Year 2025,
Volume: 74 Issue: 3, 503 - 512, 23.09.2025
Selver Yeter
,
Nursel Çetin
References
-
Bostancı, T., Başcanbaz-Tunca, G., On Stancu operators depending on a non-negative integer, Filomat, 36(18) (2022), 6129-6138.
-
Bustamante, J., Quesada, J. M., A property of Ditzian-Totik second order moduli, Appl. Math. Lett., 23(5) (2010),
576-580.
-
Çetin, N., A new generalization of complex Stancu operators, Math. Methods Appl. Sci., 42 (2019), 5582-5594.
-
Çetin, N., Başcanbaz-Tunca, G., Approximation by a new complex generalized Bernstein operator, An. Univ. Oradea Fasc. Mat., 26(2) (2019), 129-141.
-
Çetin, N., A new complex generalized Bernstein-Schurer operator, Carpathian J. Math., 37(1) (2021), 81-89.
-
Çetin, N., Manav Mutlu, N., Approximation by Generalization of Bernstein-Schurer Operators, Springer Book, Mathematical Approaches on Some Special Topics in Engineering and Current Mathematics Subjects, in press.
-
Çetin, N., Approximation by $\alpha$-Bernstein-Schurer operator, Hacet. J. Math. Stat., 50(3) (2021), 732-743.
-
DeVore, R. A., Lorentz, G. G., Constructive Approximation, Springer, Berlin, 1993.
-
Kajla, A., The Kantorovich variant of an operator defined by D.D Stancu, Appl. Math. Comput., 316 (2018), 400-408.
-
Kantorovich, L. V., Sur certains développements suivant les polynômes de la forme de S. Bernstein, I, II, C. R. Acad. Sci. URSS, (1930), 563–568, 595–600.
-
Kumar, A., A new kind of variant of the Kantorovich type modification operators introduced by D. D. Stancu, Results Appl. Math., 11 (2021), 100158.
-
Lorentz, G. G., Bernstein Polynomials, University of Toronto Press, Toronto, 1953 (2.ed.), Chelsea Publishing Co.,
New York, 1986.
-
Schurer, F., Linear Positive Operators In Approximation Theory, Math. Inst. Techn. Univ. Delft Report, 1962.
-
Shisha, O., Bond, B., The degree of convergence of sequences of linear positive operators, Proc. Nat. Acad. Sci. USA., 60 (1968), 1196-1200.
-
Stancu, D. D., Quadrature formulas constructed by using certain linear positive operators, Numerical Integration
(Proc. Conf., Oberwolfach, 1981), ISNM 57 (1982), Birkhäuser Verlag, Basel, 241–251.
-
Stancu, D. D., Approximation of functions by means of a new generalized Bernstein operator, Calcolo, 20(2) (1983), 211-229.
-
Yang, R., Xiong, J., Cao, F., Multivariate Stancu operators defined on a simplex, Appl. Math. Comput., 138 (2003),
189-198.
Approximation by generalized Stancu-Kantorovich operators
Year 2025,
Volume: 74 Issue: 3, 503 - 512, 23.09.2025
Selver Yeter
,
Nursel Çetin
Abstract
In this paper, we consider a new generalization of Stancu-Kantorovich operators depending on two parameters. Firstly, we prove the approximation theorem in the space of real valued continuous functions on compact interval and then obtain some estimates for the rate of convergence by using moduli of smoothness of the first and the second order. Finally, we give some graphical and numerical examples to demonstrate the approximation process of generalized Stancu-Kantorovich and the classical Kantorovich operators for different parameters.
References
-
Bostancı, T., Başcanbaz-Tunca, G., On Stancu operators depending on a non-negative integer, Filomat, 36(18) (2022), 6129-6138.
-
Bustamante, J., Quesada, J. M., A property of Ditzian-Totik second order moduli, Appl. Math. Lett., 23(5) (2010),
576-580.
-
Çetin, N., A new generalization of complex Stancu operators, Math. Methods Appl. Sci., 42 (2019), 5582-5594.
-
Çetin, N., Başcanbaz-Tunca, G., Approximation by a new complex generalized Bernstein operator, An. Univ. Oradea Fasc. Mat., 26(2) (2019), 129-141.
-
Çetin, N., A new complex generalized Bernstein-Schurer operator, Carpathian J. Math., 37(1) (2021), 81-89.
-
Çetin, N., Manav Mutlu, N., Approximation by Generalization of Bernstein-Schurer Operators, Springer Book, Mathematical Approaches on Some Special Topics in Engineering and Current Mathematics Subjects, in press.
-
Çetin, N., Approximation by $\alpha$-Bernstein-Schurer operator, Hacet. J. Math. Stat., 50(3) (2021), 732-743.
-
DeVore, R. A., Lorentz, G. G., Constructive Approximation, Springer, Berlin, 1993.
-
Kajla, A., The Kantorovich variant of an operator defined by D.D Stancu, Appl. Math. Comput., 316 (2018), 400-408.
-
Kantorovich, L. V., Sur certains développements suivant les polynômes de la forme de S. Bernstein, I, II, C. R. Acad. Sci. URSS, (1930), 563–568, 595–600.
-
Kumar, A., A new kind of variant of the Kantorovich type modification operators introduced by D. D. Stancu, Results Appl. Math., 11 (2021), 100158.
-
Lorentz, G. G., Bernstein Polynomials, University of Toronto Press, Toronto, 1953 (2.ed.), Chelsea Publishing Co.,
New York, 1986.
-
Schurer, F., Linear Positive Operators In Approximation Theory, Math. Inst. Techn. Univ. Delft Report, 1962.
-
Shisha, O., Bond, B., The degree of convergence of sequences of linear positive operators, Proc. Nat. Acad. Sci. USA., 60 (1968), 1196-1200.
-
Stancu, D. D., Quadrature formulas constructed by using certain linear positive operators, Numerical Integration
(Proc. Conf., Oberwolfach, 1981), ISNM 57 (1982), Birkhäuser Verlag, Basel, 241–251.
-
Stancu, D. D., Approximation of functions by means of a new generalized Bernstein operator, Calcolo, 20(2) (1983), 211-229.
-
Yang, R., Xiong, J., Cao, F., Multivariate Stancu operators defined on a simplex, Appl. Math. Comput., 138 (2003),
189-198.