Year 2022,
Volume: 71 Issue: 4, 1095 - 1120, 30.12.2022
Olgun Durmaz
,
Buşra Aktaş
,
Osman Keçilioğlu
References
- Clifford, W. K., Preliminary sketch of biquaternions, Proc. London Math. Soc., 4 (1873), 381–395.
- Kandasamy, W. B. V., Smarandache, F., Dual Numbers, ZIP Publishing, Ohio, 2012.
- Yaglom, I. M., A Simple Non-Euclidean Geometry and Its Physical Basis, Springer-Verlag, New York, 1979.
- Li, S., Ge, Q. J., Rational Beizer line symmetric motions, Trans. ASME J. Mech. Design, 127(2) (2005), 222–226. https://doi.org/10.1115/DETC99/DAC-8654
- Kotelnikov, A. P., Screw Calculus and Some of Its Applications in Geometry and Mechanics, Annals of the Imperial University, Kazan, 1895.
- Study, E., Geometrie der Dynamen, Druck und Verlag von B.G. Teubner, Leipzig, 1903.
- Çöken, A. C., Görgülü, A., On the dual darboux rotation axis of the dual space curve, Demonstratio Math., 35(2) (2002), 385–390. https://doi.org/10.1515/dema-2002-0219
- Ercan, Z., Yüce, S., On properties of the dual quaternions, Eur. J. Pure Appl. Math., 4(2) (2011), 142–146.
- Pennestri, E., Stafenelli, R., Linear algebra and numerical algorithms using dual numbers, Multibody Syst. Dyn., 18(3) (2007), 323–344. https://doi.org/10.1007/s11044-007-9088-9
- Soule, C., Rational K-Theory of The Dual Numbers of A ring of Algebraic Integers, Springer Lec. Notes 854, pp. 402-408, 1981.
- Veldkamp, G. R., On the use of dual numbers, vectors and matrices in instantaneous spatial kinematics, Mechanism and Machine Theory 2, 11 (1976), 141–156. https://doi.org/10.1016/0094-114X(76)90006-9
- Yang, A. T., Freudenstein, F., Application of dual number quaternion algebra to the analysis of spatial mechanisms, Trans. ASME J. Appl. Mech., 31(2) (1964), 300–308. https://doi.org/10.1115/1.3629601
- Aktaş, B., Surfaces and Some Special Curves on These Surfaces in Dual Space (Turkish), Doctorial Dissertation, Kırıkkale University, Kırıkkale, 2020.
- Aktaş, B., Durmaz, O., Gündoğan, H., On the basic structures of dual space, Facta Universitatis, Series: Mathematics and Informatics, 35(1) (2020), 253–272.
https://doi.org/10.22190/FUMI2001253A
- Zembat, İ. Ö., Özmantar, M. F., Bingölbali, E., Şandır, H., Delice, A., Tanımları ve Tarihsel Gelişimleriyle Matematiksel Kavramlar (1.baskı), Ankara:Pegem-Akademi, 2013.
- Croom, F. H., Principles of Topology, Saunders College Publishing, 1989.
- Richeson, D., Euler’s Gem: The Polyhedron Formula and The Birth of Topology, Princeton University Press, 2008.
- Mashaghi, S., Jadidi, T., Koenderink, G., Mashaghi, A., Lipid nanotechnology, Int. J. Mol. Sci., 14(2) (2013), 4242–4282. https://doi.org/10.3390/ijms14024242
- Adams, C., The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots, American Mathematical Society, 2004.
- Stadler, B. M. R., Stadler, P. F., Wagner, G. P., Fontana, W., The topology of the possible: formal spaces underlying patterns of evolutionary change, Journal of Theoretical Biology, 213(2) (2001), 241–274. https://doi.org/10.1006/jtbi.2001.2423
- Carlsson, G., Topology and data, Bulletin (New Series) of the American Mathematical Society, 46(2) (2009), 255–308. https://doi.org/10.1090/S0273-0979-09-01249-X
- Vickers, S., Topology via Logic, Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, 1996.
- Stephenson, C., Lyon, D., Hübler, A., Topological properties of a self assembled electrical network via ab initio calculation, Scientific Reports, 7 (2017).
- Cambou, A. D., Menon, N., Three dimensional structure of a sheet crumpled into a ball,Proc. Natl. Acad. Sci. U.S.A., 108(36) (2011), 14741–14745. https://doi.org/10.1073/pnas.1019192108
- Yau, S., Nadis, S., The Shape of Inner Space, Basic Books, 2010.
- Craig, J. J., Introduction to Robotics: Mechanics and Control, 3rd Ed. Prentice-Hall, 2004.
- Farber, M., Invitation to Topological Robotics, European Mathematical Society, 2008.
- Horak, M., Disentangling topological puzzles by using knot theory, Mathematics Magazine, 79(5) (2006), 368–375. https://doi.org/10.1080/0025570X.2006.11953435
- Eckman, E., Connect the Shapes Crochet Motifs: Creative Techniques for Joining Motfis of all Shapes, Storey Publishing, 2012.
- Dimentberg, F. M., The Screw Calculus and its Applications to Mechanics, Foreing Technology Division, Wright-Patterson Air Force Base, Ohio, 1965.
- Durmaz, O., Aktaş, B., Gündoğan, H., New approaches on dual space, Facta Universitatis, Series: Mathematics and Informatics, 35(2) (2020), 437–458. https://doi.org/10.22190/FUMI2002437D
- Hacısalihoğlu, H. H., Hareket Geometrisi ve Kuaterniyonlar Teorisi, Gazi Üniversitesi Fen Fakültesi Yayınları, Ankara, 1983.
An overview to analyticity of dual functions
Year 2022,
Volume: 71 Issue: 4, 1095 - 1120, 30.12.2022
Olgun Durmaz
,
Buşra Aktaş
,
Osman Keçilioğlu
Abstract
In this paper, the analyticity conditions of dual functions are clearly examined and the properties of the concept derivative are given in detail. Then, using the dual order relation, the dual analytic regions of dual analytic functions are constructed such that a collection of these regions forms a basis on $D^n$. Finally, the equivalent of the inverse function theorem in dual space is given by a theorem and proved.
References
- Clifford, W. K., Preliminary sketch of biquaternions, Proc. London Math. Soc., 4 (1873), 381–395.
- Kandasamy, W. B. V., Smarandache, F., Dual Numbers, ZIP Publishing, Ohio, 2012.
- Yaglom, I. M., A Simple Non-Euclidean Geometry and Its Physical Basis, Springer-Verlag, New York, 1979.
- Li, S., Ge, Q. J., Rational Beizer line symmetric motions, Trans. ASME J. Mech. Design, 127(2) (2005), 222–226. https://doi.org/10.1115/DETC99/DAC-8654
- Kotelnikov, A. P., Screw Calculus and Some of Its Applications in Geometry and Mechanics, Annals of the Imperial University, Kazan, 1895.
- Study, E., Geometrie der Dynamen, Druck und Verlag von B.G. Teubner, Leipzig, 1903.
- Çöken, A. C., Görgülü, A., On the dual darboux rotation axis of the dual space curve, Demonstratio Math., 35(2) (2002), 385–390. https://doi.org/10.1515/dema-2002-0219
- Ercan, Z., Yüce, S., On properties of the dual quaternions, Eur. J. Pure Appl. Math., 4(2) (2011), 142–146.
- Pennestri, E., Stafenelli, R., Linear algebra and numerical algorithms using dual numbers, Multibody Syst. Dyn., 18(3) (2007), 323–344. https://doi.org/10.1007/s11044-007-9088-9
- Soule, C., Rational K-Theory of The Dual Numbers of A ring of Algebraic Integers, Springer Lec. Notes 854, pp. 402-408, 1981.
- Veldkamp, G. R., On the use of dual numbers, vectors and matrices in instantaneous spatial kinematics, Mechanism and Machine Theory 2, 11 (1976), 141–156. https://doi.org/10.1016/0094-114X(76)90006-9
- Yang, A. T., Freudenstein, F., Application of dual number quaternion algebra to the analysis of spatial mechanisms, Trans. ASME J. Appl. Mech., 31(2) (1964), 300–308. https://doi.org/10.1115/1.3629601
- Aktaş, B., Surfaces and Some Special Curves on These Surfaces in Dual Space (Turkish), Doctorial Dissertation, Kırıkkale University, Kırıkkale, 2020.
- Aktaş, B., Durmaz, O., Gündoğan, H., On the basic structures of dual space, Facta Universitatis, Series: Mathematics and Informatics, 35(1) (2020), 253–272.
https://doi.org/10.22190/FUMI2001253A
- Zembat, İ. Ö., Özmantar, M. F., Bingölbali, E., Şandır, H., Delice, A., Tanımları ve Tarihsel Gelişimleriyle Matematiksel Kavramlar (1.baskı), Ankara:Pegem-Akademi, 2013.
- Croom, F. H., Principles of Topology, Saunders College Publishing, 1989.
- Richeson, D., Euler’s Gem: The Polyhedron Formula and The Birth of Topology, Princeton University Press, 2008.
- Mashaghi, S., Jadidi, T., Koenderink, G., Mashaghi, A., Lipid nanotechnology, Int. J. Mol. Sci., 14(2) (2013), 4242–4282. https://doi.org/10.3390/ijms14024242
- Adams, C., The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots, American Mathematical Society, 2004.
- Stadler, B. M. R., Stadler, P. F., Wagner, G. P., Fontana, W., The topology of the possible: formal spaces underlying patterns of evolutionary change, Journal of Theoretical Biology, 213(2) (2001), 241–274. https://doi.org/10.1006/jtbi.2001.2423
- Carlsson, G., Topology and data, Bulletin (New Series) of the American Mathematical Society, 46(2) (2009), 255–308. https://doi.org/10.1090/S0273-0979-09-01249-X
- Vickers, S., Topology via Logic, Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, 1996.
- Stephenson, C., Lyon, D., Hübler, A., Topological properties of a self assembled electrical network via ab initio calculation, Scientific Reports, 7 (2017).
- Cambou, A. D., Menon, N., Three dimensional structure of a sheet crumpled into a ball,Proc. Natl. Acad. Sci. U.S.A., 108(36) (2011), 14741–14745. https://doi.org/10.1073/pnas.1019192108
- Yau, S., Nadis, S., The Shape of Inner Space, Basic Books, 2010.
- Craig, J. J., Introduction to Robotics: Mechanics and Control, 3rd Ed. Prentice-Hall, 2004.
- Farber, M., Invitation to Topological Robotics, European Mathematical Society, 2008.
- Horak, M., Disentangling topological puzzles by using knot theory, Mathematics Magazine, 79(5) (2006), 368–375. https://doi.org/10.1080/0025570X.2006.11953435
- Eckman, E., Connect the Shapes Crochet Motifs: Creative Techniques for Joining Motfis of all Shapes, Storey Publishing, 2012.
- Dimentberg, F. M., The Screw Calculus and its Applications to Mechanics, Foreing Technology Division, Wright-Patterson Air Force Base, Ohio, 1965.
- Durmaz, O., Aktaş, B., Gündoğan, H., New approaches on dual space, Facta Universitatis, Series: Mathematics and Informatics, 35(2) (2020), 437–458. https://doi.org/10.22190/FUMI2002437D
- Hacısalihoğlu, H. H., Hareket Geometrisi ve Kuaterniyonlar Teorisi, Gazi Üniversitesi Fen Fakültesi Yayınları, Ankara, 1983.