Year 2022,
Volume: 71 Issue: 4, 1044 - 1058, 30.12.2022
Mehmet Atçeken
,
Tuğba Mert
References
- Boothby, M., Wang, R. C., On contact manifolds, Anna Math, 68 (1958), 421-450.
- Sasaki, A., Hatakeyama, Y., On differentiable manifolds with certain structure which are closely related to almost contact structure, Tohoku Math. J., 13 (1961), 281-294.
- Tanno, S., The automorphism groups of almost contact Riemannian manfifolds, The Tohoku Math. J., 21 (1969), 21-38. DOI: 10.2748/tmj/1178243031
- Kenmotsu, K., A class of almost contact Riemannian manifolds, Tohoku Math. J., 24 (1972), 93-103.
- Marero, J. C., Chinea, D., On trans-Sasakian manifolds, Proceedings of the XIV. th Spanish- Portuguese Conference on Mathematics. Uni. La. Laguna, 1(3) (1990), 655-659.
- Zamkovoy, S., Nakova, G., The decomposition of almost paracontact metric manifolds in eleven classes revisited, J. Geom., 109(18) (2018). https://doi.org/10.1007/s00022-018-0423-5
- Mandal, K., De, U. C., Some curvature properties of paracontact metric manifolds, Advances in Pure and Applied Mathematics, 9(3) (2018), 159-165. https://doi.org/10.1515/apam-2017-0064
- Özdemir, N., Aktay, S¸., Solgun, M., Almost paracontact structures obtained from $G^{*}_{2(2)}$ structures, Turkısh Journal of Mathematics, 42(6) (2018), 3025-3033. https://doi.org/10.3906/mat-1706-10
- Pandey, H., Kumar, A., Anti-Invariant submanifolds of almost paracontact manifolds, Indian J. Pure Appl. Math., 16(6) (1985), 586-590.
- Welyczko, J., On Legendre curves in 3-dimensional normal almost paracontact metric manifolds, Results. Math., 54 (2009), 377-387. DOI 10.1007/s00025-009-0364-2
- Pokhariyal, G. P., Mishra, R. S., The curvature tensor and their relativistic significances, II. Yokohoma Mathematical journal, 18 (1970), 105-108.
- Ojha, R. H., A note on the M-projective curvature tensor, India J. Pure Applied Math., 8 (1975), 1531-1534.
- Li, D., Yin, J., Paracontact metric (κ, μ) manifold satisfying the Miao-Tam equation, Advances in Mathematical Physics, 6 (2021), 1-5. DOI: 10.1155/2021/6687223
- Atçeken, M., Yuca, G., Some results on invariant submanifolds of an almost Kenmotsu (κ, μ, ν)-space, Honam Mathematical Journal, 43(4) (2021), 655-665. https://doi.org/10.5831/HMJ.2021.43.4.655
- Atçeken, M. Some results on invariant submanifolds of Lorentz para-Kenmotsu manifolds, Korean Journal of Mathematics, 30(1) (2022), 175-185. http://dx.doi.org/10.11568/kjm.2022.30.1.175
- Atçeken, M., Mert, T., Characterizations for totally geodesic submanifolds of a K-paracontact manifold, AIMS Math., 6(7) (2021), 7320-7332. http://dx.doi.org/10.3934/math.2021430
- Mert, T., Characterization of some special curvature tensor on almost $C(\alpha)$−manifold, Asian Jour. of Math. and Com. Res., 29(1) (2022), 27-41.
- Mert, T., Atçeken, M., Almost $C(\alpha)$−manifold on $W^{*}_0$ −curvature tensor, App. Math. Sciences, 15(15) (2021), 693-703. doi: 10.12988/ams.2021.916556
Some results on pseudosymmetric normal paracontact metric manifolds
Year 2022,
Volume: 71 Issue: 4, 1044 - 1058, 30.12.2022
Mehmet Atçeken
,
Tuğba Mert
Abstract
In this article, the M-projective and Weyl curvature tensors on a normal paracontact metric manifold are discussed. For normal paracontact metric manifolds, pseudosymmetric cases are investigated and some interesting results are obtained. We show that a semisymmetric normal paracontact manifold is of constant sectional curvature. We also obtain that a pseudosymmetric normal paracontact metric manifold is an ηη-Einstein manifold. Finally, we support our topic with an example.
References
- Boothby, M., Wang, R. C., On contact manifolds, Anna Math, 68 (1958), 421-450.
- Sasaki, A., Hatakeyama, Y., On differentiable manifolds with certain structure which are closely related to almost contact structure, Tohoku Math. J., 13 (1961), 281-294.
- Tanno, S., The automorphism groups of almost contact Riemannian manfifolds, The Tohoku Math. J., 21 (1969), 21-38. DOI: 10.2748/tmj/1178243031
- Kenmotsu, K., A class of almost contact Riemannian manifolds, Tohoku Math. J., 24 (1972), 93-103.
- Marero, J. C., Chinea, D., On trans-Sasakian manifolds, Proceedings of the XIV. th Spanish- Portuguese Conference on Mathematics. Uni. La. Laguna, 1(3) (1990), 655-659.
- Zamkovoy, S., Nakova, G., The decomposition of almost paracontact metric manifolds in eleven classes revisited, J. Geom., 109(18) (2018). https://doi.org/10.1007/s00022-018-0423-5
- Mandal, K., De, U. C., Some curvature properties of paracontact metric manifolds, Advances in Pure and Applied Mathematics, 9(3) (2018), 159-165. https://doi.org/10.1515/apam-2017-0064
- Özdemir, N., Aktay, S¸., Solgun, M., Almost paracontact structures obtained from $G^{*}_{2(2)}$ structures, Turkısh Journal of Mathematics, 42(6) (2018), 3025-3033. https://doi.org/10.3906/mat-1706-10
- Pandey, H., Kumar, A., Anti-Invariant submanifolds of almost paracontact manifolds, Indian J. Pure Appl. Math., 16(6) (1985), 586-590.
- Welyczko, J., On Legendre curves in 3-dimensional normal almost paracontact metric manifolds, Results. Math., 54 (2009), 377-387. DOI 10.1007/s00025-009-0364-2
- Pokhariyal, G. P., Mishra, R. S., The curvature tensor and their relativistic significances, II. Yokohoma Mathematical journal, 18 (1970), 105-108.
- Ojha, R. H., A note on the M-projective curvature tensor, India J. Pure Applied Math., 8 (1975), 1531-1534.
- Li, D., Yin, J., Paracontact metric (κ, μ) manifold satisfying the Miao-Tam equation, Advances in Mathematical Physics, 6 (2021), 1-5. DOI: 10.1155/2021/6687223
- Atçeken, M., Yuca, G., Some results on invariant submanifolds of an almost Kenmotsu (κ, μ, ν)-space, Honam Mathematical Journal, 43(4) (2021), 655-665. https://doi.org/10.5831/HMJ.2021.43.4.655
- Atçeken, M. Some results on invariant submanifolds of Lorentz para-Kenmotsu manifolds, Korean Journal of Mathematics, 30(1) (2022), 175-185. http://dx.doi.org/10.11568/kjm.2022.30.1.175
- Atçeken, M., Mert, T., Characterizations for totally geodesic submanifolds of a K-paracontact manifold, AIMS Math., 6(7) (2021), 7320-7332. http://dx.doi.org/10.3934/math.2021430
- Mert, T., Characterization of some special curvature tensor on almost $C(\alpha)$−manifold, Asian Jour. of Math. and Com. Res., 29(1) (2022), 27-41.
- Mert, T., Atçeken, M., Almost $C(\alpha)$−manifold on $W^{*}_0$ −curvature tensor, App. Math. Sciences, 15(15) (2021), 693-703. doi: 10.12988/ams.2021.916556