Demonstration of Sensitive Analysis and Optical Soliton Patterns in a (4+1) Dimensional Boiti-Leon-Manna Pempinelli Equation: Dynamic Insights into Bifurcation, Chaotic Behavior
Year 2025,
Volume: 7 Issue: 1, 1 - 9
Muhammad Iqbal
,
Muhammad Bilal Riaz
,
Muhammad Aziz Ur Rehman
,
Tomas Martinovic
,
Jan Martinovic
Abstract
This study aims to find exact solutions for a mathematical problem known as the (4+1)-dimensional Boiti Leon Manna Pempinelli (BLMP) equation. In order to convert the governing equation into an ordinary differential equation, we make use of an appropriate wave transformation. This transformation enables the investigation of mathematical solutions, exaggerated outcomes, and normal solutions. Furthermore, in order to accurately determine the solution to this wave, we make use of the modified Khater method. We apply the given approach to find rational, the trigonometric, and hyperbolic solutions. The selected solutions provide graphic representations that accurately depict the physical behavior of the model. Using their visualization, we are able to demonstrate how their behavior changes over time in a four-dimensional space. The use of a visual representation, which involves selecting suitable values for arbitrary components, improves the understanding of the dynamical system. Furthermore, we conduct a sensitivity analysis of the dynamical system to determine the stability of the solution. The dynamical system engages in a discussion about the existence of chaotic dynamics within the Boiti Leon Manna Pempinelli equation. It is possible to depict these chaotic phenomena using two-dimensional and three-dimensional phase portraits.
References
- Akinyemi, L., H. Rezazadeh, S.-W. Yao, M. A. Akbar, M. M. Khater,
et al., 2021 Nonlinear dispersion in parabolic law medium and
its optical solitons. Results in Physics 26: 104411.
- Al-Smadi, M., 2018 Simplified iterative reproducing kernel method
for handling time-fractional bvps with error estimation. Ain
Shams Engineering Journal 9: 2517–2525.
- Al-Smadi, M., O. A. Arqub, and D. Zeidan, 2021 Fuzzy fractional
differential equations under the mittag-leffler kernel differential
operator of the abc approach: Theorems and applications. Chaos,
Solitons & Fractals 146: 110891.
- Bibi, S., S. T. Mohyud-Din, U. Khan, and N. Ahmed, 2017 Khater
method for nonlinear sharma tasso-olever (sto) equation of fractional
order. Results in physics 7: 4440–4450.
- Biswas, A., M. Mirzazadeh, M. Eslami, Q. Zhou, A. Bhrawy, et al.,
2016 Optical solitons in nano-fibers with spatio-temporal dispersion
by trial solution method. Optik 127: 7250–7257.
- Conte, R. and M. Musette, 1992 Link between solitary waves and
projective riccati equations. Journal of Physics A: Mathematical
and General 25: 5609.
- Feng, Z., 2002 The first-integral method to study the burgers–
korteweg–de vries equation. Journal of Physics A: Mathematical
and General 35: 343.
- Fokas, A., 2016 Integrable multidimensional versions of the nonlocal
nonlinear schrödinger equation. Nonlinearity 29: 319.
- He, J.-H. and L.-N. Zhang, 2008 Generalized solitary solution and
compacton-like solution of the jaulent–miodek equations using
the exp-function method. Physics Letters A 372: 1044–1047.
- Jamal, T., A. Jhangeer, and M. Z. Hussain, 2023 Analysis of nonlinear
dynamics of novikov–veselov equation using solitonic
solutions, bifurcation, periodic and quasi-periodic solutions,
and poincaré section. The European Physical Journal Plus 138:
1087.
- Khater, M., S. Anwar, K. U. Tariq, and M. S. Mohamed, 2021a Some
optical soliton solutions to the perturbed nonlinear schrödinger
equation by modified khater method. AIP Advances 11.
- Khater, M., S. Anwar, K. U. Tariq, and M. S. Mohamed, 2021b Some
optical soliton solutions to the perturbed nonlinear schrödinger
equation by modified khater method. AIP Advances 11.
- Khater, M., R. A. Attia, and D. Lu, 2021c Superabundant novel
solutions of the long waves mathematical modeling in shallow
water with power-law nonlinearity in ocean beaches via three
recent analytical schemes. The European Physical Journal Plus
136: 1–19.
- Khater, M. M., 2021a Abundant breather and semi-analytical investigation:
On high-frequency waves’ dynamics in the relaxation
medium. Modern Physics Letters B 35: 2150372.
- Khater, M. M., 2021b Diverse solitary and jacobian solutions in a
continually laminated fluid with respect to shear flows through
the ostrovsky equation. Modern Physics Letters B 35: 2150220.
- Khater, M. M., A. R. Seadawy, and D. Lu, 2017 Elliptic and solitary
wave solutions for bogoyavlenskii equations system, couple
boiti-leon-pempinelli equations system and time-fractional cahnallen
equation. Results in physics 7: 2325–2333.
- Kim, H., J.-H. Bae, and R. Sakthivel, 2014 Exact travelling wave solutions
of two important nonlinear partial differential equations.
Zeitschrift für Naturforschung A 69: 155–162.
- Kruglov, V. I. and H. Triki, 2021 Periodic and solitary waves in an
inhomogeneous optical waveguide with third-order dispersion
and self-steepening nonlinearity. Physical Review A 103: 013521.
Kudryashov, N., 1991 On types of nonlinear nonintegrable equations
with exact solutions. Physics Letters A 155: 269–275.
- Lee, J., R. Sakthivel, and L. Wazzan, 2010 Exact traveling wave
solutions of a higher-dimensional nonlinear evolution equation.
Modern Physics Letters B 24: 1011–1021.
- Li, Y., W.-r. Shan, T. Shuai, and K. Rao, 2015 Bifurcation analysis
and solutions of a higher-order nonlinear schrödinger equation.
Mathematical Problems in Engineering 2015: 408586.
- Liu, H., H. Yang, N. Liu, and L. Yang, 2022 Bifurcation and chaos
analysis of tumor growth. International Journal of Biomathematics
15: 2250039.
- Liu, S., Z. Fu, S. Liu, and Q. Zhao, 2001 Jacobi elliptic function
expansion method and periodic wave solutions of nonlinear
wave equations. Physics Letters A 289: 69–74.
- Ma,W.-x., 1993 Travelling wave solutions to a seventh order generalized
kdv equation. Physics Letters A 180: 221–224.
- Nikan, O., S. M. Molavi-Arabshai, and H. Jafari, 2021 Numerical
simulation of the nonlinear fractional regularized long-wave
model arising in ion acoustic plasma waves. Discret. Contin.
Dyn. Syst. S 14: 3685–3701.
- Özer, A. and E. Akın, 2005 Tools for detecting chaos. Sakarya
University Journal of Science 9: 60–66.
- Park, C., M. M. Khater, A.-H. Abdel-Aty, R. A. Attia, H. Rezazadeh,
et al., 2020 Dynamical analysis of the nonlinear complex fractional
emerging telecommunication model with higher–order
dispersive cubic–quintic. Alexandria Engineering Journal 59:
1425–1433.
- Raza, N., A. Jhangeer, S. Arshed, and M. Inc, 2024 The chaotic,
supernonlinear, periodic, quasiperiodic wave solutions and solitons
with cascaded system.Waves in random and complex media
34: 1726–1740.
- Raza, N., M. Kaplan, A. Javid, and M. Inc, 2022 Complexiton
and resonant multi-solitons of a (4+ 1)-dimensional boiti–leon–
manna–pempinelli equation. Optical and Quantum Electronics
54: 1–16.
- Saha, A., 2017 Bifurcation, periodic and chaotic motions of the
modified equal width-burgers (mew-burgers) equation with
external periodic perturbation. Nonlinear Dynamics 87: 2193–
2201.
- Sheng, Z., 2006 The periodic wave solutions for the (2+ 1)-
dimensional konopelchenko–dubrovsky equations. Chaos, Solitons
& Fractals 30: 1213–1220.
- Singh, J., D. Kumar, Z. Hammouch, and A. Atangana, 2018 A
fractional epidemiological model for computer viruses pertaining
to a new fractional derivative. Applied mathematics and
computation 316: 504–515.
- Tchaho, C. T. D., H. M. Omanda, G. N. Mbourou, J. R. Bogning,
and T. C. Kofané, 2021 Higher order solitary wave solutions of
the standard kdv equations. Open Journal of Applied Sciences
11: 103–125.
- Team, R. C., 2020 Ra language and environment for statistical
computing, r foundation for statistical. Computing .
- Valdés, J. E. Ñ., 2003 La resolución de problemas en la enseñanza
de las ecuaciones diferenciales ordinarias. un enfoque histórico.
Revista Educación y Pedagogía pp. 163–181.
- Wang, D.-S., 2009 A systematic method to construct hirota’s transformations
of continuous soliton equations and its applications.
Computers & Mathematics with Applications 58: 146–153.
- Wazwaz, A.-M., 2004 A sine-cosine method for handlingnonlinear
wave equations. Mathematical and Computer modelling 40: 499–
508.
- Wazwaz, A.-M., 2007 Traveling wave solution to (2+ 1)-
dimensional nonlinear evolution equations. J. Nat. Sci. Math
1: 1–13.
- Wu, Z., W. Zhang, and X. Zeng, 2023 Exploring the short-term
and long-term linkages between carbon price and influence factors
considering covid-19 impact. Environmental Science and
Pollution Research 30: 61479–61495.
- Xu, G.-Q. and X.-Z. Huang, 2013 New variable separation solutions
for two nonlinear evolution equations in higher dimensions.
Chinese Physics Letters 30: 030202.
- Xu, G.-Q. and A.-M. Wazwaz, 2019 Integrability aspects and localized
wave solutions for a new (4+ 1)-dimensional boiti–leon–
manna–pempinelli equation. Nonlinear Dynamics 98: 1379–
1390.
- Zheng-Zheng, Y. and Y. Zhen-Ya, 2009 Symmetry groups and exact
solutions of new (4+ 1)-dimensional fokas equation. Communications
in Theoretical Physics 51: 876.
Year 2025,
Volume: 7 Issue: 1, 1 - 9
Muhammad Iqbal
,
Muhammad Bilal Riaz
,
Muhammad Aziz Ur Rehman
,
Tomas Martinovic
,
Jan Martinovic
References
- Akinyemi, L., H. Rezazadeh, S.-W. Yao, M. A. Akbar, M. M. Khater,
et al., 2021 Nonlinear dispersion in parabolic law medium and
its optical solitons. Results in Physics 26: 104411.
- Al-Smadi, M., 2018 Simplified iterative reproducing kernel method
for handling time-fractional bvps with error estimation. Ain
Shams Engineering Journal 9: 2517–2525.
- Al-Smadi, M., O. A. Arqub, and D. Zeidan, 2021 Fuzzy fractional
differential equations under the mittag-leffler kernel differential
operator of the abc approach: Theorems and applications. Chaos,
Solitons & Fractals 146: 110891.
- Bibi, S., S. T. Mohyud-Din, U. Khan, and N. Ahmed, 2017 Khater
method for nonlinear sharma tasso-olever (sto) equation of fractional
order. Results in physics 7: 4440–4450.
- Biswas, A., M. Mirzazadeh, M. Eslami, Q. Zhou, A. Bhrawy, et al.,
2016 Optical solitons in nano-fibers with spatio-temporal dispersion
by trial solution method. Optik 127: 7250–7257.
- Conte, R. and M. Musette, 1992 Link between solitary waves and
projective riccati equations. Journal of Physics A: Mathematical
and General 25: 5609.
- Feng, Z., 2002 The first-integral method to study the burgers–
korteweg–de vries equation. Journal of Physics A: Mathematical
and General 35: 343.
- Fokas, A., 2016 Integrable multidimensional versions of the nonlocal
nonlinear schrödinger equation. Nonlinearity 29: 319.
- He, J.-H. and L.-N. Zhang, 2008 Generalized solitary solution and
compacton-like solution of the jaulent–miodek equations using
the exp-function method. Physics Letters A 372: 1044–1047.
- Jamal, T., A. Jhangeer, and M. Z. Hussain, 2023 Analysis of nonlinear
dynamics of novikov–veselov equation using solitonic
solutions, bifurcation, periodic and quasi-periodic solutions,
and poincaré section. The European Physical Journal Plus 138:
1087.
- Khater, M., S. Anwar, K. U. Tariq, and M. S. Mohamed, 2021a Some
optical soliton solutions to the perturbed nonlinear schrödinger
equation by modified khater method. AIP Advances 11.
- Khater, M., S. Anwar, K. U. Tariq, and M. S. Mohamed, 2021b Some
optical soliton solutions to the perturbed nonlinear schrödinger
equation by modified khater method. AIP Advances 11.
- Khater, M., R. A. Attia, and D. Lu, 2021c Superabundant novel
solutions of the long waves mathematical modeling in shallow
water with power-law nonlinearity in ocean beaches via three
recent analytical schemes. The European Physical Journal Plus
136: 1–19.
- Khater, M. M., 2021a Abundant breather and semi-analytical investigation:
On high-frequency waves’ dynamics in the relaxation
medium. Modern Physics Letters B 35: 2150372.
- Khater, M. M., 2021b Diverse solitary and jacobian solutions in a
continually laminated fluid with respect to shear flows through
the ostrovsky equation. Modern Physics Letters B 35: 2150220.
- Khater, M. M., A. R. Seadawy, and D. Lu, 2017 Elliptic and solitary
wave solutions for bogoyavlenskii equations system, couple
boiti-leon-pempinelli equations system and time-fractional cahnallen
equation. Results in physics 7: 2325–2333.
- Kim, H., J.-H. Bae, and R. Sakthivel, 2014 Exact travelling wave solutions
of two important nonlinear partial differential equations.
Zeitschrift für Naturforschung A 69: 155–162.
- Kruglov, V. I. and H. Triki, 2021 Periodic and solitary waves in an
inhomogeneous optical waveguide with third-order dispersion
and self-steepening nonlinearity. Physical Review A 103: 013521.
Kudryashov, N., 1991 On types of nonlinear nonintegrable equations
with exact solutions. Physics Letters A 155: 269–275.
- Lee, J., R. Sakthivel, and L. Wazzan, 2010 Exact traveling wave
solutions of a higher-dimensional nonlinear evolution equation.
Modern Physics Letters B 24: 1011–1021.
- Li, Y., W.-r. Shan, T. Shuai, and K. Rao, 2015 Bifurcation analysis
and solutions of a higher-order nonlinear schrödinger equation.
Mathematical Problems in Engineering 2015: 408586.
- Liu, H., H. Yang, N. Liu, and L. Yang, 2022 Bifurcation and chaos
analysis of tumor growth. International Journal of Biomathematics
15: 2250039.
- Liu, S., Z. Fu, S. Liu, and Q. Zhao, 2001 Jacobi elliptic function
expansion method and periodic wave solutions of nonlinear
wave equations. Physics Letters A 289: 69–74.
- Ma,W.-x., 1993 Travelling wave solutions to a seventh order generalized
kdv equation. Physics Letters A 180: 221–224.
- Nikan, O., S. M. Molavi-Arabshai, and H. Jafari, 2021 Numerical
simulation of the nonlinear fractional regularized long-wave
model arising in ion acoustic plasma waves. Discret. Contin.
Dyn. Syst. S 14: 3685–3701.
- Özer, A. and E. Akın, 2005 Tools for detecting chaos. Sakarya
University Journal of Science 9: 60–66.
- Park, C., M. M. Khater, A.-H. Abdel-Aty, R. A. Attia, H. Rezazadeh,
et al., 2020 Dynamical analysis of the nonlinear complex fractional
emerging telecommunication model with higher–order
dispersive cubic–quintic. Alexandria Engineering Journal 59:
1425–1433.
- Raza, N., A. Jhangeer, S. Arshed, and M. Inc, 2024 The chaotic,
supernonlinear, periodic, quasiperiodic wave solutions and solitons
with cascaded system.Waves in random and complex media
34: 1726–1740.
- Raza, N., M. Kaplan, A. Javid, and M. Inc, 2022 Complexiton
and resonant multi-solitons of a (4+ 1)-dimensional boiti–leon–
manna–pempinelli equation. Optical and Quantum Electronics
54: 1–16.
- Saha, A., 2017 Bifurcation, periodic and chaotic motions of the
modified equal width-burgers (mew-burgers) equation with
external periodic perturbation. Nonlinear Dynamics 87: 2193–
2201.
- Sheng, Z., 2006 The periodic wave solutions for the (2+ 1)-
dimensional konopelchenko–dubrovsky equations. Chaos, Solitons
& Fractals 30: 1213–1220.
- Singh, J., D. Kumar, Z. Hammouch, and A. Atangana, 2018 A
fractional epidemiological model for computer viruses pertaining
to a new fractional derivative. Applied mathematics and
computation 316: 504–515.
- Tchaho, C. T. D., H. M. Omanda, G. N. Mbourou, J. R. Bogning,
and T. C. Kofané, 2021 Higher order solitary wave solutions of
the standard kdv equations. Open Journal of Applied Sciences
11: 103–125.
- Team, R. C., 2020 Ra language and environment for statistical
computing, r foundation for statistical. Computing .
- Valdés, J. E. Ñ., 2003 La resolución de problemas en la enseñanza
de las ecuaciones diferenciales ordinarias. un enfoque histórico.
Revista Educación y Pedagogía pp. 163–181.
- Wang, D.-S., 2009 A systematic method to construct hirota’s transformations
of continuous soliton equations and its applications.
Computers & Mathematics with Applications 58: 146–153.
- Wazwaz, A.-M., 2004 A sine-cosine method for handlingnonlinear
wave equations. Mathematical and Computer modelling 40: 499–
508.
- Wazwaz, A.-M., 2007 Traveling wave solution to (2+ 1)-
dimensional nonlinear evolution equations. J. Nat. Sci. Math
1: 1–13.
- Wu, Z., W. Zhang, and X. Zeng, 2023 Exploring the short-term
and long-term linkages between carbon price and influence factors
considering covid-19 impact. Environmental Science and
Pollution Research 30: 61479–61495.
- Xu, G.-Q. and X.-Z. Huang, 2013 New variable separation solutions
for two nonlinear evolution equations in higher dimensions.
Chinese Physics Letters 30: 030202.
- Xu, G.-Q. and A.-M. Wazwaz, 2019 Integrability aspects and localized
wave solutions for a new (4+ 1)-dimensional boiti–leon–
manna–pempinelli equation. Nonlinear Dynamics 98: 1379–
1390.
- Zheng-Zheng, Y. and Y. Zhen-Ya, 2009 Symmetry groups and exact
solutions of new (4+ 1)-dimensional fokas equation. Communications
in Theoretical Physics 51: 876.