Research Article
BibTex RIS Cite

Year 2025, Volume: 7 Issue: 2, 177 - 185, 31.07.2025
https://doi.org/10.51537/chaos.1621022

Abstract

References

  • Alvarez, G. and S. Li, 2006 Some basic cryptographic requirements for chaos-based cryptosystems. International journal of bifurcation and chaos 16: 2129–2151.
  • Blanche, P.-A., 2021 Holography, and the future of 3d display. Light: Advanced Manufacturing 2: 446–459.
  • Cassal-Quiroga, B., A. Ruiz-Silva, and E. Campos-Cantón, 2022 Generation of dynamical s-boxes via lag time chaotic series for cryptosystems. In Complex Systems and Their Applications: Second International Conference (EDIESCA 2021), pp. 61–83, Springer.
  • Cassal-Quiroga, B. B. and E. Campos-Cantón, 2020 Generation of dynamical s-boxes for block ciphers via extended logistic map. Mathematical Problems in Engineering 2020: 1–12.
  • Cˇ elikovsky` , S. and V. Lynnyk, 2012 Desynchronization chaos shift keying method based on the error second derivative and its security analysis. International Journal of Bifurcation and Chaos 22: 1250231.
  • Cruz, M.-L. and H. Gilardi-Velázquez, 2024 Speckle noise reduction, in amplitude holograms, using a limited-bandwidth random phase generated by a chaotic map. In Digital Holography and Three-Dimensional Imaging, pp. W1B–2, Optica Publishing Group.
  • Dallas, W. J., 2006 Computer-generated holograms. Digital Holography and Three-Dimensional Display: Principles and Applications pp. 1–49.
  • Diaz-gonzalez, E., A. Guerra-lópez, B. A. Hernandez, and E. Campos, 2022 Generation of multistability through unstable systems. Chaos Theory and Applications 4: 234–240.
  • Echenausía-Monroy, J., R. Cuesta-garcía, H. Gilardi-velázquez, S. S. Muni, and J. Alvarez-gallegos, 2024 Predicting tipping points in a family of pwl systems: Detecting multistability via linear operators properties. Chaos Theory and Applications 6: 73–82.
  • Echenausía-Monroy, J. L., G. Huerta-Cuellar, R. Jaimes-Reátegui, J. H. García-López, V. Aboites, et al., 2020 Multistability emergence through fractional-order-derivatives in a pwl multi-scroll system. Electronics 9: 880.
  • Gilardi-Velázquez, H. E., R. d. J. Escalante-González, and E. Campos-Cantón, 2018 Bistable behavior via switching dissipative systems with unstable dynamics and its electronic design. IFAC-PapersOnLine 51: 502–507.
  • Gilardi-Velázquez, H. E., R. J. Escalante-González, and E. Campos, 2020 Emergence of a square chaotic attractor through the collision of heteroclinic orbits. The European Physical Journal Special Topics 229: 1351–1360.
  • Gilardi-Velázquez, H. E., L. Ontañón-García, D. G. Hurtado- Rodriguez, and E. Campos-Cantón, 2017 Multistability in piecewise linear systems versus eigenspectra variation and round function. International Journal of Bifurcation and Chaos 27: 1730031.
  • Goodman, J. W., 2005 Introduction to Fourier optics. Roberts and Company publishers.
  • Gotz, M., K. Kelber, and W. Schwarz, 1997 Discrete-time chaotic encryption systems. i. statistical design approach. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 44: 963–970.
  • Hariharan, P., 1996 Optical Holography: Principles, techniques and applications. Cambridge University Press.
  • He, Z., X. Sui, H. Zhang, G. Jin, and L. Cao, 2021 Frequency-based optimized random phase for computer-generated holographic display. Applied Optics 60: A145–A154.
  • Jiang, J., A. Hastings, and Y.-C. Lai, 2019 Harnessing tipping points in complex ecological networks. Journal of the Royal Society Interface 16: 20190345.
  • Khan, M., T. Shah, H. Mahmood, and M. A. Gondal, 2013 An efficient method for the construction of block cipher with multichaotic systems. Nonlinear Dynamics 71: 489–492.
  • Kocarev, L., Z. Galias, and S. Lian, 2009 Intelligent computing based on chaos, volume 184. Springer.
  • Lee, B., D. Kim, S. Lee, C. Chen, and B. Lee, 2022 High-contrast, speckle-free, true 3d holography via binary cgh optimization. Scientific reports 12: 2811.
  • May, R. M., 1987 Chaos and the dynamics of biological populations. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 413: 27–44.
  • Mazloom, S. and A. M. Eftekhari-Moghadam, 2009 Color image encryption based on coupled nonlinear chaotic map. Chaos, Solitons & Fractals 42: 1745–1754.
  • Munir, N., M. Khan, T. Shah, A. S. Alanazi, and I. Hussain, 2021 Cryptanalysis of nonlinear confusion component based encryption algorithm. Integration 79: 41–47.
  • Njıtacke, Z., T. Fozin, L. K. Kengne, G. Leutcho, E. M. Kengne, et al., 2020 Multistability and its annihilation in the chua’s oscillator with piecewise-linear nonlinearity. Chaos Theory and Applications 2: 77–89.
  • Ott, E., 2002 Chaos in dynamical systems. Cambridge university press.
  • Patidar, V. and G. Kaur, 2023 Lossless image encryption using robust chaos-based dynamic dna coding, xoring and complementing. Chaos Theory and Applications 5: 178–187.
  • Platas-Garza, M., E. Zambrano-Serrano, J. Rodríguez-Cruz, and C. Posadas-Castillo, 2021 Implementation of an encryptedcompressed image wireless transmission scheme based on chaotic fractional-order systems. Chinese Journal of Physics 71: 22–37.
  • Razaq, A., Iqra, M. Ahmad, M. A. Yousaf, and S. Masood, 2021 A novel finite rings based algebraic scheme of evolving secure sboxes for images encryption. Multimedia Tools and Applications 80: 20191–20215.
  • Rial, J. A., R. A. Pielke, M. Beniston, M. Claussen, J. Canadell, et al., 2004 Nonlinearities, feedbacks and critical thresholds within the earth’s climate system. Climatic change 65: 11–38.
  • Shimobaba, T. and T. Ito, 2019 Computer Holography: Acceleration Algorithms and Hardware Implementations. CRC press.
  • Wakunami, K., H. Yamashita, and M. Yamaguchi, 2013 Occlusion culling for computer generated hologram based on raywavefront conversion. Optics express 21: 21811–21822.

Analysis of Chaotic Systems in the Generation of Random Phases for Amplitude Holograms

Year 2025, Volume: 7 Issue: 2, 177 - 185, 31.07.2025
https://doi.org/10.51537/chaos.1621022

Abstract

In recent decades, there has been great interest in the development of applications of chaotic systems in cryptographic systems and communication systems due to their non-periodic and long-term unpredictable nature. In this work, the properties of different chaotic systems, both continuous and discrete in time, are analyzed for the generation of pseudo-random phases practical for holography. The different types of dynamics generated by different systems are analyzed using bifurcation diagrams, transition from chaos to periodic orbits and equilibrium points, as well as two methodologies to construct the phase (Cartesian and polar). Our results shows a better performance in discrete-time systems by generating smooth transitions in the formed patterns and avoiding the generation of artifacts in the holograms, given the wider range of parameters in which the system is stable.

Ethical Statement

The paper is not currently being considered for publication elsewhere.

Thanks

This work was done with the support of Universidad Panamericana, with the fund "Fondo Fomento a la Investigacion 2023" under the project UP-CI-2023-GDL-11-ING.

References

  • Alvarez, G. and S. Li, 2006 Some basic cryptographic requirements for chaos-based cryptosystems. International journal of bifurcation and chaos 16: 2129–2151.
  • Blanche, P.-A., 2021 Holography, and the future of 3d display. Light: Advanced Manufacturing 2: 446–459.
  • Cassal-Quiroga, B., A. Ruiz-Silva, and E. Campos-Cantón, 2022 Generation of dynamical s-boxes via lag time chaotic series for cryptosystems. In Complex Systems and Their Applications: Second International Conference (EDIESCA 2021), pp. 61–83, Springer.
  • Cassal-Quiroga, B. B. and E. Campos-Cantón, 2020 Generation of dynamical s-boxes for block ciphers via extended logistic map. Mathematical Problems in Engineering 2020: 1–12.
  • Cˇ elikovsky` , S. and V. Lynnyk, 2012 Desynchronization chaos shift keying method based on the error second derivative and its security analysis. International Journal of Bifurcation and Chaos 22: 1250231.
  • Cruz, M.-L. and H. Gilardi-Velázquez, 2024 Speckle noise reduction, in amplitude holograms, using a limited-bandwidth random phase generated by a chaotic map. In Digital Holography and Three-Dimensional Imaging, pp. W1B–2, Optica Publishing Group.
  • Dallas, W. J., 2006 Computer-generated holograms. Digital Holography and Three-Dimensional Display: Principles and Applications pp. 1–49.
  • Diaz-gonzalez, E., A. Guerra-lópez, B. A. Hernandez, and E. Campos, 2022 Generation of multistability through unstable systems. Chaos Theory and Applications 4: 234–240.
  • Echenausía-Monroy, J., R. Cuesta-garcía, H. Gilardi-velázquez, S. S. Muni, and J. Alvarez-gallegos, 2024 Predicting tipping points in a family of pwl systems: Detecting multistability via linear operators properties. Chaos Theory and Applications 6: 73–82.
  • Echenausía-Monroy, J. L., G. Huerta-Cuellar, R. Jaimes-Reátegui, J. H. García-López, V. Aboites, et al., 2020 Multistability emergence through fractional-order-derivatives in a pwl multi-scroll system. Electronics 9: 880.
  • Gilardi-Velázquez, H. E., R. d. J. Escalante-González, and E. Campos-Cantón, 2018 Bistable behavior via switching dissipative systems with unstable dynamics and its electronic design. IFAC-PapersOnLine 51: 502–507.
  • Gilardi-Velázquez, H. E., R. J. Escalante-González, and E. Campos, 2020 Emergence of a square chaotic attractor through the collision of heteroclinic orbits. The European Physical Journal Special Topics 229: 1351–1360.
  • Gilardi-Velázquez, H. E., L. Ontañón-García, D. G. Hurtado- Rodriguez, and E. Campos-Cantón, 2017 Multistability in piecewise linear systems versus eigenspectra variation and round function. International Journal of Bifurcation and Chaos 27: 1730031.
  • Goodman, J. W., 2005 Introduction to Fourier optics. Roberts and Company publishers.
  • Gotz, M., K. Kelber, and W. Schwarz, 1997 Discrete-time chaotic encryption systems. i. statistical design approach. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 44: 963–970.
  • Hariharan, P., 1996 Optical Holography: Principles, techniques and applications. Cambridge University Press.
  • He, Z., X. Sui, H. Zhang, G. Jin, and L. Cao, 2021 Frequency-based optimized random phase for computer-generated holographic display. Applied Optics 60: A145–A154.
  • Jiang, J., A. Hastings, and Y.-C. Lai, 2019 Harnessing tipping points in complex ecological networks. Journal of the Royal Society Interface 16: 20190345.
  • Khan, M., T. Shah, H. Mahmood, and M. A. Gondal, 2013 An efficient method for the construction of block cipher with multichaotic systems. Nonlinear Dynamics 71: 489–492.
  • Kocarev, L., Z. Galias, and S. Lian, 2009 Intelligent computing based on chaos, volume 184. Springer.
  • Lee, B., D. Kim, S. Lee, C. Chen, and B. Lee, 2022 High-contrast, speckle-free, true 3d holography via binary cgh optimization. Scientific reports 12: 2811.
  • May, R. M., 1987 Chaos and the dynamics of biological populations. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 413: 27–44.
  • Mazloom, S. and A. M. Eftekhari-Moghadam, 2009 Color image encryption based on coupled nonlinear chaotic map. Chaos, Solitons & Fractals 42: 1745–1754.
  • Munir, N., M. Khan, T. Shah, A. S. Alanazi, and I. Hussain, 2021 Cryptanalysis of nonlinear confusion component based encryption algorithm. Integration 79: 41–47.
  • Njıtacke, Z., T. Fozin, L. K. Kengne, G. Leutcho, E. M. Kengne, et al., 2020 Multistability and its annihilation in the chua’s oscillator with piecewise-linear nonlinearity. Chaos Theory and Applications 2: 77–89.
  • Ott, E., 2002 Chaos in dynamical systems. Cambridge university press.
  • Patidar, V. and G. Kaur, 2023 Lossless image encryption using robust chaos-based dynamic dna coding, xoring and complementing. Chaos Theory and Applications 5: 178–187.
  • Platas-Garza, M., E. Zambrano-Serrano, J. Rodríguez-Cruz, and C. Posadas-Castillo, 2021 Implementation of an encryptedcompressed image wireless transmission scheme based on chaotic fractional-order systems. Chinese Journal of Physics 71: 22–37.
  • Razaq, A., Iqra, M. Ahmad, M. A. Yousaf, and S. Masood, 2021 A novel finite rings based algebraic scheme of evolving secure sboxes for images encryption. Multimedia Tools and Applications 80: 20191–20215.
  • Rial, J. A., R. A. Pielke, M. Beniston, M. Claussen, J. Canadell, et al., 2004 Nonlinearities, feedbacks and critical thresholds within the earth’s climate system. Climatic change 65: 11–38.
  • Shimobaba, T. and T. Ito, 2019 Computer Holography: Acceleration Algorithms and Hardware Implementations. CRC press.
  • Wakunami, K., H. Yamashita, and M. Yamaguchi, 2013 Occlusion culling for computer generated hologram based on raywavefront conversion. Optics express 21: 21811–21822.
There are 32 citations in total.

Details

Primary Language English
Subjects Dynamical Systems in Applications, Applied Mathematics (Other)
Journal Section Research Articles
Authors

Héctor Eduardo Gilardi Velázquez 0000-0002-4978-4526

Maria Luisa Cruz Lopéz 0000-0002-3405-1848

Publication Date July 31, 2025
Submission Date January 16, 2025
Acceptance Date April 11, 2025
Published in Issue Year 2025 Volume: 7 Issue: 2

Cite

APA Gilardi Velázquez, H. E., & Cruz Lopéz, M. L. (2025). Analysis of Chaotic Systems in the Generation of Random Phases for Amplitude Holograms. Chaos Theory and Applications, 7(2), 177-185. https://doi.org/10.51537/chaos.1621022

Chaos Theory and Applications in Applied Sciences and Engineering: An interdisciplinary journal of nonlinear science 23830 28903   

The published articles in CHTA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License Cc_by-nc_icon.svg