Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 5 Sayı: 3, 141 - 152, 30.11.2023
https://doi.org/10.51537/chaos.1314803

Öz

Kaynakça

  • Abib, G. A. and M. Eisencraft, 2015 On the performance of a digital chaos-based communication system in noisy channels. IFACPapersOnLine 48: 976–981.
  • Afraimovich, V., N. Verichev, and M. I. Rabinovich, 1986 Stochastic synchronization of oscillation in dissipative systems. Radiophysics and Quantum Electronics 29: 795–803.
  • Alexander, P., S. Emiro˘ glu, S. Kanagaraj, A. Akgul, and K. Rajagopal, 2023 Infinite coexisting attractors in an autonomous hyperchaotic megastable oscillator and linear quadratic regulatorbased control and synchronization. The European Physical Journal B 96: 12.
  • Arslan, H. and S. Reddy, 2003 Noise power and snr estimation for ofdm based wireless communication systems. In Proc. of 3rd IASTED International Conference on Wireless and Optical Communications (WOC), Banff, Alberta, Canada, pp. 1–6.
  • Babajans, R., D. Cirjulina, F. Capligins, D. Kolosovs, J. Grizans, et al., 2023 Performance analysis of vilnius chaos oscillator-based digital data transmission systems for iot. Electronics 12: 709.
  • Babajans, R., D. Cirjulina, D. Kolosovs, and A. Litvinenko, 2022 Quadrature chaos phase shift keying communication system based on vilnius chaos oscillator. In 2022 Workshop on Microwave Theory and Techniques in Wireless Communications (MTTW), pp. 5–8, IEEE.
  • Bai, C., H.-P. Ren, M. S. Baptista, and C. Grebogi, 2019 Digital underwater communication with chaos. Communications in Nonlinear Science and Numerical Simulation 73: 14–24.
  • Bai, C., H.-P. Ren, C. Grebogi, and M. S. Baptista, 2018 Chaosbased underwater communication with arbitrary transducers and bandwidth. Applied Sciences 8: 162.
  • Carroll, T. L. and L. M. Pecora, 1995 Synchronizing chaotic circuits. In Nonlinear Dynamics in Circuits, pp. 215–248,World Scientific. Cirjulina, D., R. Babajans, D. Kolosovs, and A. Litvinenko, 2022
  • Experimental study on frequency modulated chaos shift keying communication system. In 2022 Workshop on Microwave Theory and Techniques inWireless Communications (MTTW), pp. 1–4, IEEE.
  • Cordesses, L., 2004a Direct digital synthesis: A tool for periodic wave generation (part 1). IEEE Signal processing magazine 21: 50–54.
  • Cordesses, L., 2004b Direct digital synthesis: a tool for periodic wave generation (part 2). IEEE Signal Processing Magazine 21: 110–112.
  • Dedieu, H., M. P. Kennedy, and M. Hasler, 1993 Chaos shift keying: modulation and demodulation of a chaotic carrier using selfsynchronizing chua’s circuits. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 40: 634–642.
  • Dmitriev, A. and A. Panas, 2002 Dynamic chaos: novel type of information carrier for communication systems. Izdatel’stvo Fiziko–matematicheskoj literatury 252.
  • Emiroglu, S., A. Akgül, Y. Adıyaman, T. E. Gümü¸s, Y. Uyaroglu, et al., 2022 A new hyperchaotic system from t chaotic system: dynamical analysis, circuit implementation, control and synchronization. Circuit World 48: 265–277.
  • Fujisaka, H. and T. Yamada, 1983 Stability theory of synchronized motion in coupled-oscillator systems. Progress of theoretical physics 69: 32–47.
  • Gaspard, P., 2005 Rössler systems. Encyclopedia of nonlinear science 231: 808–811.
  • Hasan, A. N. and T. Shongwe, 2017 Impulse noise detection in ofdm communication system using machine learning ensemble algorithms. In International Joint Conference SOCO’16-CISIS’16- ICEUTE’16: San Sebastián, Spain, October 19th-21st, 2016 Proceedings 11, pp. 85–91, Springer.
  • Hedayatipour, A., R. Monani, A. Rezaei, M. Aliasgari, and H. Sayadi, 2022 A comprehensive analysis of chaos-based secure systems. In Silicon Valley Cybersecurity Conference: Second Conference, SVCC 2021, San Jose, CA, USA, December 2–3, 2021, Revised Selected Papers, pp. 90–105, Springer.
  • Kaddoum, G., 2016 Wireless chaos-based communication systems: A comprehensive survey. IEEE Access 4: 2621–2648.
  • Kaddoum, G., M. Coulon, D. Roviras, and P. Chargé, 2010 Theoretical performance for asynchronous multi-user chaos-based communication systems on fading channels. Signal Processing 90: 2923–2933.
  • Karimov, A., V. Rybin, E. Kopets, T. Karimov, E. Nepomuceno, et al., 2023 Identifying empirical equations of chaotic circuit from data. Nonlinear Dynamics 111: 871–886.
  • Karimov, T., O. Druzhina, A. Karimov, A. Tutueva, V. Ostrovskii, et al., 2021a Single-coil metal detector based on spiking chaotic oscillator. Nonlinear Dynamics pp. 1–18.
  • Karimov, T., V. Rybin, G. Kolev, E. Rodionova, and D. Butusov, 2021b Chaotic communication system with symmetry-based modulation. Applied Sciences 11: 3698.
  • Khan, A. M., V. Jeoti, M. Rehman, and M. Jilani, 2017 Noise power estimation for broadcasting ofdm systems. In 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1–6.
  • Kharel, R., 2011 Design and implementation of secure chaotic communication systems. Ph.D. thesis, Northumbria University.
  • Koronovskii, A. A., O. I. Moskalenko, and A. E. Hramov, 2009 On the use of chaotic synchronization for secure communication. Physics-Uspekhi 52: 1213.
  • Liao, T.-l., 1998 Adaptive synchronization of two lorenz systems. Chaos, Solitons & Fractals 9: 1555–1561.
  • Liu, S.-H., D.-S.Wang, and L. Chen, 2007 Analysis of the ambiguity characteristic of digital synthesis signals with chaotic frequency modulation. ACTA ELECTONICA SINICA 35: 1784.
  • Lukin, K. A. and O. V. Zemlyaniy, 2016 Digital generation of wideband chaotic signal with the comb-shaped spectrum for communication systems based on spectral manipulation. Radioelectronics and Communications Systems 59: 417–422.
  • Lyu, Y., L. Wang, G. Cai, and G. Chen, 2015 Iterative receiver for m-ary dcsk systems. IEEE Transactions on Communications 63: 3929–3936.
  • Minati, L., M. Frasca, P. Os´wiecimka, L. Faes, and S. Droz˙dz˙ , 2017 Atypical transistor-based chaotic oscillators: Design, realization, and diversity. Chaos: An Interdisciplinary Journal of Nonlinear Science 27: 073113.
  • Moysis, L., C. Volos, I. Stouboulos, S. Goudos, S. Çiçek, et al., 2020 A novel chaotic system with a line equilibrium: Analysis and its applications to secure communication and random bit generation. In Telecom, volume 1, pp. 283–296, MDPI.
  • Pecora, L. M. and T. L. Carroll, 1990 Synchronization in chaotic systems. Physical review letters 64: 821.
  • Rajagopal, K., S. Çiçek, A. J. M. Khalaf, V.-T. Pham, S. Jafari, et al., 2018 A novel class of chaotic flows with infinite equilibriums and their application in chaos-based communication design using dcsk. Zeitschrift Für Naturforschung A 73: 609–617.
  • Rybin, V., D. Butusov, E. Rodionova, T. Karimov, V. Ostrovskii, et al., 2022a Discovering chaos-based communications by recurrence quantification and quantified return map analyses. International Journal of Bifurcation and Chaos 32: 2250136.
  • Rybin, V., T. Karimov, O. Bayazitov, D. Kvitko, I. Babkin, et al., 2023 Prototyping the symmetry-based chaotic communication system using microcontroller unit. Applied Sciences 13: 936.
  • Rybin, V., G. Kolev, E. Kopets, A. Dautov, A. Karimov, et al., 2022b Optimal synchronization parameters for variable symmetry discrete models of chaotic systems. In 2022 11th Mediterranean Conference on Embedded Computing (MECO), pp. 1–5, IEEE.
  • Rybin, V., A. Tutueva, T. Karimov, G. Kolev, D. Butusov, et al., 2021 Optimizing the synchronization parameters in adaptive models of rössler system. In 2021 10th Mediterranean Conference on Embedded Computing (MECO), pp. 1–4, IEEE.
  • Shannon, C. E., 1984 Communication in the presence of noise. Proceedings of the IEEE 72: 1192–1201.
  • Türkben, Ö. Ü. A. K. and V. S. A. Al-Akraa, 2022 Snr estimation in communication systems using cognitive radio. In 2022 5th International Conference on Engineering Technology and its Applications (IICETA), pp. 477–481, IEEE.
  • Tutueva, A., L. Moysis, V. Rybin, A. Zubarev, C. Volos, et al., 2022 Adaptive symmetry control in secure communication systems. Chaos, Solitons & Fractals 159: 112181.
  • Volos, C., I. Kyprianidis, and I. Stouboulos, 2013 Image encryption process based on chaotic synchronization phenomena. Signal Processing 93: 1328–1340.
  • Voznesensky, A., D. Butusov, V. Rybin, D. Kaplun, T. Karimov, et al., 2022 Denoising chaotic signals using ensemble intrinsic time-scale decomposition. IEEE Access 10: 115767–115775.
  • Wang, L., X. Mao, A. Wang, Y. Wang, Z. Gao, et al., 2020 Scheme of coherent optical chaos communication. Optics Letters 45: 4762– 4765.
  • Willsey, M. S., K. M. Cuomo, and A. V. Oppenheim, 2011 Quasiorthogonal wideband radar waveforms based on chaotic systems. IEEE Transactions on Aerospace and Electronic Systems 47: 1974–1984.
  • Yang, T. and L. O. Chua, 1996 Secure communication via chaotic parameter modulation. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 43: 817–819.
  • Yang, Z., L. Yi, J. Ke, Q. Zhuge, Y. Yang, et al., 2020 Chaotic optical communication over 1000 km transmission by coherent detection. Journal of Lightwave Technology 38: 4648–4655.

Estimating Optimal Synchronization Parameters for Coherent Chaotic Communication Systems in Noisy Conditions

Yıl 2023, Cilt: 5 Sayı: 3, 141 - 152, 30.11.2023
https://doi.org/10.51537/chaos.1314803

Öz

It is known, that coherent chaotic communication systems are more vulnerable to noise in the transmission channel than conventional communications. Among the methods of noise impact reduction, such as extended symbol length and various digital filtering algorithms, the optimization of the synchronization coefficient may appear as a very efficient and simple straightforward approach. However, finding the optimal coefficient for the synchronization of two chaotic oscillators is a challenging task due to the high sensitivity of chaos to any disturbances. In this paper, we propose an algorithm for finding the optimal synchronization parameter K_opt for a coherent chaos-based communication system affected by various noises with different signal-to-noise ratios (SNR). It is shown, that under certain conditions, optimal $K$ provides the lowest possible bit error rate (BER) during the transmission. In addition, we show that various metrics applied to the message demodulation task propose different noise immunity to the overall system. For the experimental part of the study, we simulated and physically prototyped two chaotic communication systems based on well-known Rossler and Lorenz chaotic oscillators. The microcontroller-based prototype of a chaotic communication system was developed to investigate the influence of noise in the real transmission channel. The experimental results obtained using the designed hardware testbench are in good correspondence with the theoretical propositions of the study and simulation results. The suggested evaluation metrics and optimization algorithms can be used in the design of advanced chaos-based communication systems with increased performance.

Kaynakça

  • Abib, G. A. and M. Eisencraft, 2015 On the performance of a digital chaos-based communication system in noisy channels. IFACPapersOnLine 48: 976–981.
  • Afraimovich, V., N. Verichev, and M. I. Rabinovich, 1986 Stochastic synchronization of oscillation in dissipative systems. Radiophysics and Quantum Electronics 29: 795–803.
  • Alexander, P., S. Emiro˘ glu, S. Kanagaraj, A. Akgul, and K. Rajagopal, 2023 Infinite coexisting attractors in an autonomous hyperchaotic megastable oscillator and linear quadratic regulatorbased control and synchronization. The European Physical Journal B 96: 12.
  • Arslan, H. and S. Reddy, 2003 Noise power and snr estimation for ofdm based wireless communication systems. In Proc. of 3rd IASTED International Conference on Wireless and Optical Communications (WOC), Banff, Alberta, Canada, pp. 1–6.
  • Babajans, R., D. Cirjulina, F. Capligins, D. Kolosovs, J. Grizans, et al., 2023 Performance analysis of vilnius chaos oscillator-based digital data transmission systems for iot. Electronics 12: 709.
  • Babajans, R., D. Cirjulina, D. Kolosovs, and A. Litvinenko, 2022 Quadrature chaos phase shift keying communication system based on vilnius chaos oscillator. In 2022 Workshop on Microwave Theory and Techniques in Wireless Communications (MTTW), pp. 5–8, IEEE.
  • Bai, C., H.-P. Ren, M. S. Baptista, and C. Grebogi, 2019 Digital underwater communication with chaos. Communications in Nonlinear Science and Numerical Simulation 73: 14–24.
  • Bai, C., H.-P. Ren, C. Grebogi, and M. S. Baptista, 2018 Chaosbased underwater communication with arbitrary transducers and bandwidth. Applied Sciences 8: 162.
  • Carroll, T. L. and L. M. Pecora, 1995 Synchronizing chaotic circuits. In Nonlinear Dynamics in Circuits, pp. 215–248,World Scientific. Cirjulina, D., R. Babajans, D. Kolosovs, and A. Litvinenko, 2022
  • Experimental study on frequency modulated chaos shift keying communication system. In 2022 Workshop on Microwave Theory and Techniques inWireless Communications (MTTW), pp. 1–4, IEEE.
  • Cordesses, L., 2004a Direct digital synthesis: A tool for periodic wave generation (part 1). IEEE Signal processing magazine 21: 50–54.
  • Cordesses, L., 2004b Direct digital synthesis: a tool for periodic wave generation (part 2). IEEE Signal Processing Magazine 21: 110–112.
  • Dedieu, H., M. P. Kennedy, and M. Hasler, 1993 Chaos shift keying: modulation and demodulation of a chaotic carrier using selfsynchronizing chua’s circuits. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 40: 634–642.
  • Dmitriev, A. and A. Panas, 2002 Dynamic chaos: novel type of information carrier for communication systems. Izdatel’stvo Fiziko–matematicheskoj literatury 252.
  • Emiroglu, S., A. Akgül, Y. Adıyaman, T. E. Gümü¸s, Y. Uyaroglu, et al., 2022 A new hyperchaotic system from t chaotic system: dynamical analysis, circuit implementation, control and synchronization. Circuit World 48: 265–277.
  • Fujisaka, H. and T. Yamada, 1983 Stability theory of synchronized motion in coupled-oscillator systems. Progress of theoretical physics 69: 32–47.
  • Gaspard, P., 2005 Rössler systems. Encyclopedia of nonlinear science 231: 808–811.
  • Hasan, A. N. and T. Shongwe, 2017 Impulse noise detection in ofdm communication system using machine learning ensemble algorithms. In International Joint Conference SOCO’16-CISIS’16- ICEUTE’16: San Sebastián, Spain, October 19th-21st, 2016 Proceedings 11, pp. 85–91, Springer.
  • Hedayatipour, A., R. Monani, A. Rezaei, M. Aliasgari, and H. Sayadi, 2022 A comprehensive analysis of chaos-based secure systems. In Silicon Valley Cybersecurity Conference: Second Conference, SVCC 2021, San Jose, CA, USA, December 2–3, 2021, Revised Selected Papers, pp. 90–105, Springer.
  • Kaddoum, G., 2016 Wireless chaos-based communication systems: A comprehensive survey. IEEE Access 4: 2621–2648.
  • Kaddoum, G., M. Coulon, D. Roviras, and P. Chargé, 2010 Theoretical performance for asynchronous multi-user chaos-based communication systems on fading channels. Signal Processing 90: 2923–2933.
  • Karimov, A., V. Rybin, E. Kopets, T. Karimov, E. Nepomuceno, et al., 2023 Identifying empirical equations of chaotic circuit from data. Nonlinear Dynamics 111: 871–886.
  • Karimov, T., O. Druzhina, A. Karimov, A. Tutueva, V. Ostrovskii, et al., 2021a Single-coil metal detector based on spiking chaotic oscillator. Nonlinear Dynamics pp. 1–18.
  • Karimov, T., V. Rybin, G. Kolev, E. Rodionova, and D. Butusov, 2021b Chaotic communication system with symmetry-based modulation. Applied Sciences 11: 3698.
  • Khan, A. M., V. Jeoti, M. Rehman, and M. Jilani, 2017 Noise power estimation for broadcasting ofdm systems. In 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1–6.
  • Kharel, R., 2011 Design and implementation of secure chaotic communication systems. Ph.D. thesis, Northumbria University.
  • Koronovskii, A. A., O. I. Moskalenko, and A. E. Hramov, 2009 On the use of chaotic synchronization for secure communication. Physics-Uspekhi 52: 1213.
  • Liao, T.-l., 1998 Adaptive synchronization of two lorenz systems. Chaos, Solitons & Fractals 9: 1555–1561.
  • Liu, S.-H., D.-S.Wang, and L. Chen, 2007 Analysis of the ambiguity characteristic of digital synthesis signals with chaotic frequency modulation. ACTA ELECTONICA SINICA 35: 1784.
  • Lukin, K. A. and O. V. Zemlyaniy, 2016 Digital generation of wideband chaotic signal with the comb-shaped spectrum for communication systems based on spectral manipulation. Radioelectronics and Communications Systems 59: 417–422.
  • Lyu, Y., L. Wang, G. Cai, and G. Chen, 2015 Iterative receiver for m-ary dcsk systems. IEEE Transactions on Communications 63: 3929–3936.
  • Minati, L., M. Frasca, P. Os´wiecimka, L. Faes, and S. Droz˙dz˙ , 2017 Atypical transistor-based chaotic oscillators: Design, realization, and diversity. Chaos: An Interdisciplinary Journal of Nonlinear Science 27: 073113.
  • Moysis, L., C. Volos, I. Stouboulos, S. Goudos, S. Çiçek, et al., 2020 A novel chaotic system with a line equilibrium: Analysis and its applications to secure communication and random bit generation. In Telecom, volume 1, pp. 283–296, MDPI.
  • Pecora, L. M. and T. L. Carroll, 1990 Synchronization in chaotic systems. Physical review letters 64: 821.
  • Rajagopal, K., S. Çiçek, A. J. M. Khalaf, V.-T. Pham, S. Jafari, et al., 2018 A novel class of chaotic flows with infinite equilibriums and their application in chaos-based communication design using dcsk. Zeitschrift Für Naturforschung A 73: 609–617.
  • Rybin, V., D. Butusov, E. Rodionova, T. Karimov, V. Ostrovskii, et al., 2022a Discovering chaos-based communications by recurrence quantification and quantified return map analyses. International Journal of Bifurcation and Chaos 32: 2250136.
  • Rybin, V., T. Karimov, O. Bayazitov, D. Kvitko, I. Babkin, et al., 2023 Prototyping the symmetry-based chaotic communication system using microcontroller unit. Applied Sciences 13: 936.
  • Rybin, V., G. Kolev, E. Kopets, A. Dautov, A. Karimov, et al., 2022b Optimal synchronization parameters for variable symmetry discrete models of chaotic systems. In 2022 11th Mediterranean Conference on Embedded Computing (MECO), pp. 1–5, IEEE.
  • Rybin, V., A. Tutueva, T. Karimov, G. Kolev, D. Butusov, et al., 2021 Optimizing the synchronization parameters in adaptive models of rössler system. In 2021 10th Mediterranean Conference on Embedded Computing (MECO), pp. 1–4, IEEE.
  • Shannon, C. E., 1984 Communication in the presence of noise. Proceedings of the IEEE 72: 1192–1201.
  • Türkben, Ö. Ü. A. K. and V. S. A. Al-Akraa, 2022 Snr estimation in communication systems using cognitive radio. In 2022 5th International Conference on Engineering Technology and its Applications (IICETA), pp. 477–481, IEEE.
  • Tutueva, A., L. Moysis, V. Rybin, A. Zubarev, C. Volos, et al., 2022 Adaptive symmetry control in secure communication systems. Chaos, Solitons & Fractals 159: 112181.
  • Volos, C., I. Kyprianidis, and I. Stouboulos, 2013 Image encryption process based on chaotic synchronization phenomena. Signal Processing 93: 1328–1340.
  • Voznesensky, A., D. Butusov, V. Rybin, D. Kaplun, T. Karimov, et al., 2022 Denoising chaotic signals using ensemble intrinsic time-scale decomposition. IEEE Access 10: 115767–115775.
  • Wang, L., X. Mao, A. Wang, Y. Wang, Z. Gao, et al., 2020 Scheme of coherent optical chaos communication. Optics Letters 45: 4762– 4765.
  • Willsey, M. S., K. M. Cuomo, and A. V. Oppenheim, 2011 Quasiorthogonal wideband radar waveforms based on chaotic systems. IEEE Transactions on Aerospace and Electronic Systems 47: 1974–1984.
  • Yang, T. and L. O. Chua, 1996 Secure communication via chaotic parameter modulation. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 43: 817–819.
  • Yang, Z., L. Yi, J. Ke, Q. Zhuge, Y. Yang, et al., 2020 Chaotic optical communication over 1000 km transmission by coherent detection. Journal of Lightwave Technology 38: 4648–4655.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bilgi Güvenliği ve Kriptoloji, Siber Güvenlik ve Gizlilik (Diğer), Devreler ve Sistemler
Bölüm Research Articles
Yazarlar

Vyacheslav Rybin 0000-0002-6515-0224

Ivan Babkin 0009-0004-0443-2668

Dmitriy Kvitko 0009-0009-0195-5881

Timur Karimov 0000-0002-9860-8211

Lucas Nardo 0000-0002-6034-8442

Erivelton Nepomuceno 0000-0002-5841-2193

Denis Butusov 0000-0002-8941-4220

Yayımlanma Tarihi 30 Kasım 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 5 Sayı: 3

Kaynak Göster

APA Rybin, V., Babkin, I., Kvitko, D., Karimov, T., vd. (2023). Estimating Optimal Synchronization Parameters for Coherent Chaotic Communication Systems in Noisy Conditions. Chaos Theory and Applications, 5(3), 141-152. https://doi.org/10.51537/chaos.1314803

Chaos Theory and Applications in Applied Sciences and Engineering: An interdisciplinary journal of nonlinear science 23830 28903   

The published articles in CHTA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License Cc_by-nc_icon.svg