Research Article
BibTex RIS Cite
Year 2022, Volume: 71 Issue: 4, 1044 - 1058, 30.12.2022
https://doi.org/10.31801/cfsuasmas.937043

Abstract

References

  • Boothby, M., Wang, R. C., On contact manifolds, Anna Math, 68 (1958), 421-450.
  • Sasaki, A., Hatakeyama, Y., On differentiable manifolds with certain structure which are closely related to almost contact structure, Tohoku Math. J., 13 (1961), 281-294.
  • Tanno, S., The automorphism groups of almost contact Riemannian manfifolds, The Tohoku Math. J., 21 (1969), 21-38. DOI: 10.2748/tmj/1178243031
  • Kenmotsu, K., A class of almost contact Riemannian manifolds, Tohoku Math. J., 24 (1972), 93-103.
  • Marero, J. C., Chinea, D., On trans-Sasakian manifolds, Proceedings of the XIV. th Spanish- Portuguese Conference on Mathematics. Uni. La. Laguna, 1(3) (1990), 655-659.
  • Zamkovoy, S., Nakova, G., The decomposition of almost paracontact metric manifolds in eleven classes revisited, J. Geom., 109(18) (2018). https://doi.org/10.1007/s00022-018-0423-5
  • Mandal, K., De, U. C., Some curvature properties of paracontact metric manifolds, Advances in Pure and Applied Mathematics, 9(3) (2018), 159-165. https://doi.org/10.1515/apam-2017-0064
  • Özdemir, N., Aktay, S¸., Solgun, M., Almost paracontact structures obtained from $G^{*}_{2(2)}$ structures, Turkısh Journal of Mathematics, 42(6) (2018), 3025-3033. https://doi.org/10.3906/mat-1706-10
  • Pandey, H., Kumar, A., Anti-Invariant submanifolds of almost paracontact manifolds, Indian J. Pure Appl. Math., 16(6) (1985), 586-590.
  • Welyczko, J., On Legendre curves in 3-dimensional normal almost paracontact metric manifolds, Results. Math., 54 (2009), 377-387. DOI 10.1007/s00025-009-0364-2
  • Pokhariyal, G. P., Mishra, R. S., The curvature tensor and their relativistic significances, II. Yokohoma Mathematical journal, 18 (1970), 105-108.
  • Ojha, R. H., A note on the M-projective curvature tensor, India J. Pure Applied Math., 8 (1975), 1531-1534.
  • Li, D., Yin, J., Paracontact metric (κ, μ) manifold satisfying the Miao-Tam equation, Advances in Mathematical Physics, 6 (2021), 1-5. DOI: 10.1155/2021/6687223
  • Atçeken, M., Yuca, G., Some results on invariant submanifolds of an almost Kenmotsu (κ, μ, ν)-space, Honam Mathematical Journal, 43(4) (2021), 655-665. https://doi.org/10.5831/HMJ.2021.43.4.655
  • Atçeken, M. Some results on invariant submanifolds of Lorentz para-Kenmotsu manifolds, Korean Journal of Mathematics, 30(1) (2022), 175-185. http://dx.doi.org/10.11568/kjm.2022.30.1.175
  • Atçeken, M., Mert, T., Characterizations for totally geodesic submanifolds of a K-paracontact manifold, AIMS Math., 6(7) (2021), 7320-7332. http://dx.doi.org/10.3934/math.2021430
  • Mert, T., Characterization of some special curvature tensor on almost $C(\alpha)$−manifold, Asian Jour. of Math. and Com. Res., 29(1) (2022), 27-41.
  • Mert, T., Atçeken, M., Almost $C(\alpha)$−manifold on $W^{*}_0$ −curvature tensor, App. Math. Sciences, 15(15) (2021), 693-703. doi: 10.12988/ams.2021.916556

Some results on pseudosymmetric normal paracontact metric manifolds

Year 2022, Volume: 71 Issue: 4, 1044 - 1058, 30.12.2022
https://doi.org/10.31801/cfsuasmas.937043

Abstract

In this article, the M-projective and Weyl curvature tensors on a normal paracontact metric manifold are discussed. For normal paracontact metric manifolds, pseudosymmetric cases are investigated and some interesting results are obtained. We show that a semisymmetric normal paracontact manifold is of constant sectional curvature. We also obtain that a pseudosymmetric normal paracontact metric manifold is an ηη-Einstein manifold. Finally, we support our topic with an example.

References

  • Boothby, M., Wang, R. C., On contact manifolds, Anna Math, 68 (1958), 421-450.
  • Sasaki, A., Hatakeyama, Y., On differentiable manifolds with certain structure which are closely related to almost contact structure, Tohoku Math. J., 13 (1961), 281-294.
  • Tanno, S., The automorphism groups of almost contact Riemannian manfifolds, The Tohoku Math. J., 21 (1969), 21-38. DOI: 10.2748/tmj/1178243031
  • Kenmotsu, K., A class of almost contact Riemannian manifolds, Tohoku Math. J., 24 (1972), 93-103.
  • Marero, J. C., Chinea, D., On trans-Sasakian manifolds, Proceedings of the XIV. th Spanish- Portuguese Conference on Mathematics. Uni. La. Laguna, 1(3) (1990), 655-659.
  • Zamkovoy, S., Nakova, G., The decomposition of almost paracontact metric manifolds in eleven classes revisited, J. Geom., 109(18) (2018). https://doi.org/10.1007/s00022-018-0423-5
  • Mandal, K., De, U. C., Some curvature properties of paracontact metric manifolds, Advances in Pure and Applied Mathematics, 9(3) (2018), 159-165. https://doi.org/10.1515/apam-2017-0064
  • Özdemir, N., Aktay, S¸., Solgun, M., Almost paracontact structures obtained from $G^{*}_{2(2)}$ structures, Turkısh Journal of Mathematics, 42(6) (2018), 3025-3033. https://doi.org/10.3906/mat-1706-10
  • Pandey, H., Kumar, A., Anti-Invariant submanifolds of almost paracontact manifolds, Indian J. Pure Appl. Math., 16(6) (1985), 586-590.
  • Welyczko, J., On Legendre curves in 3-dimensional normal almost paracontact metric manifolds, Results. Math., 54 (2009), 377-387. DOI 10.1007/s00025-009-0364-2
  • Pokhariyal, G. P., Mishra, R. S., The curvature tensor and their relativistic significances, II. Yokohoma Mathematical journal, 18 (1970), 105-108.
  • Ojha, R. H., A note on the M-projective curvature tensor, India J. Pure Applied Math., 8 (1975), 1531-1534.
  • Li, D., Yin, J., Paracontact metric (κ, μ) manifold satisfying the Miao-Tam equation, Advances in Mathematical Physics, 6 (2021), 1-5. DOI: 10.1155/2021/6687223
  • Atçeken, M., Yuca, G., Some results on invariant submanifolds of an almost Kenmotsu (κ, μ, ν)-space, Honam Mathematical Journal, 43(4) (2021), 655-665. https://doi.org/10.5831/HMJ.2021.43.4.655
  • Atçeken, M. Some results on invariant submanifolds of Lorentz para-Kenmotsu manifolds, Korean Journal of Mathematics, 30(1) (2022), 175-185. http://dx.doi.org/10.11568/kjm.2022.30.1.175
  • Atçeken, M., Mert, T., Characterizations for totally geodesic submanifolds of a K-paracontact manifold, AIMS Math., 6(7) (2021), 7320-7332. http://dx.doi.org/10.3934/math.2021430
  • Mert, T., Characterization of some special curvature tensor on almost $C(\alpha)$−manifold, Asian Jour. of Math. and Com. Res., 29(1) (2022), 27-41.
  • Mert, T., Atçeken, M., Almost $C(\alpha)$−manifold on $W^{*}_0$ −curvature tensor, App. Math. Sciences, 15(15) (2021), 693-703. doi: 10.12988/ams.2021.916556
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Mehmet Atçeken 0000-0002-1242-4359

Tuğba Mert 0000-0001-8258-8298

Publication Date December 30, 2022
Submission Date May 13, 2021
Acceptance Date May 18, 2022
Published in Issue Year 2022 Volume: 71 Issue: 4

Cite

APA Atçeken, M., & Mert, T. (2022). Some results on pseudosymmetric normal paracontact metric manifolds. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 71(4), 1044-1058. https://doi.org/10.31801/cfsuasmas.937043
AMA Atçeken M, Mert T. Some results on pseudosymmetric normal paracontact metric manifolds. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2022;71(4):1044-1058. doi:10.31801/cfsuasmas.937043
Chicago Atçeken, Mehmet, and Tuğba Mert. “Some Results on Pseudosymmetric Normal Paracontact Metric Manifolds”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71, no. 4 (December 2022): 1044-58. https://doi.org/10.31801/cfsuasmas.937043.
EndNote Atçeken M, Mert T (December 1, 2022) Some results on pseudosymmetric normal paracontact metric manifolds. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71 4 1044–1058.
IEEE M. Atçeken and T. Mert, “Some results on pseudosymmetric normal paracontact metric manifolds”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 71, no. 4, pp. 1044–1058, 2022, doi: 10.31801/cfsuasmas.937043.
ISNAD Atçeken, Mehmet - Mert, Tuğba. “Some Results on Pseudosymmetric Normal Paracontact Metric Manifolds”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71/4 (December 2022), 1044-1058. https://doi.org/10.31801/cfsuasmas.937043.
JAMA Atçeken M, Mert T. Some results on pseudosymmetric normal paracontact metric manifolds. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71:1044–1058.
MLA Atçeken, Mehmet and Tuğba Mert. “Some Results on Pseudosymmetric Normal Paracontact Metric Manifolds”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 71, no. 4, 2022, pp. 1044-58, doi:10.31801/cfsuasmas.937043.
Vancouver Atçeken M, Mert T. Some results on pseudosymmetric normal paracontact metric manifolds. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71(4):1044-58.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.