Research Article
BibTex RIS Cite

Demonstration of Sensitive Analysis and Optical Soliton Patterns in a (4+1) Dimensional Boiti-Leon-Manna Pempinelli Equation: Dynamic Insights into Bifurcation, Chaotic Behavior

Year 2025, Volume: 7 Issue: 1, 1 - 9
https://doi.org/10.51537/chaos.1518307

Abstract

This study aims to find exact solutions for a mathematical problem known as the (4+1)-dimensional Boiti Leon Manna Pempinelli (BLMP) equation. In order to convert the governing equation into an ordinary differential equation, we make use of an appropriate wave transformation. This transformation enables the investigation of mathematical solutions, exaggerated outcomes, and normal solutions. Furthermore, in order to accurately determine the solution to this wave, we make use of the modified Khater method. We apply the given approach to find rational, the trigonometric, and hyperbolic solutions. The selected solutions provide graphic representations that accurately depict the physical behavior of the model. Using their visualization, we are able to demonstrate how their behavior changes over time in a four-dimensional space. The use of a visual representation, which involves selecting suitable values for arbitrary components, improves the understanding of the dynamical system. Furthermore, we conduct a sensitivity analysis of the dynamical system to determine the stability of the solution. The dynamical system engages in a discussion about the existence of chaotic dynamics within the Boiti Leon Manna Pempinelli equation. It is possible to depict these chaotic phenomena using two-dimensional and three-dimensional phase portraits.

References

  • Akinyemi, L., H. Rezazadeh, S.-W. Yao, M. A. Akbar, M. M. Khater, et al., 2021 Nonlinear dispersion in parabolic law medium and its optical solitons. Results in Physics 26: 104411.
  • Al-Smadi, M., 2018 Simplified iterative reproducing kernel method for handling time-fractional bvps with error estimation. Ain Shams Engineering Journal 9: 2517–2525.
  • Al-Smadi, M., O. A. Arqub, and D. Zeidan, 2021 Fuzzy fractional differential equations under the mittag-leffler kernel differential operator of the abc approach: Theorems and applications. Chaos, Solitons & Fractals 146: 110891.
  • Bibi, S., S. T. Mohyud-Din, U. Khan, and N. Ahmed, 2017 Khater method for nonlinear sharma tasso-olever (sto) equation of fractional order. Results in physics 7: 4440–4450.
  • Biswas, A., M. Mirzazadeh, M. Eslami, Q. Zhou, A. Bhrawy, et al., 2016 Optical solitons in nano-fibers with spatio-temporal dispersion by trial solution method. Optik 127: 7250–7257.
  • Conte, R. and M. Musette, 1992 Link between solitary waves and projective riccati equations. Journal of Physics A: Mathematical and General 25: 5609.
  • Feng, Z., 2002 The first-integral method to study the burgers– korteweg–de vries equation. Journal of Physics A: Mathematical and General 35: 343.
  • Fokas, A., 2016 Integrable multidimensional versions of the nonlocal nonlinear schrödinger equation. Nonlinearity 29: 319.
  • He, J.-H. and L.-N. Zhang, 2008 Generalized solitary solution and compacton-like solution of the jaulent–miodek equations using the exp-function method. Physics Letters A 372: 1044–1047.
  • Jamal, T., A. Jhangeer, and M. Z. Hussain, 2023 Analysis of nonlinear dynamics of novikov–veselov equation using solitonic solutions, bifurcation, periodic and quasi-periodic solutions, and poincaré section. The European Physical Journal Plus 138: 1087.
  • Khater, M., S. Anwar, K. U. Tariq, and M. S. Mohamed, 2021a Some optical soliton solutions to the perturbed nonlinear schrödinger equation by modified khater method. AIP Advances 11.
  • Khater, M., S. Anwar, K. U. Tariq, and M. S. Mohamed, 2021b Some optical soliton solutions to the perturbed nonlinear schrödinger equation by modified khater method. AIP Advances 11.
  • Khater, M., R. A. Attia, and D. Lu, 2021c Superabundant novel solutions of the long waves mathematical modeling in shallow water with power-law nonlinearity in ocean beaches via three recent analytical schemes. The European Physical Journal Plus 136: 1–19.
  • Khater, M. M., 2021a Abundant breather and semi-analytical investigation: On high-frequency waves’ dynamics in the relaxation medium. Modern Physics Letters B 35: 2150372.
  • Khater, M. M., 2021b Diverse solitary and jacobian solutions in a continually laminated fluid with respect to shear flows through the ostrovsky equation. Modern Physics Letters B 35: 2150220.
  • Khater, M. M., A. R. Seadawy, and D. Lu, 2017 Elliptic and solitary wave solutions for bogoyavlenskii equations system, couple boiti-leon-pempinelli equations system and time-fractional cahnallen equation. Results in physics 7: 2325–2333.
  • Kim, H., J.-H. Bae, and R. Sakthivel, 2014 Exact travelling wave solutions of two important nonlinear partial differential equations. Zeitschrift für Naturforschung A 69: 155–162.
  • Kruglov, V. I. and H. Triki, 2021 Periodic and solitary waves in an inhomogeneous optical waveguide with third-order dispersion and self-steepening nonlinearity. Physical Review A 103: 013521. Kudryashov, N., 1991 On types of nonlinear nonintegrable equations with exact solutions. Physics Letters A 155: 269–275.
  • Lee, J., R. Sakthivel, and L. Wazzan, 2010 Exact traveling wave solutions of a higher-dimensional nonlinear evolution equation. Modern Physics Letters B 24: 1011–1021.
  • Li, Y., W.-r. Shan, T. Shuai, and K. Rao, 2015 Bifurcation analysis and solutions of a higher-order nonlinear schrödinger equation. Mathematical Problems in Engineering 2015: 408586.
  • Liu, H., H. Yang, N. Liu, and L. Yang, 2022 Bifurcation and chaos analysis of tumor growth. International Journal of Biomathematics 15: 2250039.
  • Liu, S., Z. Fu, S. Liu, and Q. Zhao, 2001 Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Physics Letters A 289: 69–74.
  • Ma,W.-x., 1993 Travelling wave solutions to a seventh order generalized kdv equation. Physics Letters A 180: 221–224.
  • Nikan, O., S. M. Molavi-Arabshai, and H. Jafari, 2021 Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discret. Contin. Dyn. Syst. S 14: 3685–3701.
  • Özer, A. and E. Akın, 2005 Tools for detecting chaos. Sakarya University Journal of Science 9: 60–66.
  • Park, C., M. M. Khater, A.-H. Abdel-Aty, R. A. Attia, H. Rezazadeh, et al., 2020 Dynamical analysis of the nonlinear complex fractional emerging telecommunication model with higher–order dispersive cubic–quintic. Alexandria Engineering Journal 59: 1425–1433.
  • Raza, N., A. Jhangeer, S. Arshed, and M. Inc, 2024 The chaotic, supernonlinear, periodic, quasiperiodic wave solutions and solitons with cascaded system.Waves in random and complex media 34: 1726–1740.
  • Raza, N., M. Kaplan, A. Javid, and M. Inc, 2022 Complexiton and resonant multi-solitons of a (4+ 1)-dimensional boiti–leon– manna–pempinelli equation. Optical and Quantum Electronics 54: 1–16.
  • Saha, A., 2017 Bifurcation, periodic and chaotic motions of the modified equal width-burgers (mew-burgers) equation with external periodic perturbation. Nonlinear Dynamics 87: 2193– 2201.
  • Sheng, Z., 2006 The periodic wave solutions for the (2+ 1)- dimensional konopelchenko–dubrovsky equations. Chaos, Solitons & Fractals 30: 1213–1220.
  • Singh, J., D. Kumar, Z. Hammouch, and A. Atangana, 2018 A fractional epidemiological model for computer viruses pertaining to a new fractional derivative. Applied mathematics and computation 316: 504–515.
  • Tchaho, C. T. D., H. M. Omanda, G. N. Mbourou, J. R. Bogning, and T. C. Kofané, 2021 Higher order solitary wave solutions of the standard kdv equations. Open Journal of Applied Sciences 11: 103–125.
  • Team, R. C., 2020 Ra language and environment for statistical computing, r foundation for statistical. Computing .
  • Valdés, J. E. Ñ., 2003 La resolución de problemas en la enseñanza de las ecuaciones diferenciales ordinarias. un enfoque histórico. Revista Educación y Pedagogía pp. 163–181.
  • Wang, D.-S., 2009 A systematic method to construct hirota’s transformations of continuous soliton equations and its applications. Computers & Mathematics with Applications 58: 146–153.
  • Wazwaz, A.-M., 2004 A sine-cosine method for handlingnonlinear wave equations. Mathematical and Computer modelling 40: 499– 508.
  • Wazwaz, A.-M., 2007 Traveling wave solution to (2+ 1)- dimensional nonlinear evolution equations. J. Nat. Sci. Math 1: 1–13.
  • Wu, Z., W. Zhang, and X. Zeng, 2023 Exploring the short-term and long-term linkages between carbon price and influence factors considering covid-19 impact. Environmental Science and Pollution Research 30: 61479–61495.
  • Xu, G.-Q. and X.-Z. Huang, 2013 New variable separation solutions for two nonlinear evolution equations in higher dimensions. Chinese Physics Letters 30: 030202.
  • Xu, G.-Q. and A.-M. Wazwaz, 2019 Integrability aspects and localized wave solutions for a new (4+ 1)-dimensional boiti–leon– manna–pempinelli equation. Nonlinear Dynamics 98: 1379– 1390.
  • Zheng-Zheng, Y. and Y. Zhen-Ya, 2009 Symmetry groups and exact solutions of new (4+ 1)-dimensional fokas equation. Communications in Theoretical Physics 51: 876.
Year 2025, Volume: 7 Issue: 1, 1 - 9
https://doi.org/10.51537/chaos.1518307

Abstract

References

  • Akinyemi, L., H. Rezazadeh, S.-W. Yao, M. A. Akbar, M. M. Khater, et al., 2021 Nonlinear dispersion in parabolic law medium and its optical solitons. Results in Physics 26: 104411.
  • Al-Smadi, M., 2018 Simplified iterative reproducing kernel method for handling time-fractional bvps with error estimation. Ain Shams Engineering Journal 9: 2517–2525.
  • Al-Smadi, M., O. A. Arqub, and D. Zeidan, 2021 Fuzzy fractional differential equations under the mittag-leffler kernel differential operator of the abc approach: Theorems and applications. Chaos, Solitons & Fractals 146: 110891.
  • Bibi, S., S. T. Mohyud-Din, U. Khan, and N. Ahmed, 2017 Khater method for nonlinear sharma tasso-olever (sto) equation of fractional order. Results in physics 7: 4440–4450.
  • Biswas, A., M. Mirzazadeh, M. Eslami, Q. Zhou, A. Bhrawy, et al., 2016 Optical solitons in nano-fibers with spatio-temporal dispersion by trial solution method. Optik 127: 7250–7257.
  • Conte, R. and M. Musette, 1992 Link between solitary waves and projective riccati equations. Journal of Physics A: Mathematical and General 25: 5609.
  • Feng, Z., 2002 The first-integral method to study the burgers– korteweg–de vries equation. Journal of Physics A: Mathematical and General 35: 343.
  • Fokas, A., 2016 Integrable multidimensional versions of the nonlocal nonlinear schrödinger equation. Nonlinearity 29: 319.
  • He, J.-H. and L.-N. Zhang, 2008 Generalized solitary solution and compacton-like solution of the jaulent–miodek equations using the exp-function method. Physics Letters A 372: 1044–1047.
  • Jamal, T., A. Jhangeer, and M. Z. Hussain, 2023 Analysis of nonlinear dynamics of novikov–veselov equation using solitonic solutions, bifurcation, periodic and quasi-periodic solutions, and poincaré section. The European Physical Journal Plus 138: 1087.
  • Khater, M., S. Anwar, K. U. Tariq, and M. S. Mohamed, 2021a Some optical soliton solutions to the perturbed nonlinear schrödinger equation by modified khater method. AIP Advances 11.
  • Khater, M., S. Anwar, K. U. Tariq, and M. S. Mohamed, 2021b Some optical soliton solutions to the perturbed nonlinear schrödinger equation by modified khater method. AIP Advances 11.
  • Khater, M., R. A. Attia, and D. Lu, 2021c Superabundant novel solutions of the long waves mathematical modeling in shallow water with power-law nonlinearity in ocean beaches via three recent analytical schemes. The European Physical Journal Plus 136: 1–19.
  • Khater, M. M., 2021a Abundant breather and semi-analytical investigation: On high-frequency waves’ dynamics in the relaxation medium. Modern Physics Letters B 35: 2150372.
  • Khater, M. M., 2021b Diverse solitary and jacobian solutions in a continually laminated fluid with respect to shear flows through the ostrovsky equation. Modern Physics Letters B 35: 2150220.
  • Khater, M. M., A. R. Seadawy, and D. Lu, 2017 Elliptic and solitary wave solutions for bogoyavlenskii equations system, couple boiti-leon-pempinelli equations system and time-fractional cahnallen equation. Results in physics 7: 2325–2333.
  • Kim, H., J.-H. Bae, and R. Sakthivel, 2014 Exact travelling wave solutions of two important nonlinear partial differential equations. Zeitschrift für Naturforschung A 69: 155–162.
  • Kruglov, V. I. and H. Triki, 2021 Periodic and solitary waves in an inhomogeneous optical waveguide with third-order dispersion and self-steepening nonlinearity. Physical Review A 103: 013521. Kudryashov, N., 1991 On types of nonlinear nonintegrable equations with exact solutions. Physics Letters A 155: 269–275.
  • Lee, J., R. Sakthivel, and L. Wazzan, 2010 Exact traveling wave solutions of a higher-dimensional nonlinear evolution equation. Modern Physics Letters B 24: 1011–1021.
  • Li, Y., W.-r. Shan, T. Shuai, and K. Rao, 2015 Bifurcation analysis and solutions of a higher-order nonlinear schrödinger equation. Mathematical Problems in Engineering 2015: 408586.
  • Liu, H., H. Yang, N. Liu, and L. Yang, 2022 Bifurcation and chaos analysis of tumor growth. International Journal of Biomathematics 15: 2250039.
  • Liu, S., Z. Fu, S. Liu, and Q. Zhao, 2001 Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Physics Letters A 289: 69–74.
  • Ma,W.-x., 1993 Travelling wave solutions to a seventh order generalized kdv equation. Physics Letters A 180: 221–224.
  • Nikan, O., S. M. Molavi-Arabshai, and H. Jafari, 2021 Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discret. Contin. Dyn. Syst. S 14: 3685–3701.
  • Özer, A. and E. Akın, 2005 Tools for detecting chaos. Sakarya University Journal of Science 9: 60–66.
  • Park, C., M. M. Khater, A.-H. Abdel-Aty, R. A. Attia, H. Rezazadeh, et al., 2020 Dynamical analysis of the nonlinear complex fractional emerging telecommunication model with higher–order dispersive cubic–quintic. Alexandria Engineering Journal 59: 1425–1433.
  • Raza, N., A. Jhangeer, S. Arshed, and M. Inc, 2024 The chaotic, supernonlinear, periodic, quasiperiodic wave solutions and solitons with cascaded system.Waves in random and complex media 34: 1726–1740.
  • Raza, N., M. Kaplan, A. Javid, and M. Inc, 2022 Complexiton and resonant multi-solitons of a (4+ 1)-dimensional boiti–leon– manna–pempinelli equation. Optical and Quantum Electronics 54: 1–16.
  • Saha, A., 2017 Bifurcation, periodic and chaotic motions of the modified equal width-burgers (mew-burgers) equation with external periodic perturbation. Nonlinear Dynamics 87: 2193– 2201.
  • Sheng, Z., 2006 The periodic wave solutions for the (2+ 1)- dimensional konopelchenko–dubrovsky equations. Chaos, Solitons & Fractals 30: 1213–1220.
  • Singh, J., D. Kumar, Z. Hammouch, and A. Atangana, 2018 A fractional epidemiological model for computer viruses pertaining to a new fractional derivative. Applied mathematics and computation 316: 504–515.
  • Tchaho, C. T. D., H. M. Omanda, G. N. Mbourou, J. R. Bogning, and T. C. Kofané, 2021 Higher order solitary wave solutions of the standard kdv equations. Open Journal of Applied Sciences 11: 103–125.
  • Team, R. C., 2020 Ra language and environment for statistical computing, r foundation for statistical. Computing .
  • Valdés, J. E. Ñ., 2003 La resolución de problemas en la enseñanza de las ecuaciones diferenciales ordinarias. un enfoque histórico. Revista Educación y Pedagogía pp. 163–181.
  • Wang, D.-S., 2009 A systematic method to construct hirota’s transformations of continuous soliton equations and its applications. Computers & Mathematics with Applications 58: 146–153.
  • Wazwaz, A.-M., 2004 A sine-cosine method for handlingnonlinear wave equations. Mathematical and Computer modelling 40: 499– 508.
  • Wazwaz, A.-M., 2007 Traveling wave solution to (2+ 1)- dimensional nonlinear evolution equations. J. Nat. Sci. Math 1: 1–13.
  • Wu, Z., W. Zhang, and X. Zeng, 2023 Exploring the short-term and long-term linkages between carbon price and influence factors considering covid-19 impact. Environmental Science and Pollution Research 30: 61479–61495.
  • Xu, G.-Q. and X.-Z. Huang, 2013 New variable separation solutions for two nonlinear evolution equations in higher dimensions. Chinese Physics Letters 30: 030202.
  • Xu, G.-Q. and A.-M. Wazwaz, 2019 Integrability aspects and localized wave solutions for a new (4+ 1)-dimensional boiti–leon– manna–pempinelli equation. Nonlinear Dynamics 98: 1379– 1390.
  • Zheng-Zheng, Y. and Y. Zhen-Ya, 2009 Symmetry groups and exact solutions of new (4+ 1)-dimensional fokas equation. Communications in Theoretical Physics 51: 876.
There are 41 citations in total.

Details

Primary Language English
Subjects Dynamical Systems in Applications
Journal Section Research Articles
Authors

Muhammad Iqbal 0009-0001-3315-0203

Muhammad Bilal Riaz 0000-0001-5153-297X

Muhammad Aziz Ur Rehman 0000-0002-8042-1619

Tomas Martinovic 0000-0002-0132-1434

Jan Martinovic 0000-0001-7944-8956

Publication Date
Submission Date July 18, 2024
Acceptance Date October 7, 2024
Published in Issue Year 2025 Volume: 7 Issue: 1

Cite

APA Iqbal, M., Riaz, M. B., Aziz Ur Rehman, M., Martinovic, T., et al. (n.d.). Demonstration of Sensitive Analysis and Optical Soliton Patterns in a (4+1) Dimensional Boiti-Leon-Manna Pempinelli Equation: Dynamic Insights into Bifurcation, Chaotic Behavior. Chaos Theory and Applications, 7(1), 1-9. https://doi.org/10.51537/chaos.1518307

Chaos Theory and Applications in Applied Sciences and Engineering: An interdisciplinary journal of nonlinear science 23830 28903   

The published articles in CHTA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License Cc_by-nc_icon.svg