Research Article
BibTex RIS Cite

A Diophantine equation including Fibonacci and Fibonomial coefficients

Year 2023, Volume: 72 Issue: 4, 992 - 999, 29.12.2023
https://doi.org/10.31801/cfsuasmas.1247415

Abstract

In this paper, we solve the equation
\begin{equation*}
\sum_{k=0}^{m} {{2m+1}\brack{k}}_{F}\pm F_{t}=F_{n},
\end{equation*}
under weak assumptions. Here, $F_n$ is $n^{th}$ Fibonacci number and ${{.}\brack {.}}_{F}$ denotes Fibonomial coefficient.

References

  • Berndt, B. C., Galway, W., The Brocard–Ramanujan diophantine equation $n! + 1 = m^{2}$, Ramanujan J., 4 (2000), 41–42. https://doi.org/10.1023/A:1009873805276
  • Bollman, M., Hernandez, H. S., Luca, F., Fibonacci numbers which are sums of three factorials, Publ. Math. Debrecen, 77 (2010), 211–224.
  • Carmichael, R. D., On the numerical factors of the arithmetics forms $\alpha^{n}\pm\beta^{n}$, Annals Math., 2(15) (1913), 30-70.
  • Grossman, G., Luca, F., Sums of factorials in binary recurrence sequences, J. Number Theory, 93 (2002), 87–107. https://doi.org/10.1006/jnth.2001.2718
  • Irmak, N., Sum of the Fibonomial coefficients at most one away from Fibonacci numbers, Math. Reports, 18(68)(4) (2016), 567-571.
  • Irmak, N., S¸iar, Z., Keskin, R., On the sum of the three arbitrary Fibonacci and Lucas numbers, Notes Numbers Theory Discrete Math., 25(4) (2019), 96-101. https://doi.org/10.7546/nntdm.2019.25.4.96-101
  • Kilic, E., Akkuş, I., Ohtsuka, H., Some generalized Fibonomial sums related with the Gaussian q-Binomial sum, Bull. Math. Soc. Sci. Math. Roumanie Tome, 55(103)(1) (2012), 51-61.
  • Koshy, T., Fibonacci and Lucas Numbers with Applications, John Wiley and Sons, Proc., New York-Toronto, 2001.
  • Luca, F., Siksek, S., Factorials expressible as sums of at most three Fibonacci numbers, Proc. of the Edinburgh Math. Soc., 53 (2010), 679–729. https://doi.org/10.1017/S0013091508000874
  • Marques, D., Fibonomial coefficients at most one away from Fibonacci Numbers, Demonstratio Math., 45(1) (2012), 25-28. https://doi.org/10.1515/dema-2013-0360
  • Marques, D., The Fibonacci version of a variant the Brocard-Ramanujan Diophantine equation, Far East J. Math. Sci., 56(2) (2011), 219-224.
  • Marques, D., The Fibonacci version of the Brocard-Ramanujan Diophantine equation, Portugal. Math., 68(2) (2011), 185-189. https://doi.org/10.4171/PM/1887
  • Szalay, L., Diophantine equations with binary recurrences associated to Brocard-Ramanujan problem, Portugal. Math., 69 (2012), 213-220. https://doi.org/10.4171/PM/1914
Year 2023, Volume: 72 Issue: 4, 992 - 999, 29.12.2023
https://doi.org/10.31801/cfsuasmas.1247415

Abstract

References

  • Berndt, B. C., Galway, W., The Brocard–Ramanujan diophantine equation $n! + 1 = m^{2}$, Ramanujan J., 4 (2000), 41–42. https://doi.org/10.1023/A:1009873805276
  • Bollman, M., Hernandez, H. S., Luca, F., Fibonacci numbers which are sums of three factorials, Publ. Math. Debrecen, 77 (2010), 211–224.
  • Carmichael, R. D., On the numerical factors of the arithmetics forms $\alpha^{n}\pm\beta^{n}$, Annals Math., 2(15) (1913), 30-70.
  • Grossman, G., Luca, F., Sums of factorials in binary recurrence sequences, J. Number Theory, 93 (2002), 87–107. https://doi.org/10.1006/jnth.2001.2718
  • Irmak, N., Sum of the Fibonomial coefficients at most one away from Fibonacci numbers, Math. Reports, 18(68)(4) (2016), 567-571.
  • Irmak, N., S¸iar, Z., Keskin, R., On the sum of the three arbitrary Fibonacci and Lucas numbers, Notes Numbers Theory Discrete Math., 25(4) (2019), 96-101. https://doi.org/10.7546/nntdm.2019.25.4.96-101
  • Kilic, E., Akkuş, I., Ohtsuka, H., Some generalized Fibonomial sums related with the Gaussian q-Binomial sum, Bull. Math. Soc. Sci. Math. Roumanie Tome, 55(103)(1) (2012), 51-61.
  • Koshy, T., Fibonacci and Lucas Numbers with Applications, John Wiley and Sons, Proc., New York-Toronto, 2001.
  • Luca, F., Siksek, S., Factorials expressible as sums of at most three Fibonacci numbers, Proc. of the Edinburgh Math. Soc., 53 (2010), 679–729. https://doi.org/10.1017/S0013091508000874
  • Marques, D., Fibonomial coefficients at most one away from Fibonacci Numbers, Demonstratio Math., 45(1) (2012), 25-28. https://doi.org/10.1515/dema-2013-0360
  • Marques, D., The Fibonacci version of a variant the Brocard-Ramanujan Diophantine equation, Far East J. Math. Sci., 56(2) (2011), 219-224.
  • Marques, D., The Fibonacci version of the Brocard-Ramanujan Diophantine equation, Portugal. Math., 68(2) (2011), 185-189. https://doi.org/10.4171/PM/1887
  • Szalay, L., Diophantine equations with binary recurrences associated to Brocard-Ramanujan problem, Portugal. Math., 69 (2012), 213-220. https://doi.org/10.4171/PM/1914
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Nurettin Irmak 0000-0003-0409-4342

Publication Date December 29, 2023
Submission Date February 3, 2023
Acceptance Date August 1, 2023
Published in Issue Year 2023 Volume: 72 Issue: 4

Cite

APA Irmak, N. (2023). A Diophantine equation including Fibonacci and Fibonomial coefficients. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 72(4), 992-999. https://doi.org/10.31801/cfsuasmas.1247415
AMA Irmak N. A Diophantine equation including Fibonacci and Fibonomial coefficients. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2023;72(4):992-999. doi:10.31801/cfsuasmas.1247415
Chicago Irmak, Nurettin. “A Diophantine Equation Including Fibonacci and Fibonomial Coefficients”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72, no. 4 (December 2023): 992-99. https://doi.org/10.31801/cfsuasmas.1247415.
EndNote Irmak N (December 1, 2023) A Diophantine equation including Fibonacci and Fibonomial coefficients. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72 4 992–999.
IEEE N. Irmak, “A Diophantine equation including Fibonacci and Fibonomial coefficients”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 72, no. 4, pp. 992–999, 2023, doi: 10.31801/cfsuasmas.1247415.
ISNAD Irmak, Nurettin. “A Diophantine Equation Including Fibonacci and Fibonomial Coefficients”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72/4 (December 2023), 992-999. https://doi.org/10.31801/cfsuasmas.1247415.
JAMA Irmak N. A Diophantine equation including Fibonacci and Fibonomial coefficients. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72:992–999.
MLA Irmak, Nurettin. “A Diophantine Equation Including Fibonacci and Fibonomial Coefficients”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 72, no. 4, 2023, pp. 992-9, doi:10.31801/cfsuasmas.1247415.
Vancouver Irmak N. A Diophantine equation including Fibonacci and Fibonomial coefficients. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72(4):992-9.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.