Research Article
BibTex RIS Cite

Year 2025, Volume: 74 Issue: 3, 503 - 512, 23.09.2025
https://doi.org/10.31801/cfsuasmas.1519351

Abstract

References

  • Bostancı, T., Başcanbaz-Tunca, G., On Stancu operators depending on a non-negative integer, Filomat, 36(18) (2022), 6129-6138.
  • Bustamante, J., Quesada, J. M., A property of Ditzian-Totik second order moduli, Appl. Math. Lett., 23(5) (2010), 576-580.
  • Çetin, N., A new generalization of complex Stancu operators, Math. Methods Appl. Sci., 42 (2019), 5582-5594.
  • Çetin, N., Başcanbaz-Tunca, G., Approximation by a new complex generalized Bernstein operator, An. Univ. Oradea Fasc. Mat., 26(2) (2019), 129-141.
  • Çetin, N., A new complex generalized Bernstein-Schurer operator, Carpathian J. Math., 37(1) (2021), 81-89.
  • Çetin, N., Manav Mutlu, N., Approximation by Generalization of Bernstein-Schurer Operators, Springer Book, Mathematical Approaches on Some Special Topics in Engineering and Current Mathematics Subjects, in press.
  • Çetin, N., Approximation by $\alpha$-Bernstein-Schurer operator, Hacet. J. Math. Stat., 50(3) (2021), 732-743.
  • DeVore, R. A., Lorentz, G. G., Constructive Approximation, Springer, Berlin, 1993.
  • Kajla, A., The Kantorovich variant of an operator defined by D.D Stancu, Appl. Math. Comput., 316 (2018), 400-408.
  • Kantorovich, L. V., Sur certains développements suivant les polynômes de la forme de S. Bernstein, I, II, C. R. Acad. Sci. URSS, (1930), 563–568, 595–600.
  • Kumar, A., A new kind of variant of the Kantorovich type modification operators introduced by D. D. Stancu, Results Appl. Math., 11 (2021), 100158.
  • Lorentz, G. G., Bernstein Polynomials, University of Toronto Press, Toronto, 1953 (2.ed.), Chelsea Publishing Co., New York, 1986.
  • Schurer, F., Linear Positive Operators In Approximation Theory, Math. Inst. Techn. Univ. Delft Report, 1962.
  • Shisha, O., Bond, B., The degree of convergence of sequences of linear positive operators, Proc. Nat. Acad. Sci. USA., 60 (1968), 1196-1200.
  • Stancu, D. D., Quadrature formulas constructed by using certain linear positive operators, Numerical Integration (Proc. Conf., Oberwolfach, 1981), ISNM 57 (1982), Birkhäuser Verlag, Basel, 241–251.
  • Stancu, D. D., Approximation of functions by means of a new generalized Bernstein operator, Calcolo, 20(2) (1983), 211-229.
  • Yang, R., Xiong, J., Cao, F., Multivariate Stancu operators defined on a simplex, Appl. Math. Comput., 138 (2003), 189-198.

Approximation by generalized Stancu-Kantorovich operators

Year 2025, Volume: 74 Issue: 3, 503 - 512, 23.09.2025
https://doi.org/10.31801/cfsuasmas.1519351

Abstract

In this paper, we consider a new generalization of Stancu-Kantorovich operators depending on two parameters. Firstly, we prove the approximation theorem in the space of real valued continuous functions on compact interval and then obtain some estimates for the rate of convergence by using moduli of smoothness of the first and the second order. Finally, we give some graphical and numerical examples to demonstrate the approximation process of generalized Stancu-Kantorovich and the classical Kantorovich operators for different parameters.

References

  • Bostancı, T., Başcanbaz-Tunca, G., On Stancu operators depending on a non-negative integer, Filomat, 36(18) (2022), 6129-6138.
  • Bustamante, J., Quesada, J. M., A property of Ditzian-Totik second order moduli, Appl. Math. Lett., 23(5) (2010), 576-580.
  • Çetin, N., A new generalization of complex Stancu operators, Math. Methods Appl. Sci., 42 (2019), 5582-5594.
  • Çetin, N., Başcanbaz-Tunca, G., Approximation by a new complex generalized Bernstein operator, An. Univ. Oradea Fasc. Mat., 26(2) (2019), 129-141.
  • Çetin, N., A new complex generalized Bernstein-Schurer operator, Carpathian J. Math., 37(1) (2021), 81-89.
  • Çetin, N., Manav Mutlu, N., Approximation by Generalization of Bernstein-Schurer Operators, Springer Book, Mathematical Approaches on Some Special Topics in Engineering and Current Mathematics Subjects, in press.
  • Çetin, N., Approximation by $\alpha$-Bernstein-Schurer operator, Hacet. J. Math. Stat., 50(3) (2021), 732-743.
  • DeVore, R. A., Lorentz, G. G., Constructive Approximation, Springer, Berlin, 1993.
  • Kajla, A., The Kantorovich variant of an operator defined by D.D Stancu, Appl. Math. Comput., 316 (2018), 400-408.
  • Kantorovich, L. V., Sur certains développements suivant les polynômes de la forme de S. Bernstein, I, II, C. R. Acad. Sci. URSS, (1930), 563–568, 595–600.
  • Kumar, A., A new kind of variant of the Kantorovich type modification operators introduced by D. D. Stancu, Results Appl. Math., 11 (2021), 100158.
  • Lorentz, G. G., Bernstein Polynomials, University of Toronto Press, Toronto, 1953 (2.ed.), Chelsea Publishing Co., New York, 1986.
  • Schurer, F., Linear Positive Operators In Approximation Theory, Math. Inst. Techn. Univ. Delft Report, 1962.
  • Shisha, O., Bond, B., The degree of convergence of sequences of linear positive operators, Proc. Nat. Acad. Sci. USA., 60 (1968), 1196-1200.
  • Stancu, D. D., Quadrature formulas constructed by using certain linear positive operators, Numerical Integration (Proc. Conf., Oberwolfach, 1981), ISNM 57 (1982), Birkhäuser Verlag, Basel, 241–251.
  • Stancu, D. D., Approximation of functions by means of a new generalized Bernstein operator, Calcolo, 20(2) (1983), 211-229.
  • Yang, R., Xiong, J., Cao, F., Multivariate Stancu operators defined on a simplex, Appl. Math. Comput., 138 (2003), 189-198.
There are 17 citations in total.

Details

Primary Language English
Subjects Operator Algebras and Functional Analysis
Journal Section Research Articles
Authors

Selver Yeter 0009-0005-5479-7056

Nursel Çetin 0000-0003-3771-6523

Publication Date September 23, 2025
Submission Date July 19, 2024
Acceptance Date February 25, 2025
Published in Issue Year 2025 Volume: 74 Issue: 3

Cite

APA Yeter, S., & Çetin, N. (2025). Approximation by generalized Stancu-Kantorovich operators. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 74(3), 503-512. https://doi.org/10.31801/cfsuasmas.1519351
AMA Yeter S, Çetin N. Approximation by generalized Stancu-Kantorovich operators. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. September 2025;74(3):503-512. doi:10.31801/cfsuasmas.1519351
Chicago Yeter, Selver, and Nursel Çetin. “Approximation by Generalized Stancu-Kantorovich Operators”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74, no. 3 (September 2025): 503-12. https://doi.org/10.31801/cfsuasmas.1519351.
EndNote Yeter S, Çetin N (September 1, 2025) Approximation by generalized Stancu-Kantorovich operators. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74 3 503–512.
IEEE S. Yeter and N. Çetin, “Approximation by generalized Stancu-Kantorovich operators”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 74, no. 3, pp. 503–512, 2025, doi: 10.31801/cfsuasmas.1519351.
ISNAD Yeter, Selver - Çetin, Nursel. “Approximation by Generalized Stancu-Kantorovich Operators”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74/3 (September2025), 503-512. https://doi.org/10.31801/cfsuasmas.1519351.
JAMA Yeter S, Çetin N. Approximation by generalized Stancu-Kantorovich operators. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2025;74:503–512.
MLA Yeter, Selver and Nursel Çetin. “Approximation by Generalized Stancu-Kantorovich Operators”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 74, no. 3, 2025, pp. 503-12, doi:10.31801/cfsuasmas.1519351.
Vancouver Yeter S, Çetin N. Approximation by generalized Stancu-Kantorovich operators. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2025;74(3):503-12.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.