Review
BibTex RIS Cite

Farklı Egzersiz Yöntemlerinin Alzheimer Hastalığındaki Etkileri

Year 2017, Volume: 7 Issue: 1, 27 - 31, 15.03.2017

Abstract

Alzheimer hastalığı (AH) ilerleyici nörodejeneratif bir hastalık olup demansın
en sık görülen nedenidir. Artmış oksidatif stres, anormal amiloid β (Aβ) ve
tau proteinlerinin birikimi, nöroinflamasyon, nöronal plastisite yetmezliği ve
nöronal kayıp AH’nin patofizyolojisi ile ilişkilendirilen ana faktörlerdir. Artan
kanıtlar fiziksel aktivitenin, hem kognitif fonksiyona hem de AH’de gözlenen
hücresel patolojilere iyileştirici etkileri olduğunu göstermektedir. Aerobik
egzersizin (AE) antioksidan enzim aktivitesini, nörotrofik faktörlerin sentezini
arttırdığı, nöroinflamatuar belirteçleri azalttığı, öğrenmeyi ve bellek fonksiyonlarını
iyileştirdiği gösterilmiştir. Ayrıca hücre yaşayabilirliği ve Aβ klirensi
üzerine yararlıdır. AE, beyin dokusundaki çözülebilir Aβ1-42 düzeylerini klirensten
sorumlu enzimlerin aktivitelerini arttırarak düşürür. Aynı zamanda kaspaz-9,
sitokrom c, Bax ve kaspaz-3 gibi apoptotik enzimleri baskılar. Direnç
egzersizlerinin (DE) AH’deki etkileri hakkında açık bir bilgi bulunmamakla
birlikte az sayıda çalışmada daha çok yaşlanma modellerinde etkilerine bakılmıştır.
Bu çalışmalarda DE’nin insülin benzeri büyüme faktörü-I ve beyin kaynaklı
nörotrofik faktörün (BDNF) serum konsantrasyonlarını artırdığı, oksidatif
stresi azalttığı insanlarda gösterilmiş olup, hayvanlarda hipokampal BDNF
mRNA düzeyinde artış yaptığı bildirilmiştir. Ek olarak DE ve AE, Alzheimer
hastalarında günlük aktivitelerin gelişimine ve fiziksel becerilerin arttırılmasına
yardımcı olabilir. Sonuç olarak egzersiz terapisi uygulamaları daha etkili
tedavi seçenekleri geliştirilmesine ve AH’nin ilerlemesinin yavaşlatılmasına,
herhangi bir yan etki yapmaksızın yardımcı olabilir.

References

  • 1. Matura S, Carvalho AF, Alves GS, Pantel J. Physical exercise for the treatment of neuropsychiatric disturbances in Alzheimer's dementia: possible mechanisms, current evidence and future directions. Curr Alzheimer Res 2016; 13: 1112-23. [CrossRef] 2. Tramutola A, Lanzillotta C, Perluigi M, Butterfield DA. Oxidative stress, protein modification and Alzheimer disease. Brain Res Bull 2016; S0361- 9230:30129-0. 3. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer's disease. Lancet Neurol 2015; 14: 388-405. [CrossRef] 4. Mesulam MM. A plasticity-based theory of the pathogenesis of Alzheimer's disease. Ann NY Acad Sci 2000; 924: 42-52. [CrossRef] 5. Mendiola-Precoma J, Berumen LC, Padilla K, Garcia-Alcocer G. Therapies for prevention and treatment of Alzheimer's disease. Biomed Res Int 2016; 2016:2589276. [CrossRef] 6. Spielman LJ, Little JP, Klegeris A. Physical activity and exercise attenuate neuroinflammation in neurological diseases. Brain Res Bull 2016; 125: 19-29. [CrossRef] 7. Paillard T, Rolland Y, de Souto Barreto P. protective effects of physical exercise in Alzheimer's disease and Parkinson's disease: a narrative review. J Clin Neurol 2015; 11: 212- 9. [CrossRef] 8. Farina N, Rusted J, Tabet N. The effect of exercise interventions on cognitive outcome in Alzheimer's disease: a systematic review. Int Psychogeriatr 2014; 26: 9-18. 9. Archer T. Physical exercise alleviates debilities of normal aging and Alzheimer's disease. Acta Neurol Scand 2011; 123: 221-38. [CrossRef] 10. Matura S, Carvalho AF, Alves GS, Pantel J. Physical exercise for the treatment of neuropsychiatric disturbances in Alzheimer's dementia: possible mechanisms, current evidence and future directions. Curr Alzheimer Res 2016; 13: 1112-23. [CrossRef] 11. Thuné-Boyle IC, Iliffe S, Cerga-Pashoja A, Lowery D, Warner J. The effect of exercise on behavioral and psychological symptoms of dementia: towards a research agenda. Int Psychogeriatr 2012; 24: 1046-57. [CrossRef] 12. Plowman SA, Smith DL. Exercise Physiology: for Health, Fitness, and Performance. Fourth ed. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins; 2014. 13. Prentice WE. Principles of Athletic Training: A compatency based approach. 15th. ed. New York: McGraw- Hill; 2003. 14. Pollock ML, Feigenbaum MS, Brechue WF. Exercise Prescription for Physical Fitness. Quest, 1995; 47: 320-37. [CrossRef] 15. Strickland JC, Smith MA. Animal models of resistance exercise and their application to neuroscience research. J Neurosci Methods 2016; 273: 191–200. [CrossRef] 16. Cassilhas RC, Viana VA, Grassmann V, Santos RT, Santos RF, Tufik S, et al. The impact of resistance exercise on the cognitive function of the elderly. Med Sci Sports Exerc 2007; 39: 1401-7. [CrossRef] 17. Revilla S, Suñol C, García-Mesa Y, Giménez-Llort L, Sanfeliu C, Cristòfol R. Physical exercise improves synaptic dysfunction and recovers the loss of survival factors in 3xTg-AD mouse brain. Neuropharmacology 2014; 81: 55-63. [CrossRef] 18. Knaepen K, Goekint M, Heyman EM, Meeusen R. Neuroplasticity - exercise-induced response of peripheral brain-derived neurotrophic factor: a systematic review of experimental studies in human subjects. Sports Med 2010; 40: 765–801. [CrossRef] Özbeyli and Çakır. The Effect of Exercise in Alzheimer’s Disease Clin Exp Health Sci 2017; 7(1): 27-31 30 Clin Exp Health Sci 2017; 7(1): 27-31 Özbeyli and Çakır. The Effect of Exercise in Alzheimer’s Disease 31 19. Koo HM, Lee SM, Kim MH. Spontaneous wheel running exercise induces brain recovery via neurotrophin-3 expression following experimental traumatic brain injury in rats. J Phys Ther Sci 2013; 25: 1103-7. [CrossRef] 20. Kim TW, Choi HH, Chung YR. Treadmill exercise alleviates impairment of cognitive function by enhancing hippocampal neuroplasticity in the high-fat diet-induced obese mice. J Exerc Rehabil 2016; 12: 156-62. [CrossRef] 21. Radak Z, Hart N, Sarga L, Koltai E, Atalay M, Ohno H, et al. Exercise plays a preventive role against Alzheimer's disease. J Alzheimers Dis 2010; 20: 777-83. 22. Pereira AC, Huddleston DE, Brickman AM, Sosunov AA, Hen R, McKhann GM, et al. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci U S A. 2007; 104: 5638-43. [CrossRef] 23. Griffin EW, Bechara RG, Birch AM, Kelly AM. Exercise enhances hippocampal-dependent learning in the rat: evidence for a BDNF-related mechanism. Hippocampus 2009; 19: 973-80. [CrossRef] 24. Gibbons TE, Pence BD, Petr G, Ossyra JM, Mach HC, Bhattacharya TK, et al. Voluntary wheel running, but not a diet containing (−)-epigallocatechin-3-gallate and beta-alanine, improves learning, memory and hippocampal neurogenesis in aged mice. Behav Brain Res 2014; 272: 131-40. [CrossRef] 25. Brandt MD, Maass A, Kempermann G, Storch A. Physical exercise increases Notch activity, proliferation and cell cycle exit of type-3 progenitor cells in adult hippocampal neurogenesis. Eur J Neurosci 2010; 32: 1256- 64. [CrossRef] 26. Moore KM, Girens RE, Larson SK, Jones MR, Restivo JL, Holtzman DM, et al. A spectrum of exercise training reduces soluble Aβ in a dose-dependent manner in a mouse model of Alzheimer's disease. Neurobiol Dis 2016; 85: 218-24. [CrossRef] 27. Um HS, Kang EB, Leem YH, Cho IH, Yang CH, Chae KR, et al. Exercise training acts as a therapeutic strategy for reduction of the pathogenic phenotypes for Alzheimer's disease in an NSE/APPsw-transgenic model. Int J Mol Med 2008; 22: 529-39. 28. Ogonovszky H, Berkes I, Kumagai S, Kaneko T, Tahara S, Goto S, et al. The effects of moderate-, strenuous- and over-training on oxidative stress markers, DNA repair, and memory, in rat brain. Neurochem Int 2005; 46: 635-40. [CrossRef] 29. Hurley BF, Hanson ED, Sheaff AK. Strength training as a countermeasure to aging muscle and chronic disease. Sports Med 2011; 41: 289-306. [CrossRef] 30. Suttanon P, Hill KD, Said CM, Williams SB, Byrne KN, LoGiudice D, et al. Feasibility, safety and preliminary evidence of the effectiveness of a home-based exercise programme for older people with Alzheimer's disease: a pilot randomized controlled trial. Clin Rehabil 2013; 27: 427-38. [CrossRef] 31. Portugal EM, Vasconcelos PG, Souza R, Lattari E, Monteiro-Junior RS, Machado S, et al. Aging process, cognitive decline and Alzheimer`s disease: can strength training modulate these responses? CNS Neurol Disord Drug Targets 2015; 14: 1209-13. [CrossRef] 32. Lee MC, Okamoto M, Liu YF, Inoue K, Matsui T, Nogami H, et al. Voluntary resistance running with short distance enhances spatial memory related to hippocampal BDNF signaling. J Appl Physiol 2012; 113: 1260-6. [CrossRef] 33. Rao AK, Chou A, Bursley B, Smulofsky J, Jezequel J. Systematic review of the effects of exercise on activities of daily living in people with Alzheimer's disease. Am J Occup Ther 2014; 68: 50-6. [CrossRef] 34. Souza LC, Filho CB, Goes AT, Fabbro LD, de Gomes MG, Savegnago L, et al. Neuroprotective effect of physical exercise in a mouse model of Alzheimer's disease induced by β-amyloid₁-₄₀ peptide. Neurotox Res 2013; 24: 148- 63. [CrossRef] 35. Dao A, Zagaar MA, Levine AT, Salim S, Eriksen J, Alkadhi KA. Treadmill exercise prevents learning and memory impairment in Alzheimer's disease-like pathology. Curr Alzheimer Res 2013; 10: 507-15. [CrossRef] 36. Patten AR, Sickmann H, Hryciw BN, Kucharsky T, Parton R, Kernick A, et al. Long-term exercise is needed to enhance synaptic plasticity in the hippocampus. Learn Mem 2013; 20: 642-7. [CrossRef] 37. Groot C, Hooghiemstra AM, Raijmakers PG, van Berckel BN, Scheltens P, Scherder EJ, et al. The effect of physical activity on cognitive function in patients with dementia: a meta-analysis of randomized control trials. Ageing Res Rev 2016; 25: 13-23. [CrossRef] 38. Ruiz JR, Gil-Bea F, Bustamante-Ara N, Rodríguez-Romo G, Fiuza-Luces C, Serra-Rexach JA, et al. Resistance training does not have an effect on cognition or related serum biomarkers in nonagenarians: a randomized controlled trial. Int J Sports Med 2015; 36: 54-60. 39. Fiatarone Singh MA, Gates N, Saigal N, Wilson GC, Meiklejohn J, Brodaty H, et al. The Study of Mental and Resistance Training (SMART) study— resistance training and/or cognitive training in mild cognitive impairment: a randomized, double-blind, double-sham controlled trial. J Am Med Dir Assoc 2014; 15: 873-80. [CrossRef] 40. Gates NJ, Valenzuela M, Sachdev PS, Singh NA, Baune BT, Brodaty H, et al. Study of Mental Activity and Regular Training (SMART) in at risk individuals: A randomised double blind, sham controlled, longitudinal trial. BMC Geriatr 2011; 11: 19. [CrossRef] 41. Liu-Ambrose T, Donaldson MG. Exercise and cognition in older adults: is there a role for resistance training programmes? Br J Sports Med 2009; 43: 25-7. [CrossRef] 42. Elmacı NT. Alzheimer hastalığının patofizyolojisi. Turkiye Klinikleri J Neurol-special Topics 2012; 5: 3. 43. Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nat Rev Mol Cell Biol 2007; 8: 101-12. [CrossRef] 44. Adlard PA, Perreau VM, Pop V, Cotman CW. Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer's disease. J. Neurosci 2005; 25: 4217-21. [CrossRef] 45. Ke HC, Huang HJ, Liang KC, Hsieh-Li HM. Selective improvement of cognitive function in adult and aged APP/PS1 transgenic mice by continuous non-shock treadmill exercise. Brain Res 2011; 1403: 1-11. [CrossRef] 46. Mirochnic S, Wolf S, Staufenbiel M, Kempermann G. Age effects on the regulation of adult hippocampal neurogenesis by physical activity and environmental enrichment in the APP23 mouse model of Alzheimer disease. Hippocampus 2009; 19: 1008-18. [CrossRef] 47. Yuede CM, Zimmerman SD, Dong H, Kling MJ, Bero AW, Holtzman DM, et al. Effects of voluntary and forced exercise on plaque deposition, hippocampal volume, and behavior in the Tg2576 mouse model of Alzheimer's disease. Neurobiol Dis 2009; 35: 426-32. [CrossRef] 48. Brown BM, Peiffer JJ, Taddei K, Lui JK, Laws SM, Gupta VB, et al. Physical activity and amyloid-β plasma and brain levels: results from the Australian imaging, biomarkers and lifestyle study of ageing. Mol Psychiatry 2013; 18: 875-81. [CrossRef] 49. Liang KY, Mintun MA, Fagan AM, Goate AM, Bugg JM, Holtzman DM, et al. Exercise and Alzheimer's disease biomarkers in cognitively normal older adults. Ann Neurol 2010; 68: 311-8. [CrossRef] 50. Özbeyli D. Sıçanlarda Deneysel Alzheimer Hastalığı Modelinde Farklı Egzersiz Yöntemlerinin Kognitif Fonksiyonlar Üzerine Etki Mekanizmaları- nın İncelenmesi. M.Ü. Sağlık Bilimleri Enstitüsü, Doktora Tezi. 2016.

The Effects of Different Exercise Modalities in Alzheimer’s Disease

Year 2017, Volume: 7 Issue: 1, 27 - 31, 15.03.2017

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disease and
the most common cause of dementia. Increased oxidative stress, abnormal
amyloid β (Aβ) accumulation, tau aggregation, neuroinflammation, neuronal
plasticity failure, and neuronal loss are the main factors related to the
pathophysiology of AD. Increasing evidence suggests that physical activity
has a positive effect on both cognitive function and cellular pathologies
of AD. It has been demonstrated that aerobic exercise (AE) increases the
activity of antioxidant enzymes and synthesis of neurotrophic factors, decreases
the levels of neuroinflammatory markers, and enhances the functions
of learning and memory. It is also beneficial for the improvement of
cell survival and upregulation of Aβ clearance. AE has been shown to reduce
the levels of soluble Aβ1–42 via an increase in enzyme activity, which
is responsible for the upregulation of Aβ clearance in brain tissues. It also
represses apoptotic cascades such as the caspase-9, cytochrome c, Bax,
and caspase-3 cascades. Although there are no clear data on the effects of
resistance exercise (RE) on AD, only a small number of articles have studied
the effects of RE on models of aging. In these studies, RE increased the
serum concentrations of insulin-like growth factor-1 and brain-derived
neurotrophic factor (BDNF), reduced oxidative stress in humans, and upregulated
the hippocampal expression of BDNF mRNA in animals. In addition,
RE and AE therapies may help progress in daily activities and enhance
physical ability in AD patients. Eventually, exercise therapy regimens may
lead to more effective treatment options and slow the progression of AD
without any side effects.

References

  • 1. Matura S, Carvalho AF, Alves GS, Pantel J. Physical exercise for the treatment of neuropsychiatric disturbances in Alzheimer's dementia: possible mechanisms, current evidence and future directions. Curr Alzheimer Res 2016; 13: 1112-23. [CrossRef] 2. Tramutola A, Lanzillotta C, Perluigi M, Butterfield DA. Oxidative stress, protein modification and Alzheimer disease. Brain Res Bull 2016; S0361- 9230:30129-0. 3. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer's disease. Lancet Neurol 2015; 14: 388-405. [CrossRef] 4. Mesulam MM. A plasticity-based theory of the pathogenesis of Alzheimer's disease. Ann NY Acad Sci 2000; 924: 42-52. [CrossRef] 5. Mendiola-Precoma J, Berumen LC, Padilla K, Garcia-Alcocer G. Therapies for prevention and treatment of Alzheimer's disease. Biomed Res Int 2016; 2016:2589276. [CrossRef] 6. Spielman LJ, Little JP, Klegeris A. Physical activity and exercise attenuate neuroinflammation in neurological diseases. Brain Res Bull 2016; 125: 19-29. [CrossRef] 7. Paillard T, Rolland Y, de Souto Barreto P. protective effects of physical exercise in Alzheimer's disease and Parkinson's disease: a narrative review. J Clin Neurol 2015; 11: 212- 9. [CrossRef] 8. Farina N, Rusted J, Tabet N. The effect of exercise interventions on cognitive outcome in Alzheimer's disease: a systematic review. Int Psychogeriatr 2014; 26: 9-18. 9. Archer T. Physical exercise alleviates debilities of normal aging and Alzheimer's disease. Acta Neurol Scand 2011; 123: 221-38. [CrossRef] 10. Matura S, Carvalho AF, Alves GS, Pantel J. Physical exercise for the treatment of neuropsychiatric disturbances in Alzheimer's dementia: possible mechanisms, current evidence and future directions. Curr Alzheimer Res 2016; 13: 1112-23. [CrossRef] 11. Thuné-Boyle IC, Iliffe S, Cerga-Pashoja A, Lowery D, Warner J. The effect of exercise on behavioral and psychological symptoms of dementia: towards a research agenda. Int Psychogeriatr 2012; 24: 1046-57. [CrossRef] 12. Plowman SA, Smith DL. Exercise Physiology: for Health, Fitness, and Performance. Fourth ed. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins; 2014. 13. Prentice WE. Principles of Athletic Training: A compatency based approach. 15th. ed. New York: McGraw- Hill; 2003. 14. Pollock ML, Feigenbaum MS, Brechue WF. Exercise Prescription for Physical Fitness. Quest, 1995; 47: 320-37. [CrossRef] 15. Strickland JC, Smith MA. Animal models of resistance exercise and their application to neuroscience research. J Neurosci Methods 2016; 273: 191–200. [CrossRef] 16. Cassilhas RC, Viana VA, Grassmann V, Santos RT, Santos RF, Tufik S, et al. The impact of resistance exercise on the cognitive function of the elderly. Med Sci Sports Exerc 2007; 39: 1401-7. [CrossRef] 17. Revilla S, Suñol C, García-Mesa Y, Giménez-Llort L, Sanfeliu C, Cristòfol R. Physical exercise improves synaptic dysfunction and recovers the loss of survival factors in 3xTg-AD mouse brain. Neuropharmacology 2014; 81: 55-63. [CrossRef] 18. Knaepen K, Goekint M, Heyman EM, Meeusen R. Neuroplasticity - exercise-induced response of peripheral brain-derived neurotrophic factor: a systematic review of experimental studies in human subjects. Sports Med 2010; 40: 765–801. [CrossRef] Özbeyli and Çakır. The Effect of Exercise in Alzheimer’s Disease Clin Exp Health Sci 2017; 7(1): 27-31 30 Clin Exp Health Sci 2017; 7(1): 27-31 Özbeyli and Çakır. The Effect of Exercise in Alzheimer’s Disease 31 19. Koo HM, Lee SM, Kim MH. Spontaneous wheel running exercise induces brain recovery via neurotrophin-3 expression following experimental traumatic brain injury in rats. J Phys Ther Sci 2013; 25: 1103-7. [CrossRef] 20. Kim TW, Choi HH, Chung YR. Treadmill exercise alleviates impairment of cognitive function by enhancing hippocampal neuroplasticity in the high-fat diet-induced obese mice. J Exerc Rehabil 2016; 12: 156-62. [CrossRef] 21. Radak Z, Hart N, Sarga L, Koltai E, Atalay M, Ohno H, et al. Exercise plays a preventive role against Alzheimer's disease. J Alzheimers Dis 2010; 20: 777-83. 22. Pereira AC, Huddleston DE, Brickman AM, Sosunov AA, Hen R, McKhann GM, et al. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci U S A. 2007; 104: 5638-43. [CrossRef] 23. Griffin EW, Bechara RG, Birch AM, Kelly AM. Exercise enhances hippocampal-dependent learning in the rat: evidence for a BDNF-related mechanism. Hippocampus 2009; 19: 973-80. [CrossRef] 24. Gibbons TE, Pence BD, Petr G, Ossyra JM, Mach HC, Bhattacharya TK, et al. Voluntary wheel running, but not a diet containing (−)-epigallocatechin-3-gallate and beta-alanine, improves learning, memory and hippocampal neurogenesis in aged mice. Behav Brain Res 2014; 272: 131-40. [CrossRef] 25. Brandt MD, Maass A, Kempermann G, Storch A. Physical exercise increases Notch activity, proliferation and cell cycle exit of type-3 progenitor cells in adult hippocampal neurogenesis. Eur J Neurosci 2010; 32: 1256- 64. [CrossRef] 26. Moore KM, Girens RE, Larson SK, Jones MR, Restivo JL, Holtzman DM, et al. A spectrum of exercise training reduces soluble Aβ in a dose-dependent manner in a mouse model of Alzheimer's disease. Neurobiol Dis 2016; 85: 218-24. [CrossRef] 27. Um HS, Kang EB, Leem YH, Cho IH, Yang CH, Chae KR, et al. Exercise training acts as a therapeutic strategy for reduction of the pathogenic phenotypes for Alzheimer's disease in an NSE/APPsw-transgenic model. Int J Mol Med 2008; 22: 529-39. 28. Ogonovszky H, Berkes I, Kumagai S, Kaneko T, Tahara S, Goto S, et al. The effects of moderate-, strenuous- and over-training on oxidative stress markers, DNA repair, and memory, in rat brain. Neurochem Int 2005; 46: 635-40. [CrossRef] 29. Hurley BF, Hanson ED, Sheaff AK. Strength training as a countermeasure to aging muscle and chronic disease. Sports Med 2011; 41: 289-306. [CrossRef] 30. Suttanon P, Hill KD, Said CM, Williams SB, Byrne KN, LoGiudice D, et al. Feasibility, safety and preliminary evidence of the effectiveness of a home-based exercise programme for older people with Alzheimer's disease: a pilot randomized controlled trial. Clin Rehabil 2013; 27: 427-38. [CrossRef] 31. Portugal EM, Vasconcelos PG, Souza R, Lattari E, Monteiro-Junior RS, Machado S, et al. Aging process, cognitive decline and Alzheimer`s disease: can strength training modulate these responses? CNS Neurol Disord Drug Targets 2015; 14: 1209-13. [CrossRef] 32. Lee MC, Okamoto M, Liu YF, Inoue K, Matsui T, Nogami H, et al. Voluntary resistance running with short distance enhances spatial memory related to hippocampal BDNF signaling. J Appl Physiol 2012; 113: 1260-6. [CrossRef] 33. Rao AK, Chou A, Bursley B, Smulofsky J, Jezequel J. Systematic review of the effects of exercise on activities of daily living in people with Alzheimer's disease. Am J Occup Ther 2014; 68: 50-6. [CrossRef] 34. Souza LC, Filho CB, Goes AT, Fabbro LD, de Gomes MG, Savegnago L, et al. Neuroprotective effect of physical exercise in a mouse model of Alzheimer's disease induced by β-amyloid₁-₄₀ peptide. Neurotox Res 2013; 24: 148- 63. [CrossRef] 35. Dao A, Zagaar MA, Levine AT, Salim S, Eriksen J, Alkadhi KA. Treadmill exercise prevents learning and memory impairment in Alzheimer's disease-like pathology. Curr Alzheimer Res 2013; 10: 507-15. [CrossRef] 36. Patten AR, Sickmann H, Hryciw BN, Kucharsky T, Parton R, Kernick A, et al. Long-term exercise is needed to enhance synaptic plasticity in the hippocampus. Learn Mem 2013; 20: 642-7. [CrossRef] 37. Groot C, Hooghiemstra AM, Raijmakers PG, van Berckel BN, Scheltens P, Scherder EJ, et al. The effect of physical activity on cognitive function in patients with dementia: a meta-analysis of randomized control trials. Ageing Res Rev 2016; 25: 13-23. [CrossRef] 38. Ruiz JR, Gil-Bea F, Bustamante-Ara N, Rodríguez-Romo G, Fiuza-Luces C, Serra-Rexach JA, et al. Resistance training does not have an effect on cognition or related serum biomarkers in nonagenarians: a randomized controlled trial. Int J Sports Med 2015; 36: 54-60. 39. Fiatarone Singh MA, Gates N, Saigal N, Wilson GC, Meiklejohn J, Brodaty H, et al. The Study of Mental and Resistance Training (SMART) study— resistance training and/or cognitive training in mild cognitive impairment: a randomized, double-blind, double-sham controlled trial. J Am Med Dir Assoc 2014; 15: 873-80. [CrossRef] 40. Gates NJ, Valenzuela M, Sachdev PS, Singh NA, Baune BT, Brodaty H, et al. Study of Mental Activity and Regular Training (SMART) in at risk individuals: A randomised double blind, sham controlled, longitudinal trial. BMC Geriatr 2011; 11: 19. [CrossRef] 41. Liu-Ambrose T, Donaldson MG. Exercise and cognition in older adults: is there a role for resistance training programmes? Br J Sports Med 2009; 43: 25-7. [CrossRef] 42. Elmacı NT. Alzheimer hastalığının patofizyolojisi. Turkiye Klinikleri J Neurol-special Topics 2012; 5: 3. 43. Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nat Rev Mol Cell Biol 2007; 8: 101-12. [CrossRef] 44. Adlard PA, Perreau VM, Pop V, Cotman CW. Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer's disease. J. Neurosci 2005; 25: 4217-21. [CrossRef] 45. Ke HC, Huang HJ, Liang KC, Hsieh-Li HM. Selective improvement of cognitive function in adult and aged APP/PS1 transgenic mice by continuous non-shock treadmill exercise. Brain Res 2011; 1403: 1-11. [CrossRef] 46. Mirochnic S, Wolf S, Staufenbiel M, Kempermann G. Age effects on the regulation of adult hippocampal neurogenesis by physical activity and environmental enrichment in the APP23 mouse model of Alzheimer disease. Hippocampus 2009; 19: 1008-18. [CrossRef] 47. Yuede CM, Zimmerman SD, Dong H, Kling MJ, Bero AW, Holtzman DM, et al. Effects of voluntary and forced exercise on plaque deposition, hippocampal volume, and behavior in the Tg2576 mouse model of Alzheimer's disease. Neurobiol Dis 2009; 35: 426-32. [CrossRef] 48. Brown BM, Peiffer JJ, Taddei K, Lui JK, Laws SM, Gupta VB, et al. Physical activity and amyloid-β plasma and brain levels: results from the Australian imaging, biomarkers and lifestyle study of ageing. Mol Psychiatry 2013; 18: 875-81. [CrossRef] 49. Liang KY, Mintun MA, Fagan AM, Goate AM, Bugg JM, Holtzman DM, et al. Exercise and Alzheimer's disease biomarkers in cognitively normal older adults. Ann Neurol 2010; 68: 311-8. [CrossRef] 50. Özbeyli D. Sıçanlarda Deneysel Alzheimer Hastalığı Modelinde Farklı Egzersiz Yöntemlerinin Kognitif Fonksiyonlar Üzerine Etki Mekanizmaları- nın İncelenmesi. M.Ü. Sağlık Bilimleri Enstitüsü, Doktora Tezi. 2016.
There are 1 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Articles
Authors

Dilek Özbeyli This is me

Özgür Kasımay Çakır This is me

Publication Date March 15, 2017
Submission Date November 5, 2016
Published in Issue Year 2017 Volume: 7 Issue: 1

Cite

APA Özbeyli, D., & Kasımay Çakır, Ö. (2017). The Effects of Different Exercise Modalities in Alzheimer’s Disease. Clinical and Experimental Health Sciences, 7(1), 27-31.
AMA Özbeyli D, Kasımay Çakır Ö. The Effects of Different Exercise Modalities in Alzheimer’s Disease. Clinical and Experimental Health Sciences. March 2017;7(1):27-31.
Chicago Özbeyli, Dilek, and Özgür Kasımay Çakır. “The Effects of Different Exercise Modalities in Alzheimer’s Disease”. Clinical and Experimental Health Sciences 7, no. 1 (March 2017): 27-31.
EndNote Özbeyli D, Kasımay Çakır Ö (March 1, 2017) The Effects of Different Exercise Modalities in Alzheimer’s Disease. Clinical and Experimental Health Sciences 7 1 27–31.
IEEE D. Özbeyli and Ö. Kasımay Çakır, “The Effects of Different Exercise Modalities in Alzheimer’s Disease”, Clinical and Experimental Health Sciences, vol. 7, no. 1, pp. 27–31, 2017.
ISNAD Özbeyli, Dilek - Kasımay Çakır, Özgür. “The Effects of Different Exercise Modalities in Alzheimer’s Disease”. Clinical and Experimental Health Sciences 7/1 (March 2017), 27-31.
JAMA Özbeyli D, Kasımay Çakır Ö. The Effects of Different Exercise Modalities in Alzheimer’s Disease. Clinical and Experimental Health Sciences. 2017;7:27–31.
MLA Özbeyli, Dilek and Özgür Kasımay Çakır. “The Effects of Different Exercise Modalities in Alzheimer’s Disease”. Clinical and Experimental Health Sciences, vol. 7, no. 1, 2017, pp. 27-31.
Vancouver Özbeyli D, Kasımay Çakır Ö. The Effects of Different Exercise Modalities in Alzheimer’s Disease. Clinical and Experimental Health Sciences. 2017;7(1):27-31.

14639   14640