Araştırma Makalesi
BibTex RIS Kaynak Göster

Camellia Sinensis Leaves Hydroalcoholic Extract Improves the Alzheimer’s Disease-Like Alterations Induced by Type 2 Diabetes in Rats

Yıl 2020, Cilt: 10 Sayı: 2, 93 - 103, 29.06.2020
https://doi.org/10.33808/clinexphealthsci.685280

Öz

Objective: Novel investigations have confirmed that hyperglycemia is strictly associated with the development of cognitive impairment and dementia. Sodium-dependent glucose transporter (SGLT) inhibitors, which are oral antidiabetic drugs, are currently being investigated as the medication in Alzheimer's disease (AD). In our study, Camellia sinensis (green tea), which inhibits sodium-dependent glucose transporter-1 (SGLT-1), was used in the treatment of type 2 diabetes mellitus (T2DM)-induced AD-like alterations via its antidiabetic effects.


Methods: High-fat diet/streptozotocin-treated rat model was chosen to provide T2DM-induced AD-like alterations. Antidiabetic effects were evaluated with the measurement of blood glucose level (BGL), oral glucose tolerance test (OGTT), and insulin tolerance test (ITT). On the other hand, novel object recognition test (NORT), open field test (OFT), passive avoidance test (PAT), and Morris’s water maze (MWM) test were performed to investigate the anti-Alzheimer's effects of C. Sinensis.


Results: C. sinensis tolerated BGL for a short time but metformin, the first medication prescribed for T2DM, tolerated BGL during the test for 120 min. C. sinensis increased the number of square crosses and the frequency of grooming activity in a similar manner to metformin in OFT. C. sinensis treatment improved exploratory behavior and memory retention components in NORT. The step-through latency decreased in HFD/STZ-treated rat model but it improved with metformin and C. sinensis treatment in PAT. According to the results obtained by the MWM test, C. sinensis treatment slightly improved learning.


Conclusion: C. sinensis improved short-term memory and increased the locomotor activity in rats according to the results obtained by NORT, OFT, and PA. 

Destekleyen Kurum

Marmara University

Proje Numarası

SAG-K-170118-0001

Teşekkür

This study was supported by Marmara University, Scientific Research Projects Committee (MU-BAPKO; SAG-K-170118-0001).

Kaynakça

  • Swerdlow RH. Pathogenesis of Alzheimer's disease. Clin Interv Aging 2007;2:347-59.
  • Butterfield DA. Phosphoproteomics of Alzheimer disease brain: Insights into altered brain protein regulation of critical neuronal functions and their contributions to subsequent cognitive loss. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2019;1865:2031-9.
  • Association As. 2019 Alzheimer's disease facts and figures. Alzheimer's & Dementia 2019;15:321-87.
  • Liang D, Lu H. Salivary biological biomarkers for Alzheimer’s disease. Archives of Oral Biology 2019;105:5-12.
  • Kocahan S, Doğan Z. Mechanisms of Alzheimer's Disease Pathogenesis and Prevention: The Brain, Neural Pathology, N- methyl-D-aspartate Receptors, Tau Protein and Other Risk Factors. Clin Psychopharmacol Neurosci 2017;15:1-8.
  • Calderon-Garcidueñas AL, Duyckaerts C. Chapter 23 - Alzheimer disease. In: Kovacs GG, Alafuzoff I, editors. Handbook of Clinical Neurology: Elsevier; 2018. p. 325-37.
  • Beyer L, Schnabel J, Kazmierczak P, Ewers M, Schönecker S, Prix C, Meyer-Wilmes J, Unterrainer M, Catak C, Pogarell O, Perneczky R, Albert NL, Bartenstein P, Danek A, Buerger K, Levin J, Rominger A, Brendel M. Neuronal injury biomarkers for assessment of the individual cognitive reserve in clinically suspected Alzheimer's disease. NeuroImage: Clinical 2019;24:101949.
  • Albensi BC. Chapter Two - Dysfunction of mitochondria: Implications for Alzheimer's disease. In: Fernyhough P, Calcutt NA, editors. International Review of Neurobiology: Academic Press; 2019. p. 13-27.
  • Veljkovic E, Xia W, Phillips B, Wong ET, Ho J, Oviedo A, Hoeng J, Peitsch M. Chapter 2 - Alzheimer's Disease. In: Veljkovic E, Xia W, Phillips B, Wong ET, Ho J, Oviedo A, Hoeng J, Peitsch M, editors. Nicotine and Other Tobacco Compounds in Neurodegenerative and Psychiatric Diseases: Academic Press; 2018. p. 13-23.
  • Green RC, Cupples LA, Go R, Benke KS, Edeki T, Griffith PA, Williams M, Hipps Y, Graff-Radford N, Bachman D, Farrer LA. Risk of dementia among white and African American relatives of patients with Alzheimer disease. Jama 2002;287:329-36.
  • Hampel H, Mesulam MM, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, Khachaturian AS, Vergallo A, Cavedo E, Snyder PJ, Khachaturian ZS. The cholinergic system in the pathophysiology and treatment of Alzheimer's disease. Brain 2018;141:1917-33.
  • Ding F, Yao J, Rettberg JR, Chen S, Brinton RD. Early Decline in Glucose Transport and Metabolism Precedes Shift to Ketogenic System in Female Aging and Alzheimer's Mouse Brain: Implication for Bioenergetic Intervention. PLOS ONE 2013;8:e79977.
  • Cam ME, Hazar-Yavuz AN, Yildiz S, Ertas B, Ayaz Adakul B, Taskin T, Alan S, Kabasakal L. The methanolic extract of Thymus praecox subsp. skorpilii var. skorpilii restores glucose homeostasis, ameliorates insulin resistance and improves pancreatic β-cell function on streptozotocin/nicotinamide-induced type 2 diabetic rats. Journal of Ethnopharmacology 2019;231:29-38.
  • Cam ME, Yildiz S, Ertas B, Acar AE, Taskin T, Kabasakal L. Antidiabetic effects of Salvia triloba and Thymus praecox subsp. skorpilii var. skorpilii in a rat model of streptozotocin/nicotinamide-induced diabetes. Marmara Pharmaceutical Journal 2017;21:818-27.
  • Mushtaq G, Khan JA, Kamal MA. Biological mechanisms linking Alzheimer's disease and type-2 diabetes mellitus. CNS & neurological disorders drug targets 2014;13:1192-201.
  • Yarchoan M, Arnold SE. Repurposing Diabetes Drugs for Brain Insulin Resistance in Alzheimer Disease. Diabetes 2014;63:2253.
  • Kang S, Kim CH, Jung H, Kim E, Song HT, Lee JE. Agmatine ameliorates type 2 diabetes induced-Alzheimer's disease-like alterations in high-fat diet-fed mice via reactivation of blunted insulin signalling. Neuropharmacology 2017;113:467-79.
  • Magalhaes DA, Kume WT, Correia FS, Queiroz TS, Allebrandt Neto EW, Santos MPD, Kawashita NH, Franca SA. High-fat diet and streptozotocin in the induction of type 2 diabetes mellitus: a new proposal. Anais da Academia Brasileira de Ciencias 2019;91:e20180314.
  • Skovsø S. Modeling type 2 diabetes in rats using high fat diet and streptozotocin. J Diabetes Investig 2014;5:349-58.
  • Chauhdary Z, Saleem U, Ahmad B, Shah S, Shah MA. Neuroprotective evaluation of Tribulus terrestris L. in aluminum chloride induced Alzheimer's disease. Pakistan journal of pharmaceutical sciences 2019;32:805-16.
  • Zhang X, Wang X, Hu X, Chu X, Li X, Han F. Neuroprotective effects of a Rhodiola crenulata extract on amyloid-beta peptides (Abeta1-42) -induced cognitive deficits in rat models of Alzheimer's disease. Phytomedicine : international journal of phytotherapy and phytopharmacology 2019;57:331-8.
  • Raheja S, Girdhar A, Kamboj A, Lather V, Pandita D. Aegle marmelos leaf extract ameliorates the cognitive impairment and oxidative stress induced by intracerebroventricular streptozotocin in male rats. Life sciences 2019;221:196-203.
  • Wagle A, Seong SH, Shrestha S, Jung HA, Choi JS. Korean Thistle (Cirsium japonicum var. maackii (Maxim.) Matsum.): A Potential Dietary Supplement against Diabetes and Alzheimer's Disease. Molecules (Basel, Switzerland) 2019;24.
  • Berg-Weger M, Stewart DB. Non-Pharmacologic Interventions for Persons with Dementia. Mo Med 2017;114:116-9.
  • Koenig AM, Mechanic-Hamilton D, Xie SX, Combs MF, Cappola AR, Xie L, Detre JA, Wolk DA, Arnold SE. Effects of the Insulin Sensitizer Metformin in Alzheimer Disease: Pilot Data From a Randomized Placebo-controlled Crossover Study. Alzheimer Dis Assoc Disord 2017;31:107-13.
  • Suraphad P, Suklaew PO, Ngamukote S, Adisakwattana S, Mäkynen K. The Effect of Isomaltulose Together with Green Tea on Glycemic Response and Antioxidant Capacity: A Single-Blind, Crossover Study in Healthy Subjects. Nutrients 2017;9:464.
  • Li H, Wu X, Wu Q, Gong D, Shi M, Guan L, Zhang J, Liu J, Yuan B, Han G, Zou Y. Green tea polyphenols protect against okadaic acid-induced acute learning and memory impairments in rats. Nutrition (Burbank, Los Angeles County, Calif) 2014;30:337-42.
  • Snoussi C, Ducroc R, Hamdaoui MH, Dhaouadi K, Abaidi H, Cluzeaud F, Nazaret C, Le Gall M, Bado A. Green tea decoction improves glucose tolerance and reduces weight gain of rats fed normal and high-fat diet. The Journal of nutritional biochemistry 2014;25:557-64.
  • Shivashankara AR, Kumar A, Ravi R, Simon P, Rai P, Francis A, Baliga MS. Chapter 10 - Use of Tea (Camellia sinensis [L.] Kuntze) as a Hepatoprotective Agent in Geriatric Conditions. In: Watson RR, editor. Foods and Dietary Supplements in the Prevention and Treatment of Disease in Older Adults. San Diego: Academic Press; 2015. p. 99-104.
  • Al-Attar AM, Zari TA. Influences of crude extract of tea leaves, Camellia sinensis, on streptozotocin diabetic male albino mice. Saudi J Biol Sci 2010;17:295-301.
  • Pervin M, Unno K, Ohishi T, Tanabe H, Miyoshi N, Nakamura Y. Beneficial Effects of Green Tea Catechins on Neurodegenerative Diseases. Molecules (Basel, Switzerland) 2018;23:1297.
  • Yang Z, Xu Y, Jie G, He P, Tu Y. Study on the antioxidant activity of tea flowers (Camellia sinensis). Asia Pacific journal of clinical nutrition 2007;16 Suppl 1:148-52.
  • Bedrood Z, Rameshrad M, Hosseinzadeh H. Toxicological effects of Camellia sinensis (green tea): A review. Phytotherapy research : PTR 2018;32:1163-80.
  • Prasanth MI, Sivamaruthi BS, Chaiyasut C, Tencomnao T. A Review of the Role of Green Tea (Camellia sinensis) in Antiphotoaging, Stress Resistance, Neuroprotection, and Autophagy. Nutrients 2019;11.
  • Ide K, Matsuoka N, Yamada H, Furushima D, Kawakami K. Effects of Tea Catechins on Alzheimer's Disease: Recent Updates and Perspectives. Molecules (Basel, Switzerland) 2018;23:2357.
  • Sharangi AB. Medicinal and therapeutic potentialities of tea (Camellia sinensis L.) – A review. Food Research International 2009;42:529-35.
  • Asadbegi M, Yaghmaei P, Salehi I, Ebrahim-Habibi A, Komaki A. Neuroprotective effects of metformin against Aβ-mediated inhibition of long-term potentiation in rats fed a high-fat diet. Brain Research Bulletin 2016;121:178-85.
  • Boland B, Mumphrey MB, Hao Z, Gill B, Townsend RL, Yu S, Münzberg H, Morrison CD, Trevaskis JL, Berthoud H-R. The PYY/Y2R-Deficient Mouse Responds Normally to High-Fat Diet and Gastric Bypass Surgery. Nutrients 2019;11:585.
  • Zimcikova E, Simko J, Karesova I, Kremlacek J, Malakova J. Behavioral effects of antiepileptic drugs in rats: Are the effects on mood and behavior detectable in open-field test? Seizure 2017;52:35-40.
  • Abdel-Aal RA, Assi AA, Kostandy BB. Rivastigmine reverses aluminum-induced behavioral changes in rats. European journal of pharmacology 2011;659:169-76.
  • Smith BM, Yao X, Chen KS, Kirby ED. A Larger Social Network Enhances Novel Object Location Memory and Reduces Hippocampal Microgliosis in Aged Mice. Frontiers in aging neuroscience 2018;10:142.
  • Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 2006;1:848-58.
  • Browne D, McGuinness B, Woodside JV, McKay GJ. Vitamin E and Alzheimer's disease: what do we know so far? Clin Interv Aging 2019;14:1303-17.
  • Sami W, Ansari T, Butt NS, Hamid MRA. Effect of diet on type 2 diabetes mellitus: A review. Int J Health Sci (Qassim) 2017;11:65-71.
  • Mittal K, Katare DP. Shared links between type 2 diabetes mellitus and Alzheimer's disease: A review. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 2016;10:S144-S9.
  • Moreno-Fernández S, Garcés-Rimón M, Vera G, Astier J, Landrier JF, Miguel M. High Fat/High Glucose Diet Induces Metabolic Syndrome in an Experimental Rat Model. Nutrients 2018;10:1502.
  • Zhuo J, Zeng Q, Cai D, Zeng X, Chen Y, Gan H, Huang X, Yao N, Huang D, Zhang C. Evaluation of type 2 diabetic mellitus animal models via interactions between insulin and mitogen‑activated protein kinase signaling pathways induced by a high fat and sugar diet and streptozotocin. Mol Med Rep 2018;17:5132-42.
  • Kang S, Kim C-H, Jung H, Kim E, Song H-T, Lee JE. Agmatine ameliorates type 2 diabetes induced-Alzheimer's disease-like alterations in high-fat diet-fed mice via reactivation of blunted insulin signalling. Neuropharmacology 2017;113:467-79.
  • Aprahamian I, Stella F, Forlenza OV. New treatment strategies for Alzheimer's disease: is there a hope? Indian J Med Res 2013;138:449-60.
  • Akram M, Nawaz A. Effects of medicinal plants on Alzheimer's disease and memory deficits. Neural Regeneration Research 2017;12:660-70.
  • Prasanth MI, Sivamaruthi BS, Chaiyasut C, Tencomnao T. A Review of the Role of Green Tea (Camellia sinensis) in Antiphotoaging, Stress Resistance, Neuroprotection, and Autophagy. Nutrients 2019;11:474.
  • Simes BC, MacGregor GG. Sodium-Glucose Cotransporter-2 (SGLT2) Inhibitors: A Clinician's Guide. Diabetes Metab Syndr Obes 2019;12:2125-36.
  • Rinwa P, Jaggi AS, Singh N. Pharmacological investigation of memory restorative effect of riluzole in mice. Indian J Pharmacol 2012;44:366-71.
  • Mathiasen JR, DiCamillo A. Novel object recognition in the rat: a facile assay for cognitive function. Curr Protoc Pharmacol 2010;Chapter 5:5.59.
  • Terry AV. Spatial Navigation (Water Maze) Tasks. 2nd ed: CRC Press/Taylor & Francis, Boca Raton (FL); 2009.
  • Arika WM, Kibiti CM, Njagi JM, Ngugi MP. Effects of DCM Leaf Extract of Gnidia glauca (Fresen) on Locomotor Activity, Anxiety, and Exploration-Like Behaviors in High-Fat Diet-Induced Obese Rats. Behav Neurol 2019;2019:7359235-.
  • Foyet HS, Abaïssou HHN, Wado E, Acha EA, Alin C. Emilia coccinae (SIMS) G Extract improves memory impairment, cholinergic dysfunction, and oxidative stress damage in scopolamine-treated rats. BMC Complement Altern Med 2015;15:333-.
  • Wang J, Wang X, Lv B, Yuan W, Feng Z, Mi W, Zhang H. Effects of Fructus Akebiae on learning and memory impairment in a scopolamine-induced animal model of dementia. Exp Ther Med 2014;8:671-5.
  • Yildiz S, Cam ME, Keles R, Hazar-Yavuz AN, Kabasakal L. A PPAR-alpha agonist gemfibrozil ameliorates cognitive and memory impairments in a sporadic Alzheimer's disease rat model. European Neuropsychopharmacology 2019;29:S263-S4.
Yıl 2020, Cilt: 10 Sayı: 2, 93 - 103, 29.06.2020
https://doi.org/10.33808/clinexphealthsci.685280

Öz

Proje Numarası

SAG-K-170118-0001

Kaynakça

  • Swerdlow RH. Pathogenesis of Alzheimer's disease. Clin Interv Aging 2007;2:347-59.
  • Butterfield DA. Phosphoproteomics of Alzheimer disease brain: Insights into altered brain protein regulation of critical neuronal functions and their contributions to subsequent cognitive loss. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2019;1865:2031-9.
  • Association As. 2019 Alzheimer's disease facts and figures. Alzheimer's & Dementia 2019;15:321-87.
  • Liang D, Lu H. Salivary biological biomarkers for Alzheimer’s disease. Archives of Oral Biology 2019;105:5-12.
  • Kocahan S, Doğan Z. Mechanisms of Alzheimer's Disease Pathogenesis and Prevention: The Brain, Neural Pathology, N- methyl-D-aspartate Receptors, Tau Protein and Other Risk Factors. Clin Psychopharmacol Neurosci 2017;15:1-8.
  • Calderon-Garcidueñas AL, Duyckaerts C. Chapter 23 - Alzheimer disease. In: Kovacs GG, Alafuzoff I, editors. Handbook of Clinical Neurology: Elsevier; 2018. p. 325-37.
  • Beyer L, Schnabel J, Kazmierczak P, Ewers M, Schönecker S, Prix C, Meyer-Wilmes J, Unterrainer M, Catak C, Pogarell O, Perneczky R, Albert NL, Bartenstein P, Danek A, Buerger K, Levin J, Rominger A, Brendel M. Neuronal injury biomarkers for assessment of the individual cognitive reserve in clinically suspected Alzheimer's disease. NeuroImage: Clinical 2019;24:101949.
  • Albensi BC. Chapter Two - Dysfunction of mitochondria: Implications for Alzheimer's disease. In: Fernyhough P, Calcutt NA, editors. International Review of Neurobiology: Academic Press; 2019. p. 13-27.
  • Veljkovic E, Xia W, Phillips B, Wong ET, Ho J, Oviedo A, Hoeng J, Peitsch M. Chapter 2 - Alzheimer's Disease. In: Veljkovic E, Xia W, Phillips B, Wong ET, Ho J, Oviedo A, Hoeng J, Peitsch M, editors. Nicotine and Other Tobacco Compounds in Neurodegenerative and Psychiatric Diseases: Academic Press; 2018. p. 13-23.
  • Green RC, Cupples LA, Go R, Benke KS, Edeki T, Griffith PA, Williams M, Hipps Y, Graff-Radford N, Bachman D, Farrer LA. Risk of dementia among white and African American relatives of patients with Alzheimer disease. Jama 2002;287:329-36.
  • Hampel H, Mesulam MM, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, Khachaturian AS, Vergallo A, Cavedo E, Snyder PJ, Khachaturian ZS. The cholinergic system in the pathophysiology and treatment of Alzheimer's disease. Brain 2018;141:1917-33.
  • Ding F, Yao J, Rettberg JR, Chen S, Brinton RD. Early Decline in Glucose Transport and Metabolism Precedes Shift to Ketogenic System in Female Aging and Alzheimer's Mouse Brain: Implication for Bioenergetic Intervention. PLOS ONE 2013;8:e79977.
  • Cam ME, Hazar-Yavuz AN, Yildiz S, Ertas B, Ayaz Adakul B, Taskin T, Alan S, Kabasakal L. The methanolic extract of Thymus praecox subsp. skorpilii var. skorpilii restores glucose homeostasis, ameliorates insulin resistance and improves pancreatic β-cell function on streptozotocin/nicotinamide-induced type 2 diabetic rats. Journal of Ethnopharmacology 2019;231:29-38.
  • Cam ME, Yildiz S, Ertas B, Acar AE, Taskin T, Kabasakal L. Antidiabetic effects of Salvia triloba and Thymus praecox subsp. skorpilii var. skorpilii in a rat model of streptozotocin/nicotinamide-induced diabetes. Marmara Pharmaceutical Journal 2017;21:818-27.
  • Mushtaq G, Khan JA, Kamal MA. Biological mechanisms linking Alzheimer's disease and type-2 diabetes mellitus. CNS & neurological disorders drug targets 2014;13:1192-201.
  • Yarchoan M, Arnold SE. Repurposing Diabetes Drugs for Brain Insulin Resistance in Alzheimer Disease. Diabetes 2014;63:2253.
  • Kang S, Kim CH, Jung H, Kim E, Song HT, Lee JE. Agmatine ameliorates type 2 diabetes induced-Alzheimer's disease-like alterations in high-fat diet-fed mice via reactivation of blunted insulin signalling. Neuropharmacology 2017;113:467-79.
  • Magalhaes DA, Kume WT, Correia FS, Queiroz TS, Allebrandt Neto EW, Santos MPD, Kawashita NH, Franca SA. High-fat diet and streptozotocin in the induction of type 2 diabetes mellitus: a new proposal. Anais da Academia Brasileira de Ciencias 2019;91:e20180314.
  • Skovsø S. Modeling type 2 diabetes in rats using high fat diet and streptozotocin. J Diabetes Investig 2014;5:349-58.
  • Chauhdary Z, Saleem U, Ahmad B, Shah S, Shah MA. Neuroprotective evaluation of Tribulus terrestris L. in aluminum chloride induced Alzheimer's disease. Pakistan journal of pharmaceutical sciences 2019;32:805-16.
  • Zhang X, Wang X, Hu X, Chu X, Li X, Han F. Neuroprotective effects of a Rhodiola crenulata extract on amyloid-beta peptides (Abeta1-42) -induced cognitive deficits in rat models of Alzheimer's disease. Phytomedicine : international journal of phytotherapy and phytopharmacology 2019;57:331-8.
  • Raheja S, Girdhar A, Kamboj A, Lather V, Pandita D. Aegle marmelos leaf extract ameliorates the cognitive impairment and oxidative stress induced by intracerebroventricular streptozotocin in male rats. Life sciences 2019;221:196-203.
  • Wagle A, Seong SH, Shrestha S, Jung HA, Choi JS. Korean Thistle (Cirsium japonicum var. maackii (Maxim.) Matsum.): A Potential Dietary Supplement against Diabetes and Alzheimer's Disease. Molecules (Basel, Switzerland) 2019;24.
  • Berg-Weger M, Stewart DB. Non-Pharmacologic Interventions for Persons with Dementia. Mo Med 2017;114:116-9.
  • Koenig AM, Mechanic-Hamilton D, Xie SX, Combs MF, Cappola AR, Xie L, Detre JA, Wolk DA, Arnold SE. Effects of the Insulin Sensitizer Metformin in Alzheimer Disease: Pilot Data From a Randomized Placebo-controlled Crossover Study. Alzheimer Dis Assoc Disord 2017;31:107-13.
  • Suraphad P, Suklaew PO, Ngamukote S, Adisakwattana S, Mäkynen K. The Effect of Isomaltulose Together with Green Tea on Glycemic Response and Antioxidant Capacity: A Single-Blind, Crossover Study in Healthy Subjects. Nutrients 2017;9:464.
  • Li H, Wu X, Wu Q, Gong D, Shi M, Guan L, Zhang J, Liu J, Yuan B, Han G, Zou Y. Green tea polyphenols protect against okadaic acid-induced acute learning and memory impairments in rats. Nutrition (Burbank, Los Angeles County, Calif) 2014;30:337-42.
  • Snoussi C, Ducroc R, Hamdaoui MH, Dhaouadi K, Abaidi H, Cluzeaud F, Nazaret C, Le Gall M, Bado A. Green tea decoction improves glucose tolerance and reduces weight gain of rats fed normal and high-fat diet. The Journal of nutritional biochemistry 2014;25:557-64.
  • Shivashankara AR, Kumar A, Ravi R, Simon P, Rai P, Francis A, Baliga MS. Chapter 10 - Use of Tea (Camellia sinensis [L.] Kuntze) as a Hepatoprotective Agent in Geriatric Conditions. In: Watson RR, editor. Foods and Dietary Supplements in the Prevention and Treatment of Disease in Older Adults. San Diego: Academic Press; 2015. p. 99-104.
  • Al-Attar AM, Zari TA. Influences of crude extract of tea leaves, Camellia sinensis, on streptozotocin diabetic male albino mice. Saudi J Biol Sci 2010;17:295-301.
  • Pervin M, Unno K, Ohishi T, Tanabe H, Miyoshi N, Nakamura Y. Beneficial Effects of Green Tea Catechins on Neurodegenerative Diseases. Molecules (Basel, Switzerland) 2018;23:1297.
  • Yang Z, Xu Y, Jie G, He P, Tu Y. Study on the antioxidant activity of tea flowers (Camellia sinensis). Asia Pacific journal of clinical nutrition 2007;16 Suppl 1:148-52.
  • Bedrood Z, Rameshrad M, Hosseinzadeh H. Toxicological effects of Camellia sinensis (green tea): A review. Phytotherapy research : PTR 2018;32:1163-80.
  • Prasanth MI, Sivamaruthi BS, Chaiyasut C, Tencomnao T. A Review of the Role of Green Tea (Camellia sinensis) in Antiphotoaging, Stress Resistance, Neuroprotection, and Autophagy. Nutrients 2019;11.
  • Ide K, Matsuoka N, Yamada H, Furushima D, Kawakami K. Effects of Tea Catechins on Alzheimer's Disease: Recent Updates and Perspectives. Molecules (Basel, Switzerland) 2018;23:2357.
  • Sharangi AB. Medicinal and therapeutic potentialities of tea (Camellia sinensis L.) – A review. Food Research International 2009;42:529-35.
  • Asadbegi M, Yaghmaei P, Salehi I, Ebrahim-Habibi A, Komaki A. Neuroprotective effects of metformin against Aβ-mediated inhibition of long-term potentiation in rats fed a high-fat diet. Brain Research Bulletin 2016;121:178-85.
  • Boland B, Mumphrey MB, Hao Z, Gill B, Townsend RL, Yu S, Münzberg H, Morrison CD, Trevaskis JL, Berthoud H-R. The PYY/Y2R-Deficient Mouse Responds Normally to High-Fat Diet and Gastric Bypass Surgery. Nutrients 2019;11:585.
  • Zimcikova E, Simko J, Karesova I, Kremlacek J, Malakova J. Behavioral effects of antiepileptic drugs in rats: Are the effects on mood and behavior detectable in open-field test? Seizure 2017;52:35-40.
  • Abdel-Aal RA, Assi AA, Kostandy BB. Rivastigmine reverses aluminum-induced behavioral changes in rats. European journal of pharmacology 2011;659:169-76.
  • Smith BM, Yao X, Chen KS, Kirby ED. A Larger Social Network Enhances Novel Object Location Memory and Reduces Hippocampal Microgliosis in Aged Mice. Frontiers in aging neuroscience 2018;10:142.
  • Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 2006;1:848-58.
  • Browne D, McGuinness B, Woodside JV, McKay GJ. Vitamin E and Alzheimer's disease: what do we know so far? Clin Interv Aging 2019;14:1303-17.
  • Sami W, Ansari T, Butt NS, Hamid MRA. Effect of diet on type 2 diabetes mellitus: A review. Int J Health Sci (Qassim) 2017;11:65-71.
  • Mittal K, Katare DP. Shared links between type 2 diabetes mellitus and Alzheimer's disease: A review. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 2016;10:S144-S9.
  • Moreno-Fernández S, Garcés-Rimón M, Vera G, Astier J, Landrier JF, Miguel M. High Fat/High Glucose Diet Induces Metabolic Syndrome in an Experimental Rat Model. Nutrients 2018;10:1502.
  • Zhuo J, Zeng Q, Cai D, Zeng X, Chen Y, Gan H, Huang X, Yao N, Huang D, Zhang C. Evaluation of type 2 diabetic mellitus animal models via interactions between insulin and mitogen‑activated protein kinase signaling pathways induced by a high fat and sugar diet and streptozotocin. Mol Med Rep 2018;17:5132-42.
  • Kang S, Kim C-H, Jung H, Kim E, Song H-T, Lee JE. Agmatine ameliorates type 2 diabetes induced-Alzheimer's disease-like alterations in high-fat diet-fed mice via reactivation of blunted insulin signalling. Neuropharmacology 2017;113:467-79.
  • Aprahamian I, Stella F, Forlenza OV. New treatment strategies for Alzheimer's disease: is there a hope? Indian J Med Res 2013;138:449-60.
  • Akram M, Nawaz A. Effects of medicinal plants on Alzheimer's disease and memory deficits. Neural Regeneration Research 2017;12:660-70.
  • Prasanth MI, Sivamaruthi BS, Chaiyasut C, Tencomnao T. A Review of the Role of Green Tea (Camellia sinensis) in Antiphotoaging, Stress Resistance, Neuroprotection, and Autophagy. Nutrients 2019;11:474.
  • Simes BC, MacGregor GG. Sodium-Glucose Cotransporter-2 (SGLT2) Inhibitors: A Clinician's Guide. Diabetes Metab Syndr Obes 2019;12:2125-36.
  • Rinwa P, Jaggi AS, Singh N. Pharmacological investigation of memory restorative effect of riluzole in mice. Indian J Pharmacol 2012;44:366-71.
  • Mathiasen JR, DiCamillo A. Novel object recognition in the rat: a facile assay for cognitive function. Curr Protoc Pharmacol 2010;Chapter 5:5.59.
  • Terry AV. Spatial Navigation (Water Maze) Tasks. 2nd ed: CRC Press/Taylor & Francis, Boca Raton (FL); 2009.
  • Arika WM, Kibiti CM, Njagi JM, Ngugi MP. Effects of DCM Leaf Extract of Gnidia glauca (Fresen) on Locomotor Activity, Anxiety, and Exploration-Like Behaviors in High-Fat Diet-Induced Obese Rats. Behav Neurol 2019;2019:7359235-.
  • Foyet HS, Abaïssou HHN, Wado E, Acha EA, Alin C. Emilia coccinae (SIMS) G Extract improves memory impairment, cholinergic dysfunction, and oxidative stress damage in scopolamine-treated rats. BMC Complement Altern Med 2015;15:333-.
  • Wang J, Wang X, Lv B, Yuan W, Feng Z, Mi W, Zhang H. Effects of Fructus Akebiae on learning and memory impairment in a scopolamine-induced animal model of dementia. Exp Ther Med 2014;8:671-5.
  • Yildiz S, Cam ME, Keles R, Hazar-Yavuz AN, Kabasakal L. A PPAR-alpha agonist gemfibrozil ameliorates cognitive and memory impairments in a sporadic Alzheimer's disease rat model. European Neuropsychopharmacology 2019;29:S263-S4.
Toplam 59 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Kurumları Yönetimi
Bölüm Articles
Yazarlar

Muhammet Emin Çam 0000-0001-5398-6801

Turgut Taşkın 0000-0001-8475-6478

Proje Numarası SAG-K-170118-0001
Yayımlanma Tarihi 29 Haziran 2020
Gönderilme Tarihi 6 Şubat 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 10 Sayı: 2

Kaynak Göster

APA Çam, M. E., & Taşkın, T. (2020). Camellia Sinensis Leaves Hydroalcoholic Extract Improves the Alzheimer’s Disease-Like Alterations Induced by Type 2 Diabetes in Rats. Clinical and Experimental Health Sciences, 10(2), 93-103. https://doi.org/10.33808/clinexphealthsci.685280
AMA Çam ME, Taşkın T. Camellia Sinensis Leaves Hydroalcoholic Extract Improves the Alzheimer’s Disease-Like Alterations Induced by Type 2 Diabetes in Rats. Clinical and Experimental Health Sciences. Haziran 2020;10(2):93-103. doi:10.33808/clinexphealthsci.685280
Chicago Çam, Muhammet Emin, ve Turgut Taşkın. “Camellia Sinensis Leaves Hydroalcoholic Extract Improves the Alzheimer’s Disease-Like Alterations Induced by Type 2 Diabetes in Rats”. Clinical and Experimental Health Sciences 10, sy. 2 (Haziran 2020): 93-103. https://doi.org/10.33808/clinexphealthsci.685280.
EndNote Çam ME, Taşkın T (01 Haziran 2020) Camellia Sinensis Leaves Hydroalcoholic Extract Improves the Alzheimer’s Disease-Like Alterations Induced by Type 2 Diabetes in Rats. Clinical and Experimental Health Sciences 10 2 93–103.
IEEE M. E. Çam ve T. Taşkın, “Camellia Sinensis Leaves Hydroalcoholic Extract Improves the Alzheimer’s Disease-Like Alterations Induced by Type 2 Diabetes in Rats”, Clinical and Experimental Health Sciences, c. 10, sy. 2, ss. 93–103, 2020, doi: 10.33808/clinexphealthsci.685280.
ISNAD Çam, Muhammet Emin - Taşkın, Turgut. “Camellia Sinensis Leaves Hydroalcoholic Extract Improves the Alzheimer’s Disease-Like Alterations Induced by Type 2 Diabetes in Rats”. Clinical and Experimental Health Sciences 10/2 (Haziran 2020), 93-103. https://doi.org/10.33808/clinexphealthsci.685280.
JAMA Çam ME, Taşkın T. Camellia Sinensis Leaves Hydroalcoholic Extract Improves the Alzheimer’s Disease-Like Alterations Induced by Type 2 Diabetes in Rats. Clinical and Experimental Health Sciences. 2020;10:93–103.
MLA Çam, Muhammet Emin ve Turgut Taşkın. “Camellia Sinensis Leaves Hydroalcoholic Extract Improves the Alzheimer’s Disease-Like Alterations Induced by Type 2 Diabetes in Rats”. Clinical and Experimental Health Sciences, c. 10, sy. 2, 2020, ss. 93-103, doi:10.33808/clinexphealthsci.685280.
Vancouver Çam ME, Taşkın T. Camellia Sinensis Leaves Hydroalcoholic Extract Improves the Alzheimer’s Disease-Like Alterations Induced by Type 2 Diabetes in Rats. Clinical and Experimental Health Sciences. 2020;10(2):93-103.

14639   14640