Research Article
BibTex RIS Cite
Year 2021, Volume: 70 Issue: 1, 541 - 554, 30.06.2021
https://doi.org/10.31801/cfsuasmas.793968

Abstract

References

  • Adell, J.A., De La Cal, J., San Miguel, M., On the property of monotonic convergence for multivariate Bernstein-type operators, J. Approx. Theory., 80 (1995), 132–137. https://doi.org/10.1006/jath.1995.1008
  • Aral, A., Acar, T., Ozsarac, F., Differentiated Bernstein type operators, Dolomites Research Notes on Approximation., 13 (1) (2020), 47-54. https://doi.org/10.14658/PUPJ-DRNA-2020-1-6
  • Aral, A., C´ardenas-Morales, D., Garrancho, P., Bernstein-type operators that reproduce exponential functions, J. of Math. Ineq., 12 (3) (2018), 861-872. https://doi.org/10.7153/jmi-2018-12-64
  • Aral, A., Limmam, M. L., Ozsarac, F., Approximation properties of Szász-Mirakyan-Kantorovich type operators, Math. Meth. Appl. Sci., 42 (16) (2018), 5233-5240. https://doi.org/10.1002/mma.5280
  • Bodur, M., Yilmaz, O. G., Aral, A., Approximation by Baskakov-Szász-Stancu operators preserving exponential function, Constr. Math. Anal., 1 (1) (2018), 1–8. https://doi.org/10.33205/cma.450708
  • Blaga, P., Catinaş, T., Coman, Gh., Bernstein-type operators on triangle with one curved side. Mediterr. J. Math., 9 (4) (2012), 843–855. https://doi.org/10.1007/s00009-011-0156-2
  • Blaga, P., Catinaş, T., Coman, Gh., Bernstein-type operators on a triangle with all curved sides, Applied Mathematics and Computation., 218 (2011), 3072–3082. https://doi.org/10.1016/j.amc.2011.08.027
  • Cárdenas-Morales, D., Garrancho, P., Munoz-Delgado, F.J., Shape preserving approximation by Bernstein-type operators which fix polynomials, Appl. Math. Comput., 182 (2) (2006), 1615–1622. https://doi.org/10.1016/j.amc.2006.05.046
  • Cárdenas-Morales, D., Munoz-Delgado, F.J., Improving certain Bernstein-type approximation processes, Math. and Comp. in Simulation., 77 (2008), 170-178. https://doi.org/10. 1016/j.matcom.2007.08.009
  • Censor, E., Quantitative results for positive linear approximation operators, J. Approx. Theory., 4 (1971), 442–450. https://doi.org/10.1016/0021-9045(71)90009-8
  • Ditzian, Z., Inverse theorems for multidimensional Bernstein operators, Pac. J. Math., 121 (2) (1986), 293–319. https://doi.org/10.2140/pjm.1986.121.293
  • Karlin, S., Studden, W.J., Tchebycheff Systems: with Applications in Analysis and Statistics, Interscience, New York, 1966. https://doi.org/10.1137/1009050
  • King, J.P., Positive linear operators which preserve x^2, Acta Math. Hungar., 99 (3) (2003), 203–208. https://doi.org/10.1023/A:1024571126455
  • Ozsarac, F., Acar, T., Reconstruction of Baskakov operators preserving some exponential functions, Math. Meth. Appl. Sci., 42 (16) (2018), 5124-5132. https://doi.org/10.1002/ mma.5228
  • Ozsarac, F., Aral, A., Karsli, H., On Bernstein–Chlodowsky type operators preserving exponential functions, Mathematical Analysis I: Approximation Theory-Springer., (2018), 121-138. https://doi.org/10.1007/978-981-15-1153-0_11

Bivariate Bernstein polynomials that reproduce exponential functions

Year 2021, Volume: 70 Issue: 1, 541 - 554, 30.06.2021
https://doi.org/10.31801/cfsuasmas.793968

Abstract

In this paper, we construct Bernstein type operators that reproduce exponential functions on simplex with one moved curved side. The operator interpolates the function at the corner points of the simplex. Used function sequence with parameters α and β not only are gained more modeling flexibility to operator but also satisfied to preserve some exponential functions. We examine the convergence properties of the new approximation processes. Later, we also state its shape preserving properties by considering classical convexity. Finally, a Voronovskaya-type theorem is given and our results are supported by graphics.

References

  • Adell, J.A., De La Cal, J., San Miguel, M., On the property of monotonic convergence for multivariate Bernstein-type operators, J. Approx. Theory., 80 (1995), 132–137. https://doi.org/10.1006/jath.1995.1008
  • Aral, A., Acar, T., Ozsarac, F., Differentiated Bernstein type operators, Dolomites Research Notes on Approximation., 13 (1) (2020), 47-54. https://doi.org/10.14658/PUPJ-DRNA-2020-1-6
  • Aral, A., C´ardenas-Morales, D., Garrancho, P., Bernstein-type operators that reproduce exponential functions, J. of Math. Ineq., 12 (3) (2018), 861-872. https://doi.org/10.7153/jmi-2018-12-64
  • Aral, A., Limmam, M. L., Ozsarac, F., Approximation properties of Szász-Mirakyan-Kantorovich type operators, Math. Meth. Appl. Sci., 42 (16) (2018), 5233-5240. https://doi.org/10.1002/mma.5280
  • Bodur, M., Yilmaz, O. G., Aral, A., Approximation by Baskakov-Szász-Stancu operators preserving exponential function, Constr. Math. Anal., 1 (1) (2018), 1–8. https://doi.org/10.33205/cma.450708
  • Blaga, P., Catinaş, T., Coman, Gh., Bernstein-type operators on triangle with one curved side. Mediterr. J. Math., 9 (4) (2012), 843–855. https://doi.org/10.1007/s00009-011-0156-2
  • Blaga, P., Catinaş, T., Coman, Gh., Bernstein-type operators on a triangle with all curved sides, Applied Mathematics and Computation., 218 (2011), 3072–3082. https://doi.org/10.1016/j.amc.2011.08.027
  • Cárdenas-Morales, D., Garrancho, P., Munoz-Delgado, F.J., Shape preserving approximation by Bernstein-type operators which fix polynomials, Appl. Math. Comput., 182 (2) (2006), 1615–1622. https://doi.org/10.1016/j.amc.2006.05.046
  • Cárdenas-Morales, D., Munoz-Delgado, F.J., Improving certain Bernstein-type approximation processes, Math. and Comp. in Simulation., 77 (2008), 170-178. https://doi.org/10. 1016/j.matcom.2007.08.009
  • Censor, E., Quantitative results for positive linear approximation operators, J. Approx. Theory., 4 (1971), 442–450. https://doi.org/10.1016/0021-9045(71)90009-8
  • Ditzian, Z., Inverse theorems for multidimensional Bernstein operators, Pac. J. Math., 121 (2) (1986), 293–319. https://doi.org/10.2140/pjm.1986.121.293
  • Karlin, S., Studden, W.J., Tchebycheff Systems: with Applications in Analysis and Statistics, Interscience, New York, 1966. https://doi.org/10.1137/1009050
  • King, J.P., Positive linear operators which preserve x^2, Acta Math. Hungar., 99 (3) (2003), 203–208. https://doi.org/10.1023/A:1024571126455
  • Ozsarac, F., Acar, T., Reconstruction of Baskakov operators preserving some exponential functions, Math. Meth. Appl. Sci., 42 (16) (2018), 5124-5132. https://doi.org/10.1002/ mma.5228
  • Ozsarac, F., Aral, A., Karsli, H., On Bernstein–Chlodowsky type operators preserving exponential functions, Mathematical Analysis I: Approximation Theory-Springer., (2018), 121-138. https://doi.org/10.1007/978-981-15-1153-0_11
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Kenan Bozkurt This is me 0000-0001-9714-4729

Fırat Özsaraç 0000-0001-7170-9613

Ali Aral 0000-0002-2024-8607

Publication Date June 30, 2021
Submission Date September 12, 2020
Acceptance Date February 2, 2021
Published in Issue Year 2021 Volume: 70 Issue: 1

Cite

APA Bozkurt, K., Özsaraç, F., & Aral, A. (2021). Bivariate Bernstein polynomials that reproduce exponential functions. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(1), 541-554. https://doi.org/10.31801/cfsuasmas.793968
AMA Bozkurt K, Özsaraç F, Aral A. Bivariate Bernstein polynomials that reproduce exponential functions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2021;70(1):541-554. doi:10.31801/cfsuasmas.793968
Chicago Bozkurt, Kenan, Fırat Özsaraç, and Ali Aral. “Bivariate Bernstein Polynomials That Reproduce Exponential Functions”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70, no. 1 (June 2021): 541-54. https://doi.org/10.31801/cfsuasmas.793968.
EndNote Bozkurt K, Özsaraç F, Aral A (June 1, 2021) Bivariate Bernstein polynomials that reproduce exponential functions. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70 1 541–554.
IEEE K. Bozkurt, F. Özsaraç, and A. Aral, “Bivariate Bernstein polynomials that reproduce exponential functions”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 70, no. 1, pp. 541–554, 2021, doi: 10.31801/cfsuasmas.793968.
ISNAD Bozkurt, Kenan et al. “Bivariate Bernstein Polynomials That Reproduce Exponential Functions”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70/1 (June 2021), 541-554. https://doi.org/10.31801/cfsuasmas.793968.
JAMA Bozkurt K, Özsaraç F, Aral A. Bivariate Bernstein polynomials that reproduce exponential functions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70:541–554.
MLA Bozkurt, Kenan et al. “Bivariate Bernstein Polynomials That Reproduce Exponential Functions”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 70, no. 1, 2021, pp. 541-54, doi:10.31801/cfsuasmas.793968.
Vancouver Bozkurt K, Özsaraç F, Aral A. Bivariate Bernstein polynomials that reproduce exponential functions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70(1):541-54.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.