columbia, 2000.
  • K. Yano, M. Kon, Structures on Manifolds, Singapore: World Scientific, 1984.
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Sibel Gerdan Aydın 0000-0001-5278-6066

Hakan Mete Taştan 0000-0002-0773-9305

Publication Date December 31, 2020
Submission Date October 20, 2019
Acceptance Date July 13, 2020
Published in Issue Year 2020 Volume: 69 Issue: 2

Cite

APA Gerdan Aydın, S., & Taştan, H. M. (2020). On doubly warped products. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(2), 1329-1335. https://doi.org/10.31801/cfsuasmas.635048
AMA Gerdan Aydın S, Taştan HM. On doubly warped products. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2020;69(2):1329-1335. doi:10.31801/cfsuasmas.635048
Chicago Gerdan Aydın, Sibel, and Hakan Mete Taştan. “On Doubly Warped Products”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69, no. 2 (December 2020): 1329-35. https://doi.org/10.31801/cfsuasmas.635048.
EndNote Gerdan Aydın S, Taştan HM (December 1, 2020) On doubly warped products. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69 2 1329–1335.
IEEE S. Gerdan Aydın and H. M. Taştan, “On doubly warped products”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 69, no. 2, pp. 1329–1335, 2020, doi: 10.31801/cfsuasmas.635048.
ISNAD Gerdan Aydın, Sibel - Taştan, Hakan Mete. “On Doubly Warped Products”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69/2 (December 2020), 1329-1335. https://doi.org/10.31801/cfsuasmas.635048.
JAMA Gerdan Aydın S, Taştan HM. On doubly warped products. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69:1329–1335.
MLA Gerdan Aydın, Sibel and Hakan Mete Taştan. “On Doubly Warped Products”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 69, no. 2, 2020, pp. 1329-35, doi:10.31801/cfsuasmas.635048.
Vancouver Gerdan Aydın S, Taştan HM. On doubly warped products. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69(2):1329-35.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.