Vila J., Sâez-Lôpez, E., Johnson Jr., Römling U., Dobrint U., Cantôn R., Giske Cg., Naas T., Carattoli A., Martinez-Medina M., Bosch J., Retamar P., Rodrîguez-Bano J., Baquero, F., Soto Sm. Escherichia coli: an old friend with new tidings. FEMS Microbiology Reviews 2016; 40(4):437.
Abraham E. P., Chain E. An enzyme from bacteria able to destroy penicillin. Nature 1940; 146(3713):837–837.
Paterson D. L., & Bonomo R. A. Extended-spectrum β-lactamases: A clinical update. Clinical Microbiology Reviews 2005; 18(4): 657–686.
Etebu E., Arikekpar I. Antibiotics: Classification and mechanisms of action with emphasis on moleculer perspectives. Int. J. Appl. Microbiol. Biotechnol. Res. 2016; 90-101.
Founou R.C., Founou L.L., Essack S.Y. Clinical and economic impact of antibiotic resistance in developing countries: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0189621.
New Report Calls for Urgent Action to Avert Antimicrobial Resistance Crisis. Available online: https://www.who.int/news-room/detail/29-04-2019-new-report-calls-for-urgentaction-to-avertantimicrobial
Moland ES, Hanson ND, Black JA, Hossain A, Song W, Thomson KS. Prevalence of newer beta-lactamases in Gram-negative clinical isolates collected in the United States from 2001 to 2002. J Clin Microbiol 2006; 44: 3318–3324.
Drieux L, Brossier F, Sougakoff W, Jarlier V. Phenotypic detection of extended-spectrum beta-lactamase production in Enterobacteriaceae: review and bench guide. Clin Microbiol Infect 2008; 14 (suppl 1): 90– 103
Livermore DM. Of Pseudomonas, porins, pumps and carbapenems. J Antimicrob Chemother 2001; 47 (3):247-250
Özsoy MF, Öncül O, Yıldırım A, Pahsa A. Genişlemiş spektrumlu beta-laktamazlar: klinik önemi ve getirdiği sorunlar. Flora 2001; 6(Ek1): 3-23.
http://eucast.org. Accession date: 14.03.2022
Livermore, DM. Beta-Lactamases in laboratory and clinical resistance. Clinical Microbiology Reviews 1995; 8(4):557–584.
Henshke-Bar-Meir R., Yinnon A. M., Rudensky B., Attias D., Schlesinger Y., & Raveh, D. Assessment of the clinical significance of production of extended-spectrum βlactamases (ESBL) by Enterobacteriaceae. Infection 2006; 34(2): 66–74
Polsfuss S, Bloembeerg GV, Giger J, Meyer V, Böttger EC, Hombach M. Evaluation of a diagnostic flow chart for detection and confirmation of extended spectrum β-lactamasess (ESBL) in Enterobacteriaceae. Clin Microbiol Infect 2012; 18:1194-1204
Shaikh NK, Mundhada SG, Lalngaihzuali R, Ingole KV. Comparison of different phenotypic methods for the detection of extended spectrum β-lactamase (ESBL) in bacterial isolates from tertiary care centre. Int J Cur Res Rev 2016; 8 (11):1*14.
Mehrgan H., & Rahbar M. Prevalence of extended-spectrum β-lactamase-producing Escherichia coli in a tertiary care hospital in Tehran, Iran. International Journal of Antimicrobial Agents 2008; 31(2): 147–151
Al-Muhtaseb, M. Kaygusuz, A. Kan kültürlerinden izole edilen Escherichia coli ve Klebsiella pneumoniae suşlarında genişlemiş spektrumlu beta-laktamaz (GSBL) sıklığı. Ankem Derg 2008;22(4): 175–82.
Güzel M, Gena Y, Aksoy A, Moncheva P, Hristova P. Investigation of three different methods for detection of ESBL production and antibiotic resistance percentage of ESBL producing Gram negatrive bacteria. Turk Hij Den Biyol Derg 2015; 72 (2):131-8.
Öztürk C.E., Kaya D., Yücel M., Çalışkan E., Behçet M., Ankaralı H. Comparison of Various Phenotypic Methods in Detection of Extended-spectrum Beta-lactamases. ANKEM Derg 2010; 24 (3):111-116.
Singh RK, Manoj Kumar. A Simplified method of Three Dimensional Technique for the Detection of Amp-C Beta-Lactamases. Archives of clinical microbiology 2013; 4(3.1).
Thomson KS. Controversies about extended spectrum and Amp-C beta lactamases. Emerg Infect Dis. 2001; 7 (2): 333-336.
Which Phenotypic Method Is the Most Accurate for Detection of Extended – Spectrum β-Lactamases (ESBLs) in Escherichia coli ?
Objective: The aim of the study is to determine the Extended-Spectrum β-Lactamases (ESBLs) by three different phenotypic methods of the Escherichia coli (E. coli) strains that isolated from various clinical samples.
Methods: A total of 93 E. coli samples were isolated from hospitalized patients. Antibiotic susceptibility tests were done by automated system Phoenix 100 (Becton Dickinson, Sparks, MD, USA). ESBL production was tested by double disc synergy test (DDST), combined disc test (CDT) and three-dimensional test (TDT). All statistical analyses were done using statistical packages SPSS Demo Ver 22 (SPSS Inc. Chicago, IL, USA).
Results: In the investigation of ESBL production among E. coli species, 87 (93.5%) strains were ESBL positive by DDST, 73 (78.5%) strains were ESBL positive by CDT, 71 (76.3%) strains were ESBL positive by TDT. According to statistical analysis: There were statistical differences between DDST-CDT (p=<0.001) and DDST-TDT (p=<0.001). However, there was no statistical difference between CDT-TDT (p=0.207)
Conclusion: According to our study results, DDST test was more advantageous than CDT and TDT such as was not require additional financial expenditure and time, and can be easily used in routine laboratories. Therefore, routine monitoring of ESBL with DDST should be determined because of the conspicuous prevalence of ESBL forming and multidrug-resistant of E. coli.
Vila J., Sâez-Lôpez, E., Johnson Jr., Römling U., Dobrint U., Cantôn R., Giske Cg., Naas T., Carattoli A., Martinez-Medina M., Bosch J., Retamar P., Rodrîguez-Bano J., Baquero, F., Soto Sm. Escherichia coli: an old friend with new tidings. FEMS Microbiology Reviews 2016; 40(4):437.
Abraham E. P., Chain E. An enzyme from bacteria able to destroy penicillin. Nature 1940; 146(3713):837–837.
Paterson D. L., & Bonomo R. A. Extended-spectrum β-lactamases: A clinical update. Clinical Microbiology Reviews 2005; 18(4): 657–686.
Etebu E., Arikekpar I. Antibiotics: Classification and mechanisms of action with emphasis on moleculer perspectives. Int. J. Appl. Microbiol. Biotechnol. Res. 2016; 90-101.
Founou R.C., Founou L.L., Essack S.Y. Clinical and economic impact of antibiotic resistance in developing countries: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0189621.
New Report Calls for Urgent Action to Avert Antimicrobial Resistance Crisis. Available online: https://www.who.int/news-room/detail/29-04-2019-new-report-calls-for-urgentaction-to-avertantimicrobial
Moland ES, Hanson ND, Black JA, Hossain A, Song W, Thomson KS. Prevalence of newer beta-lactamases in Gram-negative clinical isolates collected in the United States from 2001 to 2002. J Clin Microbiol 2006; 44: 3318–3324.
Drieux L, Brossier F, Sougakoff W, Jarlier V. Phenotypic detection of extended-spectrum beta-lactamase production in Enterobacteriaceae: review and bench guide. Clin Microbiol Infect 2008; 14 (suppl 1): 90– 103
Livermore DM. Of Pseudomonas, porins, pumps and carbapenems. J Antimicrob Chemother 2001; 47 (3):247-250
Özsoy MF, Öncül O, Yıldırım A, Pahsa A. Genişlemiş spektrumlu beta-laktamazlar: klinik önemi ve getirdiği sorunlar. Flora 2001; 6(Ek1): 3-23.
http://eucast.org. Accession date: 14.03.2022
Livermore, DM. Beta-Lactamases in laboratory and clinical resistance. Clinical Microbiology Reviews 1995; 8(4):557–584.
Henshke-Bar-Meir R., Yinnon A. M., Rudensky B., Attias D., Schlesinger Y., & Raveh, D. Assessment of the clinical significance of production of extended-spectrum βlactamases (ESBL) by Enterobacteriaceae. Infection 2006; 34(2): 66–74
Polsfuss S, Bloembeerg GV, Giger J, Meyer V, Böttger EC, Hombach M. Evaluation of a diagnostic flow chart for detection and confirmation of extended spectrum β-lactamasess (ESBL) in Enterobacteriaceae. Clin Microbiol Infect 2012; 18:1194-1204
Shaikh NK, Mundhada SG, Lalngaihzuali R, Ingole KV. Comparison of different phenotypic methods for the detection of extended spectrum β-lactamase (ESBL) in bacterial isolates from tertiary care centre. Int J Cur Res Rev 2016; 8 (11):1*14.
Mehrgan H., & Rahbar M. Prevalence of extended-spectrum β-lactamase-producing Escherichia coli in a tertiary care hospital in Tehran, Iran. International Journal of Antimicrobial Agents 2008; 31(2): 147–151
Al-Muhtaseb, M. Kaygusuz, A. Kan kültürlerinden izole edilen Escherichia coli ve Klebsiella pneumoniae suşlarında genişlemiş spektrumlu beta-laktamaz (GSBL) sıklığı. Ankem Derg 2008;22(4): 175–82.
Güzel M, Gena Y, Aksoy A, Moncheva P, Hristova P. Investigation of three different methods for detection of ESBL production and antibiotic resistance percentage of ESBL producing Gram negatrive bacteria. Turk Hij Den Biyol Derg 2015; 72 (2):131-8.
Öztürk C.E., Kaya D., Yücel M., Çalışkan E., Behçet M., Ankaralı H. Comparison of Various Phenotypic Methods in Detection of Extended-spectrum Beta-lactamases. ANKEM Derg 2010; 24 (3):111-116.
Singh RK, Manoj Kumar. A Simplified method of Three Dimensional Technique for the Detection of Amp-C Beta-Lactamases. Archives of clinical microbiology 2013; 4(3.1).
Thomson KS. Controversies about extended spectrum and Amp-C beta lactamases. Emerg Infect Dis. 2001; 7 (2): 333-336.
Amro, M. M., Güler, E., Süer, K., Güvenir, M. (2022). Which Phenotypic Method Is the Most Accurate for Detection of Extended – Spectrum β-Lactamases (ESBLs) in Escherichia coli ?. Clinical and Experimental Health Sciences, 12(3), 624-628. https://doi.org/10.33808/clinexphealthsci.987433
AMA
Amro MM, Güler E, Süer K, Güvenir M. Which Phenotypic Method Is the Most Accurate for Detection of Extended – Spectrum β-Lactamases (ESBLs) in Escherichia coli ?. Clinical and Experimental Health Sciences. September 2022;12(3):624-628. doi:10.33808/clinexphealthsci.987433
Chicago
Amro, Montaser M.y., Emrah Güler, Kaya Süer, and Meryem Güvenir. “Which Phenotypic Method Is the Most Accurate for Detection of Extended – Spectrum β-Lactamases (ESBLs) in Escherichia Coli ?”. Clinical and Experimental Health Sciences 12, no. 3 (September 2022): 624-28. https://doi.org/10.33808/clinexphealthsci.987433.
EndNote
Amro MM, Güler E, Süer K, Güvenir M (September 1, 2022) Which Phenotypic Method Is the Most Accurate for Detection of Extended – Spectrum β-Lactamases (ESBLs) in Escherichia coli ?. Clinical and Experimental Health Sciences 12 3 624–628.
IEEE
M. M. Amro, E. Güler, K. Süer, and M. Güvenir, “Which Phenotypic Method Is the Most Accurate for Detection of Extended – Spectrum β-Lactamases (ESBLs) in Escherichia coli ?”, Clinical and Experimental Health Sciences, vol. 12, no. 3, pp. 624–628, 2022, doi: 10.33808/clinexphealthsci.987433.
ISNAD
Amro, Montaser M.y. et al. “Which Phenotypic Method Is the Most Accurate for Detection of Extended – Spectrum β-Lactamases (ESBLs) in Escherichia Coli ?”. Clinical and Experimental Health Sciences 12/3 (September 2022), 624-628. https://doi.org/10.33808/clinexphealthsci.987433.
JAMA
Amro MM, Güler E, Süer K, Güvenir M. Which Phenotypic Method Is the Most Accurate for Detection of Extended – Spectrum β-Lactamases (ESBLs) in Escherichia coli ?. Clinical and Experimental Health Sciences. 2022;12:624–628.
MLA
Amro, Montaser M.y. et al. “Which Phenotypic Method Is the Most Accurate for Detection of Extended – Spectrum β-Lactamases (ESBLs) in Escherichia Coli ?”. Clinical and Experimental Health Sciences, vol. 12, no. 3, 2022, pp. 624-8, doi:10.33808/clinexphealthsci.987433.
Vancouver
Amro MM, Güler E, Süer K, Güvenir M. Which Phenotypic Method Is the Most Accurate for Detection of Extended – Spectrum β-Lactamases (ESBLs) in Escherichia coli ?. Clinical and Experimental Health Sciences. 2022;12(3):624-8.