Year 2025,
Volume: 7 Issue: 3, 253 - 261, 30.11.2025
Alexandra Choumpaev
,
Lazaros Moysis
,
Efthymia Meletlidou
,
Christos K. Volos
References
-
Balcerzak, M., D. Pikunov, and A. Dabrowski, 2018 The fastest,
simplified method of lyapunov exponents spectrum estimation
for continuous-time dynamical systems. Nonlinear Dynamics
94: 3053–3065.
-
Benkouider, K., T. Bouden, A. Sambas, B. Lekouaghet, M. A. Mohamed,
et al., 2022 A new 10-d hyperchaotic system with coexisting
attractors and high fractal dimension: Its dynamical analysis,
synchronization and circuit design. Plos one 17: e0266053.
-
Brunton, S. L., J. L. Proctor, and J. N. Kutz, 2016 Discovering governing
equations from data by sparse identification of nonlinear
dynamical systems. Proceedings of the national academy of sciences
113: 3932–3937.
-
Cantón, E. C., R. d. J. E. González, and H. E. G. Velázquez, 2023
Generation of Self-Excited, Hidden and Non-Self-Excited Attractors in
Piecewise Linear Systems: Some Recent Approaches.World Scientific.
-
de la Fraga, L. G., J. D. Rodríguez-Muñoz, and E. Tlelo-Cuautle,
2025 Prngs based on chaotic maps and 3d, 4d, and 5d chaotic systems.
In Random Number Generators: Verilog Description, Hardware
Implementation and Applications, pp. 95–144, Springer.
-
Diaz-gonzalez, E., A. Guerra-lópez, B. A. Hernandez, and E. Campos,
2022 Generation of multistability through unstable systems.
Chaos Theory and Applications 4: 234–240.
-
Dong, C., M. Yang, L. Jia, and Z. Li, 2024 Dynamics investigation
and chaos-based application of a novel no-equilibrium system
with coexisting hidden attractors. Physica A: Statistical Mechanics
and its Applications 633: 129391.
-
Lai, Q., C. Chen, X.-W. Zhao, J. Kengne, and C. Volos, 2019 Constructing
chaotic system with multiple coexisting attractors.
IEEE Access 7: 24051–24056.
-
Lai, Q., P. D. Kamdem Kuate, H. Pei, and H. Fotsin, 2020a Infinitely
many coexisting attractors in no-equilibrium chaotic system.
Complexity 2020.
-
Lai, Q., Z. Wan, P. D. K. Kuate, and H. Fotsin, 2020b Coexisting attractors,
circuit implementation and synchronization control of a
new chaotic system evolved from the simplest memristor chaotic
circuit. Communications in Nonlinear Science and Numerical
Simulation 89: 105341.
-
Laskaridis, L., C. Volos, and I. Stouboulos, 2022 Antimonotonicity,
hysteresis and coexisting attractors in a shinriki circuit with a
physical memristor as a nonlinear resistor. Electronics 11: 1920.
-
Li, C., Y. Jiang, and X. Ma, 2021 On offset boosting in chaotic
system. Chaos Theory and Applications 3: 47–54.
-
Makenne, Y., R. Kengne, and F. Pelap, 2019 Coexistence of multiple
attractors in the tree dynamics. Chaos, Solitons & Fractals 127:
70–82.
-
Marszalek, W. and M. Walczak, 2024 Bifurcation diagrams of nonlinear
oscillatory dynamical systems: A brief review in 1d, 2d
and 3d. Entropy 26: 770.
-
Marwan, M., V. Dos Santos, M. Z. Abidin, and A. Xiong, 2022
Coexisting attractor in a gyrostat chaotic system via basin of
attraction and synchronization of two nonidentical mechanical
systems. Mathematics 10: 1914.
-
MathWorks, 2024 Choose an ode solver. https://uk.mathworks.com/
help/matlab/math/choose-an-ode-solver.html, Accessed: 20 December
2024.
-
Meli, M. I. T., D. Yemélé, and G. D. Leutcho, 2021 Dynamical analysis
of series hybrid electric vehicle powertrain with torsional
vibration: Antimonotonicity and coexisting attractors. Chaos,
Solitons & Fractals 150: 111174.
-
Nazaré, T. E., E. G. Nepomuceno, S. A. Martins, and D. N. Butusov,
2020 A note on the reproducibility of chaos simulation. Entropy
22: 953.
-
Njıtacke, Z., T. Fozin, L. K. Kengne, G. Leutcho, E. M. Kengne,
et al., 2020 Multistability and its annihilation in the chua’s oscillator
with piecewise-linear nonlinearity. Chaos Theory and
Applications 2: 77–89.
-
Ostrovskii, V. Y., V. G. Rybin, A. I. Karimov, and D. N. Butusov,
2022 Inducing multistability in discrete chaotic systems using
numerical integration with variable symmetry. Chaos, Solitons
& Fractals 165: 112794.
-
Pala, A. and M. Machaczek, 2020 Computing of 3d bifurcation
diagrams with nvidia cuda technology. IEEE Access 8: 157773–
157780.
-
Piccirillo, V., A. M. Tusset, and J. M. Balthazar, 2014 Dynamical
jump attenuation in a non-ideal system through a magnetorheological
damper. Journal of Theoretical and Applied Mechanics
52: 595–604.
-
Pulido-Luna, J. R., J. A. López-Rentería, S. L. Cardenas-Maciel,
E. J. Ollervides-Vazquez, and N. R. Cazarez-Castro, 2022 Threedirectional
multiscroll hidden attractors via piecewise linear
systems. In 2022 International Conference on Mechatronics, Electronics
and Automotive Engineering (ICMEAE), pp. 61–66, IEEE.
-
Rojas-Galván, R., E. Mercado-Gutiérrez, and E. Tlelo-Cuautle, 2025
Optimizing chaotic systems by orbit counting and fourier spectrum:
Fpga implementation and image encryption application.
Mathematical Modelling and Analysis 30: 322–341.
-
Rybin, V., D. Butusov, K. Shirnin, and V. Ostrovskii, 2024 Revealing
hidden features of chaotic systems using high-performance bifurcation
analysis tools based on cuda technology. International
Journal of Bifurcation and Chaos 34: 2450134.
-
Tusset, A., V. Piccirillo, S. de Souza, A. Batista, J. M. Balthazar, et al.,
2022 Chaos control in a nonideal vibrating systems. In Nonlinear
Vibrations Excited by Limited Power Sources, pp. 253–262, Springer.
-
Tusset, A. M., J. M. Balthazar, R. T. Rocha, M. A. Ribeiro,W. B. Lenz,
et al., 2020 Time-delayed feedback control applied in a nonideal
system with chaotic behavior. In Nonlinear Dynamics and Control:
Proceedings of the First International Nonlinear Dynamics Conference
(NODYCON 2019), Volume II, pp. 237–244, Springer.
-
Wang, Y., Z. Wang, D. Kong, L. Kong, and Y. Qiao, 2020 Multifarious
chaotic attractors and its control in rigid body attitude
dynamical system. Mathematical Problems in Engineering 2020.
-
Wang, Z., S. S. Jamal, B. Yang, and V.-T. Pham, 2022 Complex behavior
of covid-19’s mathematical model. The European Physical
Journal Special Topics 231: 885–891.
-
Wang, Z. and H. Shang, 2024 Multistability mechanisms for improving
the performance of a piezoelectric energy harvester with
geometric nonlinearities. Fractal and Fractional 8: 41.
-
Yang, T., 2020 Dynamical analysis on a finance system with nonconstant
elasticity of demand. International Journal of Bifurcation
and Chaos 30: 2050148.
-
Zhang, J., H. Bao, X. Yu, and B. Chen, 2024 Heterogeneous coexistence
of extremely many attractors in adaptive synapse neuron
considering memristive emi. Chaos, Solitons & Fractals 178:
114327.
-
Zhang, Z., L. Huang, J. Liu, Q. Guo, C. Yu, et al., 2023 Construction
of a family of 5d hamiltonian conservative hyperchaotic
systems with multistability. Physica A: Statistical Mechanics and
its Applications 620: 128759.
Exploring Coexisting Attractors in a 5D Chaotic System
Year 2025,
Volume: 7 Issue: 3, 253 - 261, 30.11.2025
Alexandra Choumpaev
,
Lazaros Moysis
,
Efthymia Meletlidou
,
Christos K. Volos
Abstract
The present study delves into the chaotic behavior of a 5D system. The system is a variation of a reported mechanical system, that was composed of a mass-spring-damper structure with cubic stiffness and an external excitation from a power-limited CD electric motor, driven by an unbalanced rotating mass causing a non-ideal excitation. The dynamical behavior of the new system is studied using a range of techniques, including phase portraits, bifurcation diagrams, continuation diagrams, and calculation of Lyapunov exponents. Numerical simulations illustrate the qualitative behavior of the system and distinguish the phenomenon of coexisting attractors, which are present for a range of parameter values. Sets of two and three coexisting attractors are observed.
Thanks
Results presented in this work have been produced using the AUTH Compute Infrastructure and Resources.
The authors would like to acknowledge the support provided by the Scientific Computing Office throughout the
progress of this research work.
References
-
Balcerzak, M., D. Pikunov, and A. Dabrowski, 2018 The fastest,
simplified method of lyapunov exponents spectrum estimation
for continuous-time dynamical systems. Nonlinear Dynamics
94: 3053–3065.
-
Benkouider, K., T. Bouden, A. Sambas, B. Lekouaghet, M. A. Mohamed,
et al., 2022 A new 10-d hyperchaotic system with coexisting
attractors and high fractal dimension: Its dynamical analysis,
synchronization and circuit design. Plos one 17: e0266053.
-
Brunton, S. L., J. L. Proctor, and J. N. Kutz, 2016 Discovering governing
equations from data by sparse identification of nonlinear
dynamical systems. Proceedings of the national academy of sciences
113: 3932–3937.
-
Cantón, E. C., R. d. J. E. González, and H. E. G. Velázquez, 2023
Generation of Self-Excited, Hidden and Non-Self-Excited Attractors in
Piecewise Linear Systems: Some Recent Approaches.World Scientific.
-
de la Fraga, L. G., J. D. Rodríguez-Muñoz, and E. Tlelo-Cuautle,
2025 Prngs based on chaotic maps and 3d, 4d, and 5d chaotic systems.
In Random Number Generators: Verilog Description, Hardware
Implementation and Applications, pp. 95–144, Springer.
-
Diaz-gonzalez, E., A. Guerra-lópez, B. A. Hernandez, and E. Campos,
2022 Generation of multistability through unstable systems.
Chaos Theory and Applications 4: 234–240.
-
Dong, C., M. Yang, L. Jia, and Z. Li, 2024 Dynamics investigation
and chaos-based application of a novel no-equilibrium system
with coexisting hidden attractors. Physica A: Statistical Mechanics
and its Applications 633: 129391.
-
Lai, Q., C. Chen, X.-W. Zhao, J. Kengne, and C. Volos, 2019 Constructing
chaotic system with multiple coexisting attractors.
IEEE Access 7: 24051–24056.
-
Lai, Q., P. D. Kamdem Kuate, H. Pei, and H. Fotsin, 2020a Infinitely
many coexisting attractors in no-equilibrium chaotic system.
Complexity 2020.
-
Lai, Q., Z. Wan, P. D. K. Kuate, and H. Fotsin, 2020b Coexisting attractors,
circuit implementation and synchronization control of a
new chaotic system evolved from the simplest memristor chaotic
circuit. Communications in Nonlinear Science and Numerical
Simulation 89: 105341.
-
Laskaridis, L., C. Volos, and I. Stouboulos, 2022 Antimonotonicity,
hysteresis and coexisting attractors in a shinriki circuit with a
physical memristor as a nonlinear resistor. Electronics 11: 1920.
-
Li, C., Y. Jiang, and X. Ma, 2021 On offset boosting in chaotic
system. Chaos Theory and Applications 3: 47–54.
-
Makenne, Y., R. Kengne, and F. Pelap, 2019 Coexistence of multiple
attractors in the tree dynamics. Chaos, Solitons & Fractals 127:
70–82.
-
Marszalek, W. and M. Walczak, 2024 Bifurcation diagrams of nonlinear
oscillatory dynamical systems: A brief review in 1d, 2d
and 3d. Entropy 26: 770.
-
Marwan, M., V. Dos Santos, M. Z. Abidin, and A. Xiong, 2022
Coexisting attractor in a gyrostat chaotic system via basin of
attraction and synchronization of two nonidentical mechanical
systems. Mathematics 10: 1914.
-
MathWorks, 2024 Choose an ode solver. https://uk.mathworks.com/
help/matlab/math/choose-an-ode-solver.html, Accessed: 20 December
2024.
-
Meli, M. I. T., D. Yemélé, and G. D. Leutcho, 2021 Dynamical analysis
of series hybrid electric vehicle powertrain with torsional
vibration: Antimonotonicity and coexisting attractors. Chaos,
Solitons & Fractals 150: 111174.
-
Nazaré, T. E., E. G. Nepomuceno, S. A. Martins, and D. N. Butusov,
2020 A note on the reproducibility of chaos simulation. Entropy
22: 953.
-
Njıtacke, Z., T. Fozin, L. K. Kengne, G. Leutcho, E. M. Kengne,
et al., 2020 Multistability and its annihilation in the chua’s oscillator
with piecewise-linear nonlinearity. Chaos Theory and
Applications 2: 77–89.
-
Ostrovskii, V. Y., V. G. Rybin, A. I. Karimov, and D. N. Butusov,
2022 Inducing multistability in discrete chaotic systems using
numerical integration with variable symmetry. Chaos, Solitons
& Fractals 165: 112794.
-
Pala, A. and M. Machaczek, 2020 Computing of 3d bifurcation
diagrams with nvidia cuda technology. IEEE Access 8: 157773–
157780.
-
Piccirillo, V., A. M. Tusset, and J. M. Balthazar, 2014 Dynamical
jump attenuation in a non-ideal system through a magnetorheological
damper. Journal of Theoretical and Applied Mechanics
52: 595–604.
-
Pulido-Luna, J. R., J. A. López-Rentería, S. L. Cardenas-Maciel,
E. J. Ollervides-Vazquez, and N. R. Cazarez-Castro, 2022 Threedirectional
multiscroll hidden attractors via piecewise linear
systems. In 2022 International Conference on Mechatronics, Electronics
and Automotive Engineering (ICMEAE), pp. 61–66, IEEE.
-
Rojas-Galván, R., E. Mercado-Gutiérrez, and E. Tlelo-Cuautle, 2025
Optimizing chaotic systems by orbit counting and fourier spectrum:
Fpga implementation and image encryption application.
Mathematical Modelling and Analysis 30: 322–341.
-
Rybin, V., D. Butusov, K. Shirnin, and V. Ostrovskii, 2024 Revealing
hidden features of chaotic systems using high-performance bifurcation
analysis tools based on cuda technology. International
Journal of Bifurcation and Chaos 34: 2450134.
-
Tusset, A., V. Piccirillo, S. de Souza, A. Batista, J. M. Balthazar, et al.,
2022 Chaos control in a nonideal vibrating systems. In Nonlinear
Vibrations Excited by Limited Power Sources, pp. 253–262, Springer.
-
Tusset, A. M., J. M. Balthazar, R. T. Rocha, M. A. Ribeiro,W. B. Lenz,
et al., 2020 Time-delayed feedback control applied in a nonideal
system with chaotic behavior. In Nonlinear Dynamics and Control:
Proceedings of the First International Nonlinear Dynamics Conference
(NODYCON 2019), Volume II, pp. 237–244, Springer.
-
Wang, Y., Z. Wang, D. Kong, L. Kong, and Y. Qiao, 2020 Multifarious
chaotic attractors and its control in rigid body attitude
dynamical system. Mathematical Problems in Engineering 2020.
-
Wang, Z., S. S. Jamal, B. Yang, and V.-T. Pham, 2022 Complex behavior
of covid-19’s mathematical model. The European Physical
Journal Special Topics 231: 885–891.
-
Wang, Z. and H. Shang, 2024 Multistability mechanisms for improving
the performance of a piezoelectric energy harvester with
geometric nonlinearities. Fractal and Fractional 8: 41.
-
Yang, T., 2020 Dynamical analysis on a finance system with nonconstant
elasticity of demand. International Journal of Bifurcation
and Chaos 30: 2050148.
-
Zhang, J., H. Bao, X. Yu, and B. Chen, 2024 Heterogeneous coexistence
of extremely many attractors in adaptive synapse neuron
considering memristive emi. Chaos, Solitons & Fractals 178:
114327.
-
Zhang, Z., L. Huang, J. Liu, Q. Guo, C. Yu, et al., 2023 Construction
of a family of 5d hamiltonian conservative hyperchaotic
systems with multistability. Physica A: Statistical Mechanics and
its Applications 620: 128759.