Research Article
BibTex RIS Cite

Modulo periodic Poisson stable solutions of dynamic equations on a time scale

Year 2023, Volume: 72 Issue: 4, 907 - 920, 29.12.2023
https://doi.org/10.31801/cfsuasmas.1220565

Abstract

Existence, uniqueness, and asymptotic stability of modulo periodic Poisson stable solutions of dynamic equations on a periodic time scale are investigated. The model under investigation involves a term which is constructed via a Poisson stable sequence. Novel definitions for Poisson stable as well as modulo periodic Poisson stable functions on time scales are given, and the reduction technique to systems of impulsive differential equations is utilized to achieve the main result. An example which confirms the theoretical results is provided.

References

  • Agarwal, R., Bohner, M., O’Regan, D., Peterson, A., Dynamic equations on time scales: a survey, J. Comput. Appl. Math., 141(1-2) (2002), 1–26. https://doi.org/10.1016/S0377-0427(01)00432-0
  • Akhmet, M., Principles of Discontinuous Dynamical Systems, Springer, New York, 2010.
  • Akhmet, M., Fen, M. O., Poincar´e chaos and unpredictable functions, Commun. Nonlinear Sci. Numer. Simulat., 48 (2017), 85–94. https://doi.org/10.1016/j.cnsns.2016.12.015
  • Akhmet, M., Fen, M. O., Non-autonomous equations with unpredictable solutions, Commun. Nonlinear Sci. Numer. Simulat., 59 (2018), 657–670.
  • Akhmet, M., Tleubergenova, M., Zhamanshin, A., Modulo periodic Poisson stable solutions of quasilinear differential equations, Entropy, 23 (2021), 1535. https://doi.org/10.3390/e23111535
  • Akhmet, M. U., Turan, M., The differential equations on time scales through impulsive differential equations, Nonlinear Anal., 65(11) (2006), 2043–2060. https://doi.org/10.1016/j.na.2005.12.042
  • Akhmet, M. U., Turan, M., Differential equations on variable time scales, Nonlinear Anal., 70(3) (2009), 1175–1192. https://doi.org/10.1016/j.na.2008.02.020
  • Birkhoff, G., Dynamical Systems, Amer. Math. Soc. Colloq. Publ., vol. 9, Amer. Math. Soc., Providence, R. I., 1966.
  • Bochner, S., Continuous mappings of almost automorphic and almost automorphic functions, Proc. Natl. Acad. Sci. U.S.A., 52(4) (1964), 907–910. https://doi.org/10.1073/pnas.52.4.907
  • Bohner, M., Fan, M., Zhang, J., Periodicity of scalar dynamic equations and applications to population models, J. Math. Anal. Appl., 330(1) (2007), 1–9. https://doi.org/10.1016/j.jmaa.2006.04.084
  • Bohner, M., Peterson, A., Dynamic Equations on Time Scales: An Introduction with Applications, Birkhauser, Boston, 2001.
  • del R. Cantero, M., Perez, P. L., Smoler, M., Etchegoyen, C. V., Cantiello, H. F., Electrical oscillations in two-dimensional microtubular structures, Sci. Rep., 6 (2016), 27143. https://doi.org/10.1038/
  • Cheban, D., Liu, Z., Periodic, quasi-periodic, almost periodic, almost automorphic, Birkhoff recurrent and Poisson stable solutions for stochastic differential equations, J. Differ. Equ., 269(4) (2020), 3652–3685. https://doi.org/10.1016/j.jde.2020.03.014
  • Corduneanu, C., Almost Periodic Oscillations and Waves, Springer, New York, 2009.
  • Doelling, K. B., Assaneo, M. F., Neural oscillations are a start toward understanding brain activity rather than the end, PLoS Biol., 19 (2021), e3001234. https://doi.org/10.1371/journal.pbio.3001234
  • Du, B., Hu, X., Ge, W., Periodic solution of a neutral delay model of single-species population growth on time scales, Commun. Nonlinear Sci. Numer. Simulat., 15(2) (2010), 394–400. https://doi.org/10.1016/j.cnsns.2009.03.014
  • Fen, M. O., Tokmak Fen, F., SICNNs with Li-Yorke chaotic outputs on a time scale, Neurocomputing, 237 (2017), 158–165. https://doi.org/10.1016/j.neucom.2016.09.073
  • Gulev, S. K., Latif, M., The origins of a climate oscillation, Nature, 521 (2015), 428–430. https://doi.org/10.1038/521428a
  • Hilger, S., Ein Maßkettenkalk¨ul mit Anwendung auf Zentrumsmanningfaltigkeiten, PhD thesis, Universitat Wurzburg, 1988.
  • Kaufmann, E. R., Raffoul, Y. N., Periodic solutions for a neutral nonlinear dynamical equation on a time scale, J. Math. Anal. Appl., 319(1) (2006), 315-325. https://doi.org/10.1016/j.jmaa.2006.01.063
  • Knight, R. A., Recurrent and Poisson stable flows, Proc. Am. Math. Soc., 83(1) (1981), 49-53. https://doi.org/10.2307/2043889
  • Lakshmikantham, V., Sivasundaram, S., Kaymakçalan, B., Dynamic Systems on Measure Chains, Kluwer Academic Publishers, Netherlands, 1996.
  • Li, Y., Periodic solutions of non-autonomous cellular neural networks with impulses and delays on time scales, IMA J. Math. Control Inf., 31(2) (2014), 273–293. https://doi.org/10.1093/imamci/dnt012
  • Li, Y, Shen, S., Compact almost automorphic function on time scales and its application, Qual. Theory Dyn. Syst., 20 (2021), Article number: 86. https://doi.org/10.1007/s12346-021-00522-5
  • Li, Z., Zhang, T., Permanence for Leslie-Gower predator-prey system with feedback controls on time scales, Quaest. Math., 44(10) (2021), 1393–1407. https://doi.org/10.2989/16073606.2020.1799256
  • Liao, Q., Li, B., Li, Y., Permanence and almost periodic solutions for an n-species Lotka-Volterra food chain system on time scales, Asian-Eur. J. Math., 8(2) (2015), 1550027. https://doi.org/10.1142/S1793557115500278
  • Liu, X., Liu, Z. X., Poisson stable solutions for stochastic differential equations with Levy noise, Acta Math. Sin. Engl., 38 (2022), 22–54. https://doi.org/10.1007/s10114-021-0107-1
  • Pchelintsev, A. N., On the Poisson stability to study a fourth-order dynamical system with quadratic nonlinearities, Mathematics, 9 (2021), 2057. https://doi.org/10.3390/math9172057
  • Poincare, H., Les M´ethodes Nouvelles de la Mecanique C´eleste, Volume 1, Gauthier-Villars, Paris, 1892.
  • Samoilenko, A. M., Perestyuk, N. A., Impulsive Differential Equations, World Scientific, Singapore, 1995.
  • Samuelson, P. A., Generalized predator-prey oscillations in ecological and economic equilibrium, Proc. Natl. Acad. Sci. U.S.A., 68(5) (1971), 980–983. https://doi.org/10.1073/pnas.68.5.980
  • Seiffertt, J., Adaptive resonance theory in the time scales calculus, Neural Netw., 120 (2019), 32–39. https://doi.org/10.1016/j.neunet.2019.08.010
  • Sell, G. R., Topological Dynamics and Ordinary Differential Equations, Van Nostrand Reinhold Company, London, 1971.
  • Thomas, D., Weedermann, M., Billings, L., Hoffacker, J., Washington-Allen, R. A., When to spray: a time-scale calculus approach to controlling the impact of West Nile virus, Ecol. Soc., 14(2) (2009), 21. https://doi.org/10.5751/ES-03006-140221
  • Tisdell, C. C., Zaidi, A., Basic qualitative and quantitative results for solutions to nonlinear, dynamic equations on time scales with an application to economic modelling, Nonlinear Anal. Theory Methods Appl., 68(11) (2008), 3504–3524. https://doi.org/10.1016/j.na.2007.03.043
  • Vance, W., Ross, J., Entrainment, phase resetting, and quenching of chemical oscillations, J. Chem. Phys., 103(7) (1995), 2472. https://doi.org/10.1063/1.469669
  • Veech, W. A., Almost automorphic functions, Proc. Natl. Acad. Sci. U.S.A. 49(4) (1963), 462–464. https://doi.org/10.1073/pnas.49.4.462
Year 2023, Volume: 72 Issue: 4, 907 - 920, 29.12.2023
https://doi.org/10.31801/cfsuasmas.1220565

Abstract

References

  • Agarwal, R., Bohner, M., O’Regan, D., Peterson, A., Dynamic equations on time scales: a survey, J. Comput. Appl. Math., 141(1-2) (2002), 1–26. https://doi.org/10.1016/S0377-0427(01)00432-0
  • Akhmet, M., Principles of Discontinuous Dynamical Systems, Springer, New York, 2010.
  • Akhmet, M., Fen, M. O., Poincar´e chaos and unpredictable functions, Commun. Nonlinear Sci. Numer. Simulat., 48 (2017), 85–94. https://doi.org/10.1016/j.cnsns.2016.12.015
  • Akhmet, M., Fen, M. O., Non-autonomous equations with unpredictable solutions, Commun. Nonlinear Sci. Numer. Simulat., 59 (2018), 657–670.
  • Akhmet, M., Tleubergenova, M., Zhamanshin, A., Modulo periodic Poisson stable solutions of quasilinear differential equations, Entropy, 23 (2021), 1535. https://doi.org/10.3390/e23111535
  • Akhmet, M. U., Turan, M., The differential equations on time scales through impulsive differential equations, Nonlinear Anal., 65(11) (2006), 2043–2060. https://doi.org/10.1016/j.na.2005.12.042
  • Akhmet, M. U., Turan, M., Differential equations on variable time scales, Nonlinear Anal., 70(3) (2009), 1175–1192. https://doi.org/10.1016/j.na.2008.02.020
  • Birkhoff, G., Dynamical Systems, Amer. Math. Soc. Colloq. Publ., vol. 9, Amer. Math. Soc., Providence, R. I., 1966.
  • Bochner, S., Continuous mappings of almost automorphic and almost automorphic functions, Proc. Natl. Acad. Sci. U.S.A., 52(4) (1964), 907–910. https://doi.org/10.1073/pnas.52.4.907
  • Bohner, M., Fan, M., Zhang, J., Periodicity of scalar dynamic equations and applications to population models, J. Math. Anal. Appl., 330(1) (2007), 1–9. https://doi.org/10.1016/j.jmaa.2006.04.084
  • Bohner, M., Peterson, A., Dynamic Equations on Time Scales: An Introduction with Applications, Birkhauser, Boston, 2001.
  • del R. Cantero, M., Perez, P. L., Smoler, M., Etchegoyen, C. V., Cantiello, H. F., Electrical oscillations in two-dimensional microtubular structures, Sci. Rep., 6 (2016), 27143. https://doi.org/10.1038/
  • Cheban, D., Liu, Z., Periodic, quasi-periodic, almost periodic, almost automorphic, Birkhoff recurrent and Poisson stable solutions for stochastic differential equations, J. Differ. Equ., 269(4) (2020), 3652–3685. https://doi.org/10.1016/j.jde.2020.03.014
  • Corduneanu, C., Almost Periodic Oscillations and Waves, Springer, New York, 2009.
  • Doelling, K. B., Assaneo, M. F., Neural oscillations are a start toward understanding brain activity rather than the end, PLoS Biol., 19 (2021), e3001234. https://doi.org/10.1371/journal.pbio.3001234
  • Du, B., Hu, X., Ge, W., Periodic solution of a neutral delay model of single-species population growth on time scales, Commun. Nonlinear Sci. Numer. Simulat., 15(2) (2010), 394–400. https://doi.org/10.1016/j.cnsns.2009.03.014
  • Fen, M. O., Tokmak Fen, F., SICNNs with Li-Yorke chaotic outputs on a time scale, Neurocomputing, 237 (2017), 158–165. https://doi.org/10.1016/j.neucom.2016.09.073
  • Gulev, S. K., Latif, M., The origins of a climate oscillation, Nature, 521 (2015), 428–430. https://doi.org/10.1038/521428a
  • Hilger, S., Ein Maßkettenkalk¨ul mit Anwendung auf Zentrumsmanningfaltigkeiten, PhD thesis, Universitat Wurzburg, 1988.
  • Kaufmann, E. R., Raffoul, Y. N., Periodic solutions for a neutral nonlinear dynamical equation on a time scale, J. Math. Anal. Appl., 319(1) (2006), 315-325. https://doi.org/10.1016/j.jmaa.2006.01.063
  • Knight, R. A., Recurrent and Poisson stable flows, Proc. Am. Math. Soc., 83(1) (1981), 49-53. https://doi.org/10.2307/2043889
  • Lakshmikantham, V., Sivasundaram, S., Kaymakçalan, B., Dynamic Systems on Measure Chains, Kluwer Academic Publishers, Netherlands, 1996.
  • Li, Y., Periodic solutions of non-autonomous cellular neural networks with impulses and delays on time scales, IMA J. Math. Control Inf., 31(2) (2014), 273–293. https://doi.org/10.1093/imamci/dnt012
  • Li, Y, Shen, S., Compact almost automorphic function on time scales and its application, Qual. Theory Dyn. Syst., 20 (2021), Article number: 86. https://doi.org/10.1007/s12346-021-00522-5
  • Li, Z., Zhang, T., Permanence for Leslie-Gower predator-prey system with feedback controls on time scales, Quaest. Math., 44(10) (2021), 1393–1407. https://doi.org/10.2989/16073606.2020.1799256
  • Liao, Q., Li, B., Li, Y., Permanence and almost periodic solutions for an n-species Lotka-Volterra food chain system on time scales, Asian-Eur. J. Math., 8(2) (2015), 1550027. https://doi.org/10.1142/S1793557115500278
  • Liu, X., Liu, Z. X., Poisson stable solutions for stochastic differential equations with Levy noise, Acta Math. Sin. Engl., 38 (2022), 22–54. https://doi.org/10.1007/s10114-021-0107-1
  • Pchelintsev, A. N., On the Poisson stability to study a fourth-order dynamical system with quadratic nonlinearities, Mathematics, 9 (2021), 2057. https://doi.org/10.3390/math9172057
  • Poincare, H., Les M´ethodes Nouvelles de la Mecanique C´eleste, Volume 1, Gauthier-Villars, Paris, 1892.
  • Samoilenko, A. M., Perestyuk, N. A., Impulsive Differential Equations, World Scientific, Singapore, 1995.
  • Samuelson, P. A., Generalized predator-prey oscillations in ecological and economic equilibrium, Proc. Natl. Acad. Sci. U.S.A., 68(5) (1971), 980–983. https://doi.org/10.1073/pnas.68.5.980
  • Seiffertt, J., Adaptive resonance theory in the time scales calculus, Neural Netw., 120 (2019), 32–39. https://doi.org/10.1016/j.neunet.2019.08.010
  • Sell, G. R., Topological Dynamics and Ordinary Differential Equations, Van Nostrand Reinhold Company, London, 1971.
  • Thomas, D., Weedermann, M., Billings, L., Hoffacker, J., Washington-Allen, R. A., When to spray: a time-scale calculus approach to controlling the impact of West Nile virus, Ecol. Soc., 14(2) (2009), 21. https://doi.org/10.5751/ES-03006-140221
  • Tisdell, C. C., Zaidi, A., Basic qualitative and quantitative results for solutions to nonlinear, dynamic equations on time scales with an application to economic modelling, Nonlinear Anal. Theory Methods Appl., 68(11) (2008), 3504–3524. https://doi.org/10.1016/j.na.2007.03.043
  • Vance, W., Ross, J., Entrainment, phase resetting, and quenching of chemical oscillations, J. Chem. Phys., 103(7) (1995), 2472. https://doi.org/10.1063/1.469669
  • Veech, W. A., Almost automorphic functions, Proc. Natl. Acad. Sci. U.S.A. 49(4) (1963), 462–464. https://doi.org/10.1073/pnas.49.4.462
There are 37 citations in total.

Details

Primary Language English
Subjects Applied Mathematics
Journal Section Research Articles
Authors

Fatma Tokmak Fen 0000-0002-4051-7798

Mehmet Onur Fen 0000-0002-7787-7236

Publication Date December 29, 2023
Submission Date December 17, 2022
Acceptance Date July 3, 2023
Published in Issue Year 2023 Volume: 72 Issue: 4

Cite

APA Tokmak Fen, F., & Fen, M. O. (2023). Modulo periodic Poisson stable solutions of dynamic equations on a time scale. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 72(4), 907-920. https://doi.org/10.31801/cfsuasmas.1220565
AMA Tokmak Fen F, Fen MO. Modulo periodic Poisson stable solutions of dynamic equations on a time scale. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2023;72(4):907-920. doi:10.31801/cfsuasmas.1220565
Chicago Tokmak Fen, Fatma, and Mehmet Onur Fen. “Modulo Periodic Poisson Stable Solutions of Dynamic Equations on a Time Scale”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72, no. 4 (December 2023): 907-20. https://doi.org/10.31801/cfsuasmas.1220565.
EndNote Tokmak Fen F, Fen MO (December 1, 2023) Modulo periodic Poisson stable solutions of dynamic equations on a time scale. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72 4 907–920.
IEEE F. Tokmak Fen and M. O. Fen, “Modulo periodic Poisson stable solutions of dynamic equations on a time scale”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 72, no. 4, pp. 907–920, 2023, doi: 10.31801/cfsuasmas.1220565.
ISNAD Tokmak Fen, Fatma - Fen, Mehmet Onur. “Modulo Periodic Poisson Stable Solutions of Dynamic Equations on a Time Scale”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72/4 (December 2023), 907-920. https://doi.org/10.31801/cfsuasmas.1220565.
JAMA Tokmak Fen F, Fen MO. Modulo periodic Poisson stable solutions of dynamic equations on a time scale. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72:907–920.
MLA Tokmak Fen, Fatma and Mehmet Onur Fen. “Modulo Periodic Poisson Stable Solutions of Dynamic Equations on a Time Scale”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 72, no. 4, 2023, pp. 907-20, doi:10.31801/cfsuasmas.1220565.
Vancouver Tokmak Fen F, Fen MO. Modulo periodic Poisson stable solutions of dynamic equations on a time scale. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72(4):907-20.

Cited By

Nonlinear semilinear integro-differential evolution equations with impulsive effects
Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics
https://doi.org/10.31801/cfsuasmas.1357985

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.