Research Article
BibTex RIS Cite
Year 2021, Volume: 70 Issue: 1, 443 - 455, 30.06.2021
https://doi.org/10.31801/cfsuasmas.788329

Abstract

References

  • Abbas, M., Murtaza, G., Smarandache, F., Basic operations on hypersoft sets and hypersoft point, Neutrosophic sets and system, 35 (2020).
  • Aktas, H., and Çagman, N., Soft sets and soft groups, Information sciences, 177(13) (2007), 2726-2735. https://doi.org/10.1016/j.ins.2006.12.008.
  • Atanassov, K., Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.
  • Atanassov, K., Intuitionistic Fuzzy Sets, Theory and Applications, Physica Verlag, Heidelberg, 1999.
  • Chen, D., Tsang, E., Yeung, D. S., and Wang, X., The parameterization reduction of soft sets and its applications, Computers & Mathematics with Applications, 49(5-6) (2005), 757-763. https://doi.org/10.1016/j.camwa.2004.10.036
  • Gayen, S., Smarandache, F., Jha, S., Singh, M. K., Broumi, S., and Kumar, R. Introduction to plithogenic hypersoft subgroup. Neutrosophic Sets and Systems, 33(1) (2020), 14.
  • Jiang, Y.,Tang, Y., Chen, Q., An adjustable approach to intuitionistic fuzzy soft sets based decision making, Applied Mathematical Modelling, 35 (2011), 824-836. https://doi.org/10.1016/j.apm.2010.07.038
  • Khameneh, A. Z., and Kılıçman, A. Multi-attribute decision-making based on soft set theory: A systematic review. Soft Computing, 23(16) (2019), 6899-6920. https://doi.org/10.1007/s00500-018-3330-7
  • Kong, Z., Gao, L., Wang, L., and Li, S., The normal parameter reduction of soft sets and its algorithm. Computers & Mathematics with Applications, 56(12) (2008), 3029 3037. https://doi.org/10.1016/j.camwa.2008.07.013
  • Maji, P. K., More on intuitionistic fuzzy soft sets, in: H. Sakai, M.K. Chakraborty, A.E. Hassanien, D. Slezak, W. Zhu (Eds.), Proceedings of the 12th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC 2009), Lecture Notes in Computer Science, 5908, Springer, 2009, 231-240.
  • Maji, P. K., An application of intuitionistic fuzzy soft sets in a decision making problem, IEEE International Conference on Progress in Informatics and Computing (PIC), 10-12 (2010), 349-351.
  • Maji, P. K., Biswas, R., and Roy, A. Soft set theory. Computers & Mathematics with Applications, 45(4-5) (2003), 555-562. https://doi.org/10.1016/S0898-1221(03)00016-6
  • Maji, P. K., Biswas, R., and Roy, A., Intuitionistic fuzzy soft sets, Journal of Fuzzy Mathematics, 9(3) (2001), 677-692.
  • Maji, P., Roy, A. R., and Biswas, R. An application of soft sets in a decision making problem, Computers & Mathematics with Applications, 44(8-9) (2002), 1077-1083. https://doi.org/10.1016/S0898-1221(02)00216-X
  • Molodtsov, D., Soft set theory first results, Computers & Mathematics with Applications, 37(4-5) (1999), 19-31. https://doi.org/10.1016/S0898-1221(99)00056-5
  • Ozturk, T. Y., Bayramov, S., Soft mappings space. The Scientific World Journal, 2014 (2014). https://doi.org/10.1155/2014/307292
  • Ozturk, T. Y., Aras, C. G., Bayramov, S., A new approach to operations on neutrosophic soft sets and to neutrosophic soft topological spaces. Communications in Mathematics and Applications, 10(3) (2019), 481-493.
  • Ozturk, T. Y., Yolcu, A., On Neutrosophic Hypersoft Topological Spaces, Theory and Application of Hypersoft Set, Pons Publishing House, Brussel, 2021, 215-234.
  • Pei, D., and Miao, D., From soft sets to information systems. IEEE International Conference on Granular Computing, (2005), 617-621.
  • Saeed, M., Ahsan, M., Siddique, M. K., Ahmad, M. R., A Study of the fundamentals of hypersoft set theory, International Journal of Scientific & Engineering Research, 11(1) (2020), 320-329.
  • Smarandache, F., Extension of soft set to hypersoft set, and then to plithogenic hypersoft set, Neutrosophic sets and system. 22, (2018), 168-170.
  • Saqlain M, Saeed M, Ahmad M. R, Smarandache F, Generalization of TOPSIS for neutrosophic hypersoft set using accuracy function and its application, Neutrosophic Sets and Systems, 27 (2019), 131-137.
  • Saqlain M, Sana M, Jafar N, Saeed. M, Said. B. Single and multi-valued neutrosophic hypersoft set and tangent similarity measure of single valued neutrosophic hypersoft sets, Neutrosophic Sets and Systems, 32, (2020).
  • Saqlain, M., Moin, S., Jafar, M. N., Saeed, M., & Smarandache, F., Aggregate Operators of neutrosophic hypersoft set. Neutrosophic Sets and Systems, 32(1) (2020), 18.
  • Yolcu, A., Ozturk, T. Y., Fuzzy Hypersoft Sets and Its Application to Decision-Making, Theory and Application of Hypersoft Set, Pons Publishing House, Brussel, 2021, 50-64.
  • Zadeh, L. A., Fuzzy sets. Information and control, 8(3) (1965), 338-353.
  • Zhang, X., Park, C., Wu, S., Soft set theoretical approach to pseudo-BCI algebras, Journal of Intelligent & Fuzzy Systems, 34(1) (2018), 559-568. https://doi.org/10.3233/JIFS-17777
  • Zou, Y., and Xiao, Z., Data analysis approaches of soft sets under incomplete information. Knowledge-Based Systems 21(8) (2008), 941-945.

Intuitionistic fuzzy hypersoft sets

Year 2021, Volume: 70 Issue: 1, 443 - 455, 30.06.2021
https://doi.org/10.31801/cfsuasmas.788329

Abstract

In this paper, a new environment namely, intuitionistic fuzzy hypersoft set (IFHSS) is defined. We introduce some fundamental operators of
intuitionistic fuzzy hypersoft sets such as subset, null set, absolute set, complement, union, intersection, equal set etc. Validity and application are presented
with appropriate examples. For greater precision and accuracy, in the future, proposed operations in decision making processes such as personal selection,
management issues and others will play a vital role.

References

  • Abbas, M., Murtaza, G., Smarandache, F., Basic operations on hypersoft sets and hypersoft point, Neutrosophic sets and system, 35 (2020).
  • Aktas, H., and Çagman, N., Soft sets and soft groups, Information sciences, 177(13) (2007), 2726-2735. https://doi.org/10.1016/j.ins.2006.12.008.
  • Atanassov, K., Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.
  • Atanassov, K., Intuitionistic Fuzzy Sets, Theory and Applications, Physica Verlag, Heidelberg, 1999.
  • Chen, D., Tsang, E., Yeung, D. S., and Wang, X., The parameterization reduction of soft sets and its applications, Computers & Mathematics with Applications, 49(5-6) (2005), 757-763. https://doi.org/10.1016/j.camwa.2004.10.036
  • Gayen, S., Smarandache, F., Jha, S., Singh, M. K., Broumi, S., and Kumar, R. Introduction to plithogenic hypersoft subgroup. Neutrosophic Sets and Systems, 33(1) (2020), 14.
  • Jiang, Y.,Tang, Y., Chen, Q., An adjustable approach to intuitionistic fuzzy soft sets based decision making, Applied Mathematical Modelling, 35 (2011), 824-836. https://doi.org/10.1016/j.apm.2010.07.038
  • Khameneh, A. Z., and Kılıçman, A. Multi-attribute decision-making based on soft set theory: A systematic review. Soft Computing, 23(16) (2019), 6899-6920. https://doi.org/10.1007/s00500-018-3330-7
  • Kong, Z., Gao, L., Wang, L., and Li, S., The normal parameter reduction of soft sets and its algorithm. Computers & Mathematics with Applications, 56(12) (2008), 3029 3037. https://doi.org/10.1016/j.camwa.2008.07.013
  • Maji, P. K., More on intuitionistic fuzzy soft sets, in: H. Sakai, M.K. Chakraborty, A.E. Hassanien, D. Slezak, W. Zhu (Eds.), Proceedings of the 12th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC 2009), Lecture Notes in Computer Science, 5908, Springer, 2009, 231-240.
  • Maji, P. K., An application of intuitionistic fuzzy soft sets in a decision making problem, IEEE International Conference on Progress in Informatics and Computing (PIC), 10-12 (2010), 349-351.
  • Maji, P. K., Biswas, R., and Roy, A. Soft set theory. Computers & Mathematics with Applications, 45(4-5) (2003), 555-562. https://doi.org/10.1016/S0898-1221(03)00016-6
  • Maji, P. K., Biswas, R., and Roy, A., Intuitionistic fuzzy soft sets, Journal of Fuzzy Mathematics, 9(3) (2001), 677-692.
  • Maji, P., Roy, A. R., and Biswas, R. An application of soft sets in a decision making problem, Computers & Mathematics with Applications, 44(8-9) (2002), 1077-1083. https://doi.org/10.1016/S0898-1221(02)00216-X
  • Molodtsov, D., Soft set theory first results, Computers & Mathematics with Applications, 37(4-5) (1999), 19-31. https://doi.org/10.1016/S0898-1221(99)00056-5
  • Ozturk, T. Y., Bayramov, S., Soft mappings space. The Scientific World Journal, 2014 (2014). https://doi.org/10.1155/2014/307292
  • Ozturk, T. Y., Aras, C. G., Bayramov, S., A new approach to operations on neutrosophic soft sets and to neutrosophic soft topological spaces. Communications in Mathematics and Applications, 10(3) (2019), 481-493.
  • Ozturk, T. Y., Yolcu, A., On Neutrosophic Hypersoft Topological Spaces, Theory and Application of Hypersoft Set, Pons Publishing House, Brussel, 2021, 215-234.
  • Pei, D., and Miao, D., From soft sets to information systems. IEEE International Conference on Granular Computing, (2005), 617-621.
  • Saeed, M., Ahsan, M., Siddique, M. K., Ahmad, M. R., A Study of the fundamentals of hypersoft set theory, International Journal of Scientific & Engineering Research, 11(1) (2020), 320-329.
  • Smarandache, F., Extension of soft set to hypersoft set, and then to plithogenic hypersoft set, Neutrosophic sets and system. 22, (2018), 168-170.
  • Saqlain M, Saeed M, Ahmad M. R, Smarandache F, Generalization of TOPSIS for neutrosophic hypersoft set using accuracy function and its application, Neutrosophic Sets and Systems, 27 (2019), 131-137.
  • Saqlain M, Sana M, Jafar N, Saeed. M, Said. B. Single and multi-valued neutrosophic hypersoft set and tangent similarity measure of single valued neutrosophic hypersoft sets, Neutrosophic Sets and Systems, 32, (2020).
  • Saqlain, M., Moin, S., Jafar, M. N., Saeed, M., & Smarandache, F., Aggregate Operators of neutrosophic hypersoft set. Neutrosophic Sets and Systems, 32(1) (2020), 18.
  • Yolcu, A., Ozturk, T. Y., Fuzzy Hypersoft Sets and Its Application to Decision-Making, Theory and Application of Hypersoft Set, Pons Publishing House, Brussel, 2021, 50-64.
  • Zadeh, L. A., Fuzzy sets. Information and control, 8(3) (1965), 338-353.
  • Zhang, X., Park, C., Wu, S., Soft set theoretical approach to pseudo-BCI algebras, Journal of Intelligent & Fuzzy Systems, 34(1) (2018), 559-568. https://doi.org/10.3233/JIFS-17777
  • Zou, Y., and Xiao, Z., Data analysis approaches of soft sets under incomplete information. Knowledge-Based Systems 21(8) (2008), 941-945.
There are 28 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Adem Yolcu 0000-0002-4317-652X

Florentin Smarandache 0000-0002-5560-5926

Taha Yasin Öztürk 0000-0003-2402-6507

Publication Date June 30, 2021
Submission Date August 31, 2020
Acceptance Date January 29, 2021
Published in Issue Year 2021 Volume: 70 Issue: 1

Cite

APA Yolcu, A., Smarandache, F., & Öztürk, T. Y. (2021). Intuitionistic fuzzy hypersoft sets. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(1), 443-455. https://doi.org/10.31801/cfsuasmas.788329
AMA Yolcu A, Smarandache F, Öztürk TY. Intuitionistic fuzzy hypersoft sets. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2021;70(1):443-455. doi:10.31801/cfsuasmas.788329
Chicago Yolcu, Adem, Florentin Smarandache, and Taha Yasin Öztürk. “Intuitionistic Fuzzy Hypersoft Sets”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70, no. 1 (June 2021): 443-55. https://doi.org/10.31801/cfsuasmas.788329.
EndNote Yolcu A, Smarandache F, Öztürk TY (June 1, 2021) Intuitionistic fuzzy hypersoft sets. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70 1 443–455.
IEEE A. Yolcu, F. Smarandache, and T. Y. Öztürk, “Intuitionistic fuzzy hypersoft sets”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 70, no. 1, pp. 443–455, 2021, doi: 10.31801/cfsuasmas.788329.
ISNAD Yolcu, Adem et al. “Intuitionistic Fuzzy Hypersoft Sets”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70/1 (June 2021), 443-455. https://doi.org/10.31801/cfsuasmas.788329.
JAMA Yolcu A, Smarandache F, Öztürk TY. Intuitionistic fuzzy hypersoft sets. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70:443–455.
MLA Yolcu, Adem et al. “Intuitionistic Fuzzy Hypersoft Sets”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 70, no. 1, 2021, pp. 443-55, doi:10.31801/cfsuasmas.788329.
Vancouver Yolcu A, Smarandache F, Öztürk TY. Intuitionistic fuzzy hypersoft sets. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70(1):443-55.

Cited By



































Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.