Research Article
BibTex RIS Cite

Year 2025, Volume: 7 Issue: 3, 253 - 261, 30.11.2025
https://doi.org/10.51537/chaos.1600410

Abstract

References

  • Balcerzak, M., D. Pikunov, and A. Dabrowski, 2018 The fastest, simplified method of lyapunov exponents spectrum estimation for continuous-time dynamical systems. Nonlinear Dynamics 94: 3053–3065.
  • Benkouider, K., T. Bouden, A. Sambas, B. Lekouaghet, M. A. Mohamed, et al., 2022 A new 10-d hyperchaotic system with coexisting attractors and high fractal dimension: Its dynamical analysis, synchronization and circuit design. Plos one 17: e0266053.
  • Brunton, S. L., J. L. Proctor, and J. N. Kutz, 2016 Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proceedings of the national academy of sciences 113: 3932–3937.
  • Cantón, E. C., R. d. J. E. González, and H. E. G. Velázquez, 2023 Generation of Self-Excited, Hidden and Non-Self-Excited Attractors in Piecewise Linear Systems: Some Recent Approaches.World Scientific.
  • de la Fraga, L. G., J. D. Rodríguez-Muñoz, and E. Tlelo-Cuautle, 2025 Prngs based on chaotic maps and 3d, 4d, and 5d chaotic systems. In Random Number Generators: Verilog Description, Hardware Implementation and Applications, pp. 95–144, Springer.
  • Diaz-gonzalez, E., A. Guerra-lópez, B. A. Hernandez, and E. Campos, 2022 Generation of multistability through unstable systems. Chaos Theory and Applications 4: 234–240.
  • Dong, C., M. Yang, L. Jia, and Z. Li, 2024 Dynamics investigation and chaos-based application of a novel no-equilibrium system with coexisting hidden attractors. Physica A: Statistical Mechanics and its Applications 633: 129391.
  • Lai, Q., C. Chen, X.-W. Zhao, J. Kengne, and C. Volos, 2019 Constructing chaotic system with multiple coexisting attractors. IEEE Access 7: 24051–24056.
  • Lai, Q., P. D. Kamdem Kuate, H. Pei, and H. Fotsin, 2020a Infinitely many coexisting attractors in no-equilibrium chaotic system. Complexity 2020.
  • Lai, Q., Z. Wan, P. D. K. Kuate, and H. Fotsin, 2020b Coexisting attractors, circuit implementation and synchronization control of a new chaotic system evolved from the simplest memristor chaotic circuit. Communications in Nonlinear Science and Numerical Simulation 89: 105341.
  • Laskaridis, L., C. Volos, and I. Stouboulos, 2022 Antimonotonicity, hysteresis and coexisting attractors in a shinriki circuit with a physical memristor as a nonlinear resistor. Electronics 11: 1920.
  • Li, C., Y. Jiang, and X. Ma, 2021 On offset boosting in chaotic system. Chaos Theory and Applications 3: 47–54.
  • Makenne, Y., R. Kengne, and F. Pelap, 2019 Coexistence of multiple attractors in the tree dynamics. Chaos, Solitons & Fractals 127: 70–82.
  • Marszalek, W. and M. Walczak, 2024 Bifurcation diagrams of nonlinear oscillatory dynamical systems: A brief review in 1d, 2d and 3d. Entropy 26: 770.
  • Marwan, M., V. Dos Santos, M. Z. Abidin, and A. Xiong, 2022 Coexisting attractor in a gyrostat chaotic system via basin of attraction and synchronization of two nonidentical mechanical systems. Mathematics 10: 1914.
  • MathWorks, 2024 Choose an ode solver. https://uk.mathworks.com/ help/matlab/math/choose-an-ode-solver.html, Accessed: 20 December 2024.
  • Meli, M. I. T., D. Yemélé, and G. D. Leutcho, 2021 Dynamical analysis of series hybrid electric vehicle powertrain with torsional vibration: Antimonotonicity and coexisting attractors. Chaos, Solitons & Fractals 150: 111174.
  • Nazaré, T. E., E. G. Nepomuceno, S. A. Martins, and D. N. Butusov, 2020 A note on the reproducibility of chaos simulation. Entropy 22: 953.
  • Njıtacke, Z., T. Fozin, L. K. Kengne, G. Leutcho, E. M. Kengne, et al., 2020 Multistability and its annihilation in the chua’s oscillator with piecewise-linear nonlinearity. Chaos Theory and Applications 2: 77–89.
  • Ostrovskii, V. Y., V. G. Rybin, A. I. Karimov, and D. N. Butusov, 2022 Inducing multistability in discrete chaotic systems using numerical integration with variable symmetry. Chaos, Solitons & Fractals 165: 112794.
  • Pala, A. and M. Machaczek, 2020 Computing of 3d bifurcation diagrams with nvidia cuda technology. IEEE Access 8: 157773– 157780.
  • Piccirillo, V., A. M. Tusset, and J. M. Balthazar, 2014 Dynamical jump attenuation in a non-ideal system through a magnetorheological damper. Journal of Theoretical and Applied Mechanics 52: 595–604.
  • Pulido-Luna, J. R., J. A. López-Rentería, S. L. Cardenas-Maciel, E. J. Ollervides-Vazquez, and N. R. Cazarez-Castro, 2022 Threedirectional multiscroll hidden attractors via piecewise linear systems. In 2022 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE), pp. 61–66, IEEE.
  • Rojas-Galván, R., E. Mercado-Gutiérrez, and E. Tlelo-Cuautle, 2025 Optimizing chaotic systems by orbit counting and fourier spectrum: Fpga implementation and image encryption application. Mathematical Modelling and Analysis 30: 322–341.
  • Rybin, V., D. Butusov, K. Shirnin, and V. Ostrovskii, 2024 Revealing hidden features of chaotic systems using high-performance bifurcation analysis tools based on cuda technology. International Journal of Bifurcation and Chaos 34: 2450134.
  • Tusset, A., V. Piccirillo, S. de Souza, A. Batista, J. M. Balthazar, et al., 2022 Chaos control in a nonideal vibrating systems. In Nonlinear Vibrations Excited by Limited Power Sources, pp. 253–262, Springer.
  • Tusset, A. M., J. M. Balthazar, R. T. Rocha, M. A. Ribeiro,W. B. Lenz, et al., 2020 Time-delayed feedback control applied in a nonideal system with chaotic behavior. In Nonlinear Dynamics and Control: Proceedings of the First International Nonlinear Dynamics Conference (NODYCON 2019), Volume II, pp. 237–244, Springer.
  • Wang, Y., Z. Wang, D. Kong, L. Kong, and Y. Qiao, 2020 Multifarious chaotic attractors and its control in rigid body attitude dynamical system. Mathematical Problems in Engineering 2020.
  • Wang, Z., S. S. Jamal, B. Yang, and V.-T. Pham, 2022 Complex behavior of covid-19’s mathematical model. The European Physical Journal Special Topics 231: 885–891.
  • Wang, Z. and H. Shang, 2024 Multistability mechanisms for improving the performance of a piezoelectric energy harvester with geometric nonlinearities. Fractal and Fractional 8: 41.
  • Yang, T., 2020 Dynamical analysis on a finance system with nonconstant elasticity of demand. International Journal of Bifurcation and Chaos 30: 2050148.
  • Zhang, J., H. Bao, X. Yu, and B. Chen, 2024 Heterogeneous coexistence of extremely many attractors in adaptive synapse neuron considering memristive emi. Chaos, Solitons & Fractals 178: 114327.
  • Zhang, Z., L. Huang, J. Liu, Q. Guo, C. Yu, et al., 2023 Construction of a family of 5d hamiltonian conservative hyperchaotic systems with multistability. Physica A: Statistical Mechanics and its Applications 620: 128759.

Exploring Coexisting Attractors in a 5D Chaotic System

Year 2025, Volume: 7 Issue: 3, 253 - 261, 30.11.2025
https://doi.org/10.51537/chaos.1600410

Abstract

The present study delves into the chaotic behavior of a 5D system. The system is a variation of a reported mechanical system, that was composed of a mass-spring-damper structure with cubic stiffness and an external excitation from a power-limited CD electric motor, driven by an unbalanced rotating mass causing a non-ideal excitation. The dynamical behavior of the new system is studied using a range of techniques, including phase portraits, bifurcation diagrams, continuation diagrams, and calculation of Lyapunov exponents. Numerical simulations illustrate the qualitative behavior of the system and distinguish the phenomenon of coexisting attractors, which are present for a range of parameter values. Sets of two and three coexisting attractors are observed.

Thanks

Results presented in this work have been produced using the AUTH Compute Infrastructure and Resources. The authors would like to acknowledge the support provided by the Scientific Computing Office throughout the progress of this research work.

References

  • Balcerzak, M., D. Pikunov, and A. Dabrowski, 2018 The fastest, simplified method of lyapunov exponents spectrum estimation for continuous-time dynamical systems. Nonlinear Dynamics 94: 3053–3065.
  • Benkouider, K., T. Bouden, A. Sambas, B. Lekouaghet, M. A. Mohamed, et al., 2022 A new 10-d hyperchaotic system with coexisting attractors and high fractal dimension: Its dynamical analysis, synchronization and circuit design. Plos one 17: e0266053.
  • Brunton, S. L., J. L. Proctor, and J. N. Kutz, 2016 Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proceedings of the national academy of sciences 113: 3932–3937.
  • Cantón, E. C., R. d. J. E. González, and H. E. G. Velázquez, 2023 Generation of Self-Excited, Hidden and Non-Self-Excited Attractors in Piecewise Linear Systems: Some Recent Approaches.World Scientific.
  • de la Fraga, L. G., J. D. Rodríguez-Muñoz, and E. Tlelo-Cuautle, 2025 Prngs based on chaotic maps and 3d, 4d, and 5d chaotic systems. In Random Number Generators: Verilog Description, Hardware Implementation and Applications, pp. 95–144, Springer.
  • Diaz-gonzalez, E., A. Guerra-lópez, B. A. Hernandez, and E. Campos, 2022 Generation of multistability through unstable systems. Chaos Theory and Applications 4: 234–240.
  • Dong, C., M. Yang, L. Jia, and Z. Li, 2024 Dynamics investigation and chaos-based application of a novel no-equilibrium system with coexisting hidden attractors. Physica A: Statistical Mechanics and its Applications 633: 129391.
  • Lai, Q., C. Chen, X.-W. Zhao, J. Kengne, and C. Volos, 2019 Constructing chaotic system with multiple coexisting attractors. IEEE Access 7: 24051–24056.
  • Lai, Q., P. D. Kamdem Kuate, H. Pei, and H. Fotsin, 2020a Infinitely many coexisting attractors in no-equilibrium chaotic system. Complexity 2020.
  • Lai, Q., Z. Wan, P. D. K. Kuate, and H. Fotsin, 2020b Coexisting attractors, circuit implementation and synchronization control of a new chaotic system evolved from the simplest memristor chaotic circuit. Communications in Nonlinear Science and Numerical Simulation 89: 105341.
  • Laskaridis, L., C. Volos, and I. Stouboulos, 2022 Antimonotonicity, hysteresis and coexisting attractors in a shinriki circuit with a physical memristor as a nonlinear resistor. Electronics 11: 1920.
  • Li, C., Y. Jiang, and X. Ma, 2021 On offset boosting in chaotic system. Chaos Theory and Applications 3: 47–54.
  • Makenne, Y., R. Kengne, and F. Pelap, 2019 Coexistence of multiple attractors in the tree dynamics. Chaos, Solitons & Fractals 127: 70–82.
  • Marszalek, W. and M. Walczak, 2024 Bifurcation diagrams of nonlinear oscillatory dynamical systems: A brief review in 1d, 2d and 3d. Entropy 26: 770.
  • Marwan, M., V. Dos Santos, M. Z. Abidin, and A. Xiong, 2022 Coexisting attractor in a gyrostat chaotic system via basin of attraction and synchronization of two nonidentical mechanical systems. Mathematics 10: 1914.
  • MathWorks, 2024 Choose an ode solver. https://uk.mathworks.com/ help/matlab/math/choose-an-ode-solver.html, Accessed: 20 December 2024.
  • Meli, M. I. T., D. Yemélé, and G. D. Leutcho, 2021 Dynamical analysis of series hybrid electric vehicle powertrain with torsional vibration: Antimonotonicity and coexisting attractors. Chaos, Solitons & Fractals 150: 111174.
  • Nazaré, T. E., E. G. Nepomuceno, S. A. Martins, and D. N. Butusov, 2020 A note on the reproducibility of chaos simulation. Entropy 22: 953.
  • Njıtacke, Z., T. Fozin, L. K. Kengne, G. Leutcho, E. M. Kengne, et al., 2020 Multistability and its annihilation in the chua’s oscillator with piecewise-linear nonlinearity. Chaos Theory and Applications 2: 77–89.
  • Ostrovskii, V. Y., V. G. Rybin, A. I. Karimov, and D. N. Butusov, 2022 Inducing multistability in discrete chaotic systems using numerical integration with variable symmetry. Chaos, Solitons & Fractals 165: 112794.
  • Pala, A. and M. Machaczek, 2020 Computing of 3d bifurcation diagrams with nvidia cuda technology. IEEE Access 8: 157773– 157780.
  • Piccirillo, V., A. M. Tusset, and J. M. Balthazar, 2014 Dynamical jump attenuation in a non-ideal system through a magnetorheological damper. Journal of Theoretical and Applied Mechanics 52: 595–604.
  • Pulido-Luna, J. R., J. A. López-Rentería, S. L. Cardenas-Maciel, E. J. Ollervides-Vazquez, and N. R. Cazarez-Castro, 2022 Threedirectional multiscroll hidden attractors via piecewise linear systems. In 2022 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE), pp. 61–66, IEEE.
  • Rojas-Galván, R., E. Mercado-Gutiérrez, and E. Tlelo-Cuautle, 2025 Optimizing chaotic systems by orbit counting and fourier spectrum: Fpga implementation and image encryption application. Mathematical Modelling and Analysis 30: 322–341.
  • Rybin, V., D. Butusov, K. Shirnin, and V. Ostrovskii, 2024 Revealing hidden features of chaotic systems using high-performance bifurcation analysis tools based on cuda technology. International Journal of Bifurcation and Chaos 34: 2450134.
  • Tusset, A., V. Piccirillo, S. de Souza, A. Batista, J. M. Balthazar, et al., 2022 Chaos control in a nonideal vibrating systems. In Nonlinear Vibrations Excited by Limited Power Sources, pp. 253–262, Springer.
  • Tusset, A. M., J. M. Balthazar, R. T. Rocha, M. A. Ribeiro,W. B. Lenz, et al., 2020 Time-delayed feedback control applied in a nonideal system with chaotic behavior. In Nonlinear Dynamics and Control: Proceedings of the First International Nonlinear Dynamics Conference (NODYCON 2019), Volume II, pp. 237–244, Springer.
  • Wang, Y., Z. Wang, D. Kong, L. Kong, and Y. Qiao, 2020 Multifarious chaotic attractors and its control in rigid body attitude dynamical system. Mathematical Problems in Engineering 2020.
  • Wang, Z., S. S. Jamal, B. Yang, and V.-T. Pham, 2022 Complex behavior of covid-19’s mathematical model. The European Physical Journal Special Topics 231: 885–891.
  • Wang, Z. and H. Shang, 2024 Multistability mechanisms for improving the performance of a piezoelectric energy harvester with geometric nonlinearities. Fractal and Fractional 8: 41.
  • Yang, T., 2020 Dynamical analysis on a finance system with nonconstant elasticity of demand. International Journal of Bifurcation and Chaos 30: 2050148.
  • Zhang, J., H. Bao, X. Yu, and B. Chen, 2024 Heterogeneous coexistence of extremely many attractors in adaptive synapse neuron considering memristive emi. Chaos, Solitons & Fractals 178: 114327.
  • Zhang, Z., L. Huang, J. Liu, Q. Guo, C. Yu, et al., 2023 Construction of a family of 5d hamiltonian conservative hyperchaotic systems with multistability. Physica A: Statistical Mechanics and its Applications 620: 128759.
There are 33 citations in total.

Details

Primary Language English
Subjects Dynamical Systems in Applications, Control Engineering, Mechatronics and Robotics (Other), Mechanical Engineering (Other)
Journal Section Research Article
Authors

Alexandra Choumpaev 0009-0009-4177-2473

Lazaros Moysis 0000-0002-5652-2532

Efthymia Meletlidou 0000-0002-4148-7607

Christos K. Volos 0000-0001-8763-7255

Submission Date December 23, 2024
Acceptance Date September 25, 2025
Publication Date November 30, 2025
Published in Issue Year 2025 Volume: 7 Issue: 3

Cite

APA Choumpaev, A., Moysis, L., Meletlidou, E., & Volos, C. K. (2025). Exploring Coexisting Attractors in a 5D Chaotic System. Chaos Theory and Applications, 7(3), 253-261. https://doi.org/10.51537/chaos.1600410

Chaos Theory and Applications in Applied Sciences and Engineering: An interdisciplinary journal of nonlinear science 23830 28903   

The published articles in CHTA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License Cc_by-nc_icon.svg