Research Article
BibTex RIS Cite
Year 2019, Volume: 1 Issue: 1, 38 - 50, 30.11.2019

Abstract

References

  • [1] Pehlivan, I, (2007). New Chaotic Systems: Electronic Circuit Realizations, Synchronization and Secure Communication Applications. (Ph.D. Thesis), Sakarya University, Sakarya,Turkey.
  • [2] S. Kacar, Z. Wei, A. Akgul, and B. Aricioglu, "A Novel 4D Chaotic System Based on Two Degrees of Freedom Nonlinear Mechanical System," Zeitschrift fr Naturforschung A, vol. 73, no. 7, pp. 595-607, 2018.
  • [3] G. Kis, Z. Jako, M. Kennedy, and G. Kolumbn, "Chaotic communications without synchronization," 1998.
  • [4] A. Akgul, I. Moroz, I. Pehlivan, and S. Vaidyanathan, "A new four-scroll chaotic attractor and its engineering applications," Optik-International Journal for Light and Electron Optics, vol. 127, no. 13, pp. 5491-5499, 2016.
  • [5] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, "Determining Lyapunov exponents from a time series," Physica D: Nonlinear Phenomena, vol. 16, no. 3, pp. 285-317, 1985.
  • [6] N. PAMUK, "Determination of Chaotic Time Series in Dynamic Systems," 2013.
  • [7] Q. Lai, A. Akgul, C. Li, G. Xu, and U.Cavusoglu, "A New Chaotic System with Multiple Attractors: Dynamic Analysis, Circuit Realization and S-Box Design," Entropy, vol. 20, no. 1, p.12, 2017.
  • [8] M. Varan and A. Akgul, "Control and synchronisation of a novel seven-dimensional hyper-chaotic system with active control," Pramana, vol. 90, no. 4, p. 54, 2018.
  • [9] E. F. Camacho and C. B. Alba, Model predictive control. Springer Science & Business Media,2013.
  • [10] L. P. Maguire, et al, "Maguire, Liam P., et al. "Predicting a chaotic time series using a fuzzy neural network," Information Sciences, vol. 112(1-4), pp. 125-136, 1998.
  • [11] J. C. P. A. R. J.-M. Kuo, "Prediction of Chaotic Time Series with Neural Networks," International Journal of Bifurcation and Chaos, pp. 989-996, 1992.
  • [12] P. Gmez-Gil, J. M. Ramrez-Cortes, S. E. Pomares Hernndez, and V. Alarcn-Aquino, "A Neural Network Scheme for Long-Term Forecasting of Chaotic Time Series," Neural Processing Letters, vol. 33, no. 3, pp. 215-233, 2011, doi: 10.1007/s11063-011-9174-0.
  • [13] U. Frat, "Kaotik zaman serilerinin yapay sinir ağlaryla kestirimi: Deprem verisi durumu," 2006.
  • [14] D. HANBAY, . TRKOLU, and Y. DEMR, "Chua Devresinin yapay sinir ağı ile modellenmesi," Frat niv. Fen ve Mh. Bil. Dergisi, vol. 19, no. 1, pp. 67-72, 2007.
  • [15] S. Panahi, Z. Aram, S. Jafari, J. Ma, and J. Sprott, "Modeling of epilepsy based on chaotic artiificial neural network," Chaos, Solitons & Fractals, vol. 105, pp. 150-156, 2017.
  • [16] R. Koker, C. Z, and Y. Sari, "Hareketli cisimlerin bilgisayar gormesine dayali hareket analizi," presented at the Elektrik-Elektronik-Bilgisayar Muhendisligi 9. Ulusal Kongresi, 2001.
  • [17] F. Karakaya, H. Altun, and M. A. avulu, "Gerek Zamanl Nesne Tanma Uygulamalar iin HOG Algoritmasnn FPGA Tabanl Gml Sistem Uyarlamas," IEEE 17th Signal Processing and Communications ApplicationsConference (SIU), 2009.
  • [18] S. Solak and U. ALTINIIK, "Grnt ileme teknikleri ve kmeleme yntemleri kullanlarak fndk meyvesinin tespit ve snandrlmas," Sakarya University Journal of Science, vol. 22, no. 1, pp. 56-65, 2018.
  • [19] A. VAROL and B. CEBE, "Yz tanima algoritmalar," presented at the 5th International Computer & Instructional Technologies Symposium, 22-24 September 2011.
  • [20] E. Celik, "Goruntulemeye Dayali Avuc izinin Yapay Sinir Agi ile Taninmasi," 2014.
  • [21] M. E. Cimen, S. Kacar, E. Guleryuz, B. Gurevin, and A. Akgul, "Kaotik bir hareket videosunun yapay sinir ağlar ile modellenmesi," Balkesir Universitesi Fen Bilimleri Enstitsu Dergisi, vol. 20, no. 3, pp. 23-35, 2018.
  • [22] K. Rajagopal, A. Akgul, I. M. Moroz, Z. Wei, S. Jafari, and I. Hussain, "A simple chaotic system with topologically di erent attractors," IEEE Access, vol. 7, pp. 89936-89947, 2019.
  • [23] L. G. Brown, "A survey of image registration techniques," ACM computing surveys (CSUR), vol. 24, no. 4, pp. 325-376, 1992.
  • [24] D. G. Lowe, "Distinctive image features from scale-invariant keypoints," International journal of computer vision, vol. 60, no. 2, pp. 91-110, 2004.
  • [25] N. N. Dawoud, B. B. Samir, and J. Janier, "Fast template matching method based optimized sum of absolute di erence algorithm for face localization," International Journal of Computer Applications, vol. 18, no. 8, pp. 0975-8887, 2011.
  • [26] C. Saravanan and M. Surender, "Algorithm for face matching using normalized cross- correlation," International Journal of Engineering and Advanced Technology (IJEAT) ISSN, pp. 2249-8958, 2013.

Modelling of a Chaotic System Motion in Video with Artificial Neural Networks

Year 2019, Volume: 1 Issue: 1, 38 - 50, 30.11.2019

Abstract

In this study a chaotic motion is modelled by artificial neural networks which can be created again. Chaotic signals can occur in many fields like
communication, encryption, nance, health, natural affairs. Artificial neural networks, fuzzy models can be used to provide a mathematical form and predict these types of signals as well. In this study, as an example of the motion which was modelled, there might be movement of a planet orbit, movements of balls on a billiard table, inverted pendulum or phase diagrams of such systems. However, for chaotic motion, a modified novel Lorenz system's phase diagram in literature was preferred. Object detection for motion which is sequential images of the video was obtained by image processing techniques so this process gives object coordination in the image. Artificial neural networks model which was called NAR structure was constructed and it has trained by these position information with the backpropagation algorithm. Subsequently, this NAR model which is artificial neural networks were tested and it was tried to get chaotic motion videos again. As a result, an object, which can be detected with image processing or other techniques, could be detected and traced. So, by using object information, which could be chaotic motion, could be modelled with artificial neural networks, instead of mathematically equations.

References

  • [1] Pehlivan, I, (2007). New Chaotic Systems: Electronic Circuit Realizations, Synchronization and Secure Communication Applications. (Ph.D. Thesis), Sakarya University, Sakarya,Turkey.
  • [2] S. Kacar, Z. Wei, A. Akgul, and B. Aricioglu, "A Novel 4D Chaotic System Based on Two Degrees of Freedom Nonlinear Mechanical System," Zeitschrift fr Naturforschung A, vol. 73, no. 7, pp. 595-607, 2018.
  • [3] G. Kis, Z. Jako, M. Kennedy, and G. Kolumbn, "Chaotic communications without synchronization," 1998.
  • [4] A. Akgul, I. Moroz, I. Pehlivan, and S. Vaidyanathan, "A new four-scroll chaotic attractor and its engineering applications," Optik-International Journal for Light and Electron Optics, vol. 127, no. 13, pp. 5491-5499, 2016.
  • [5] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, "Determining Lyapunov exponents from a time series," Physica D: Nonlinear Phenomena, vol. 16, no. 3, pp. 285-317, 1985.
  • [6] N. PAMUK, "Determination of Chaotic Time Series in Dynamic Systems," 2013.
  • [7] Q. Lai, A. Akgul, C. Li, G. Xu, and U.Cavusoglu, "A New Chaotic System with Multiple Attractors: Dynamic Analysis, Circuit Realization and S-Box Design," Entropy, vol. 20, no. 1, p.12, 2017.
  • [8] M. Varan and A. Akgul, "Control and synchronisation of a novel seven-dimensional hyper-chaotic system with active control," Pramana, vol. 90, no. 4, p. 54, 2018.
  • [9] E. F. Camacho and C. B. Alba, Model predictive control. Springer Science & Business Media,2013.
  • [10] L. P. Maguire, et al, "Maguire, Liam P., et al. "Predicting a chaotic time series using a fuzzy neural network," Information Sciences, vol. 112(1-4), pp. 125-136, 1998.
  • [11] J. C. P. A. R. J.-M. Kuo, "Prediction of Chaotic Time Series with Neural Networks," International Journal of Bifurcation and Chaos, pp. 989-996, 1992.
  • [12] P. Gmez-Gil, J. M. Ramrez-Cortes, S. E. Pomares Hernndez, and V. Alarcn-Aquino, "A Neural Network Scheme for Long-Term Forecasting of Chaotic Time Series," Neural Processing Letters, vol. 33, no. 3, pp. 215-233, 2011, doi: 10.1007/s11063-011-9174-0.
  • [13] U. Frat, "Kaotik zaman serilerinin yapay sinir ağlaryla kestirimi: Deprem verisi durumu," 2006.
  • [14] D. HANBAY, . TRKOLU, and Y. DEMR, "Chua Devresinin yapay sinir ağı ile modellenmesi," Frat niv. Fen ve Mh. Bil. Dergisi, vol. 19, no. 1, pp. 67-72, 2007.
  • [15] S. Panahi, Z. Aram, S. Jafari, J. Ma, and J. Sprott, "Modeling of epilepsy based on chaotic artiificial neural network," Chaos, Solitons & Fractals, vol. 105, pp. 150-156, 2017.
  • [16] R. Koker, C. Z, and Y. Sari, "Hareketli cisimlerin bilgisayar gormesine dayali hareket analizi," presented at the Elektrik-Elektronik-Bilgisayar Muhendisligi 9. Ulusal Kongresi, 2001.
  • [17] F. Karakaya, H. Altun, and M. A. avulu, "Gerek Zamanl Nesne Tanma Uygulamalar iin HOG Algoritmasnn FPGA Tabanl Gml Sistem Uyarlamas," IEEE 17th Signal Processing and Communications ApplicationsConference (SIU), 2009.
  • [18] S. Solak and U. ALTINIIK, "Grnt ileme teknikleri ve kmeleme yntemleri kullanlarak fndk meyvesinin tespit ve snandrlmas," Sakarya University Journal of Science, vol. 22, no. 1, pp. 56-65, 2018.
  • [19] A. VAROL and B. CEBE, "Yz tanima algoritmalar," presented at the 5th International Computer & Instructional Technologies Symposium, 22-24 September 2011.
  • [20] E. Celik, "Goruntulemeye Dayali Avuc izinin Yapay Sinir Agi ile Taninmasi," 2014.
  • [21] M. E. Cimen, S. Kacar, E. Guleryuz, B. Gurevin, and A. Akgul, "Kaotik bir hareket videosunun yapay sinir ağlar ile modellenmesi," Balkesir Universitesi Fen Bilimleri Enstitsu Dergisi, vol. 20, no. 3, pp. 23-35, 2018.
  • [22] K. Rajagopal, A. Akgul, I. M. Moroz, Z. Wei, S. Jafari, and I. Hussain, "A simple chaotic system with topologically di erent attractors," IEEE Access, vol. 7, pp. 89936-89947, 2019.
  • [23] L. G. Brown, "A survey of image registration techniques," ACM computing surveys (CSUR), vol. 24, no. 4, pp. 325-376, 1992.
  • [24] D. G. Lowe, "Distinctive image features from scale-invariant keypoints," International journal of computer vision, vol. 60, no. 2, pp. 91-110, 2004.
  • [25] N. N. Dawoud, B. B. Samir, and J. Janier, "Fast template matching method based optimized sum of absolute di erence algorithm for face localization," International Journal of Computer Applications, vol. 18, no. 8, pp. 0975-8887, 2011.
  • [26] C. Saravanan and M. Surender, "Algorithm for face matching using normalized cross- correlation," International Journal of Engineering and Advanced Technology (IJEAT) ISSN, pp. 2249-8958, 2013.
There are 26 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Research Articles
Authors

Murat Erhan Cimen This is me 0000-0002-1793-485X

Zeynep Garip 0000-0002-0420-8541

Muhammed Ali Pala 0000-0002-8153-7971

Ali Fuat Boz This is me 0000-0001-6575-7678

Akif Akgül 0000-0001-9151-3052

Publication Date November 30, 2019
Published in Issue Year 2019 Volume: 1 Issue: 1

Cite

APA Cimen, M. E., Garip, Z., Pala, M. A., Boz, A. F., et al. (2019). Modelling of a Chaotic System Motion in Video with Artificial Neural Networks. Chaos Theory and Applications, 1(1), 38-50.

Chaos Theory and Applications in Applied Sciences and Engineering: An interdisciplinary journal of nonlinear science 23830 28903   

The published articles in CHTA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License Cc_by-nc_icon.svg