Research Article
BibTex RIS Cite

Evaluation of the effects of donepezil, memantine and α-lipoic acid combined administration in amnesia rats on impaired cognitive functions in terms of behavioural, apoptotic, cholinergic and glutamatergic systems

Year 2021, Volume: 11 Issue: 4, 733 - 741, 26.10.2021
https://doi.org/10.33808/clinexphealthsci.856459

Abstract

Objective: The aim of the study was to evaluate the possible protective effects of alpha-lipoic acid (α-LA), donepezil and memantine combined therapy in the scopolamine-induced amnesia rat model.
Objective: The aim of the study was to evaluate the possible protective effect of donepezil, memantine and alpha-lipoic acid (α-LA) combined therapy in the scopolamine-induced amnesia rat model.
Methods: In this study, the effect of combined therapy used in the treatment of scopolamine-induced amnesia on behavioural parameters was evaluated using Y-maze and new object recognition (NOR) test. In addition, muscarinic acetylcholine receptor subtype M1, N-methyl-D-aspartate receptor NR2B subunit, brain-derived neurotrophic factor (BDNF) and mitochondrial apoptosis-related proteins [B-cell lymphoma-2 (Bcl-2) / Bcl-2 associated X (Bax) ratio, caspase (casp) -3, and -9] expression levels were evaluated using the western blot method in the frontal cortex and hippocampus regions.
Results: The main findings of this study demonstrated that in scopolamine-induced amnesia rats, cognitive dysfunction determined by both the Y-maze and the NOR test were reversed with the combined treatment of memantine, donepezil and α-LA. According to immunoblotting results in both brain regions, scopolamine-induced decreased M1, BDNF, Bcl-2 / Bax ratio and increased NR2B, casp-3 and -9 expression levels were found to be reversed to almost control values with combined treatment.
Conclusion: Consistent with the literature, our study results suggest that the positive contribution of α-LA to the combined treatment of donepezil and memantine, which is used in the routine treatment of neurodegenerative diseases, may be a treatment option in the future.
Results: The main findings of this study demonstrated that in scopolamine-induced amnesia rats, cognitive dysfunction determined by both the Y-maze and the NORT test were reversed with the combined treatment of memantine, donepezil and α-LA. In addition, decreased BDNF, M1, bcl-2/bax ratio and increased NR2B, caspase-3 and caspase-9 expression levels due to scopolamine in both regions were improved with α-LA, donepezil and memantine combined therapy.
Conclusion: The results of our study and other study results in the literature suggest that α-LA may be a future treatment option due to its positive contribution to the effects of other drugs used in the routine treatment of neurodegenerative diseases.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • 1. Wang R, Reddy PH. Role of glutamate and NMDA receptors in Alzheimer’s disease. J Alzheimer’s Dis 2017; 57:1041–1048. doi:10.3233/JAD-160763
  • 2. Schliebs R, Arendt T. The cholinergic system in aging and neuronal degeneration. Behav Brain Res 2011; 221:555-563. doi: 10.1016/j.bbr.2010.11.058
  • 3. Falsafi SK, Deli A, Höger H, Pollak A, Lubec G. Scopolamine Administration Modulates Muscarinic, Nicotinic and NMDA Receptor Systems. PLoS One 2012; 7:e32082. doi: 10.1371/journal.pone.0032082
  • 4. Volpicelli LA, Levey AI. Muscarinic acetylcholine receptor subtypes in cerebral cortex and hippocampus. Prog Brain Res 2004; 145:59–66. doi: 10.1016/S0079-6123(03)45003-6
  • 5. Weinstein G, Beiser AS, Choi SH, Preis SR, Chen TC, Vorgas D, et al. Serum brain-derived neurotrophic factor and the risk for dementia: the Framingham Heart Study. JAMA Neurology 2014; 71:55-61. doi:10. 1001/jamaneurol.2013.4781
  • 6. Song JH, Yu JT, Tan L. Brain-Derived Neurotrophic Factor in Alzheimer’s Disease: Risk, Mechanisms, and Therapy. Mol Neurobiol 2015; 52:1477–1493. doi:10.1007/s12035-014-8958-4
  • 7. Mishizen-Eber AJ, Robert A, Rissman RA, Ikonomovic MD, Wolfe BB, Armstrong DM. Biochemical and molecular studies of NMDA receptor subunits NR1/ 2A/2B in hippocampal subregions throughout progression of Alzheimer’s disease pathology. Neurobiol Dis 2004; 15:80-92. doi: 10.1016/j.nbd.2003.09.016
  • 8. Liu J, Chang L, Song Y, Li H, Wu Y. The Role of NMDA Receptors in Alzheimer’s Disease. Front Neurosci 2019; 13:43. doi: 10.3389/fnins.2019.00043
  • 9. Ota H, Ogawa S, Ouchi Y, Akishita M. Protective effects of NMDA receptor antagonist, memantine, against senescence of PC12 cells: A possible role of nNOS and combined effects with donepezil. Exp Gerontol 2015; 72:109-116. doi: 10.1016/j.exger.2015.09.016
  • 10. Liang YQ, Tang XC. Comparative effects of huperzine A, donepezil and rivastigmine on cortical acetylcholine level and acetylcholinesterase activity in rats. Neurosci Let 2004; 361:56-59. doi: 10.1016/j.neulet.2003.12.071
  • 11. Rahman A, Lamberty Y, Schenker E, Cella M, Languille S, Bordet R, et al. Effects of acute administration of donepezil or memantine on sleep-deprivation-induced spatial memory deficit in young and aged non-human primate grey mouse lemurs (Microcebus murinus). Plos One 2017; 12:e0184822. doi: 10.1371/journal. pone.0184822
  • 12. Li Q, Chen M, Liu H, Yang G Yang L. Expression of APP, BACE1, AChE and ChAT in an AD model in rats and the effect of donepezil hydrochloride treatment. Mol Med Rep 2012; 6:1450–1454. doi: 10.3892/mmr.2012.1102
  • 13. Raina P, Santaguida P, Ismaila A, Patterson C, Cowan D, Lewine M, et al. Effectiveness of cholinesterase inhibitors and memantine for treating dementia: evidence review for a clinical practice guideline. Ann Inter Med 2008; 148:379–397. doi: 10.7326/0003-4819-148-5-200803040-00009
  • 14. Dos Santos SM, Romeiro CFR, Rodrigues CA, Cerqueira ARL, Monteiro MC. Mitochondrial Dysfunction and Alpha-Lipoic Acid: Beneficial or Harmful in Alzheimer's Disease? Oxid Med Cell Longev 2019; 8409329. doi:10.1155/2019/8409329
  • 15. Khalili M, Eghtesadi S, Mirshafiey A, Eskandari G, Sanoobar M, Sahraian MA, et al. Effect of lipoic acid consumption on oxidative stress among multiple sclerosis patients: a randomized controlled clinical trial. Nutr Neurosci 2014; 17(1):16-20. doi: 10.1179/1476830513Y.0000000060.
  • 16. Martin DS, Towey M, Horrobin DF, Lynch MA. A Diet Enriched in α-Lipoic Acid Reverses the Age-Related Compromise in Antioxidant Defences in Rat Cortical Tissue. Nutr Neurosci 2000; 3(3):193-206. doi: 10.1080/1028415X.2000.11747316.
  • 17. de Sousa CNS, da Silva Leite CMG, da Silva Medeiros I, Vasconcelos LC, Cabral LM, Patrocínio CFV, et al. Alpha-lipoic acid in the treatment of psychiatric and neurological disorders: a systematic review. Metab Brain Dis 2019; 34(1):39-52. doi: 10.1007/s11011-018-0344-x.
  • 18. Zhang YH, Wang DW, Xu SF, Zhang S, Fan YG, Yang YY, et al. α-Lipoic acid improves abnormal behavior by mitigation of oxidative stress, inflammation, ferroptosis, and tauopathy in P301S Tau transgenic mice. Redox Biol 2018; 14:535-548. doi: 10.1016/j.redox.2017.11.001
  • 19. Kamarudin MN, Mohd Raflee NA, Hussein SS, Lo JY, Supriady H, Abdul Kadir H. (R)-(+)-α-lipoic acid protected NG108-15 cells against H₂O₂-induced cell death through PI3K-Akt/GSK-3β pathway and suppression of NF-κβ-cytokines. Drug Des Devel Ther 2014; 8:1765-1780. doi: 10.2147/DDDT.S67980
  • 20. Sehirli AO, Aksoy U, Kermeoglu F, Kalender A, Savtekin G, Ozkayalar H, et al. Protective effect of alpha-lipoic acid against apical periodontitis-induced cardiac injury in rats. Eur J Oral Sci 2019; 127:333–339. doi: 10.1111/eos.12618
  • 21. Aykac A, Ozbeyli D, Uncu M, Ertaş B, Kılınç O, Şen A, et al. Evaluation of the protective effect of Myrtus communis in scopolamine-induced Alzheimer model through cholinergic receptors. Gene 2019; 689:194-201. doi: 10.1016/j.gene.2018.12.007
  • 22. Mohammadpour T, Hosseini M, Naderi A, Karami R, Sadeghnia HR, Soukhtanloo M, Vafaee F. Protection against brain tissues oxidative damage as a possible mechanism for the beneficial effects of Rosa damascena hydroalcoholic extract on scopolamine induced memory impairment in rats. Nutr Neurosci 2015; 18(7):329-336. doi: 10.1179/1476830514Y.0000000137.
  • 23. Paxinos G and Watson C. (1986). The rat brain in stereotaxic coordinates. 2nd ed. London: Academic Press.
  • 24. Mathiasen JR, DiCamillo A. Novel object recognition in the rat: a facile assay for cognition function. Animal model of Diseases. Cur Protoc Pharmacol 2010; 5.59.1-5.59.19. doi: 10.1002/0471141755.ph0559s49
  • 25. Wahl D, Coogan SC, Solon-Biet SM, de Cabo R, Haran JB, Raubenheimer D, et al. Cognitive and behavioral evaluation of nutritional interventions in rodent models of brain aging and dementia. Clin Interv Aging 2017; 12:1419-1428. doi:10.2147/CIA.S145247
  • 26. Lee S, Park HJ, Jeon SJ, Kim E, Lee HE, Kim H, et al. Cognitive Ameliorating Effect of Acanthopanax koreanum Against Scopolamine-Induced Memory Impairment in Mice. Phytother Res 2017; 31:425-432. doi: 10.1002/ptr.5764.
  • 27. Dixit S, Dhar P, Mehra RD. Alpha lipoic acid (ALA) modulates expression of apoptosis associated proteins in hippocampus of rats exposed during postnatal period to sodium arsenite (NaAsO2). Toxicol Reports 2015; 2:78–87. doi: 10.1016/j.toxrep.2015.01.011
  • 28. Vasconcelos GS, Ximenes NC, de Sousa CN, Oliveira Tde Q, Lima LL, de Lucena DF, et al. Alpha-lipoic acid alone and combined with clozapine reverses schizophrenia-like symptoms induced by ketamine in mice: participation of antioxidant, nitrergic and neurotrophic mechanisms. Schizophr Res 2015; 165:163–170. doi: 10.1016/j.schres.2015.04.017
  • 29. Peng S, Garzon DJ, Marchese M, Klein W, Ginsberg SD, Francis BM, et al. Decreased brain-derived neurotrophic factor depends on amyloid aggregation state in transgenic mouse models of Alzheimer’s disease. J Neurosci 2009; 29:9321–9329. doi:10. 1523/jneurosci. 4736-08.2009
  • 30. Sakr HF, Khalil KI, Hussein AM, Zaki MS, Eid RA, Alkhateeb M. Effect of dehydroepiandrosterone (DHEA) on memory and brain derived neurotrophic factor (BDNF) in a rat model of vascular dementia. J Physiol Pharmacol 2014; 65:41–53.
  • 31. Leveille F, El Gaamouch F, Gouix E, Lecocq M, Lobner D, Nicole O, et al. Neuronal viability is controlled by a functional relation between synaptic and extrasynaptic NMDA receptors. FASEB J 2008; 22:4258–4271. doi: 10.1096/fj.08-107268
  • 32. Ihalainen J, Sarajarvi T, Rasmusson D, Kemppainen S, Keski-Rahkonen P, Lehtonen M, et al. Effects of memantine and donepezil on cortical and hippocampal acetylcholine levels and object recognition memory in rats. Neuropharmacol 2011; 61:891–899. doi: 10.1016/j.neuropharm.2011.06.008
  • 33. Wu HM, Tzeng NS, Qian L, Wei SJ, Hu X, Chen SH, et al. Novel neuroprotective mechanisms of memantine: increase in neurotrophic factor release from astroglia and anti-inflammation by preventing microglial activation. Neuropsychopharmacol 2009; 34:2344–2357. doi:10.1038/npp.2009.64
  • 34. Aykac A, Aydın B, Cabadak H, Gören MZ. The change in muscarinic receptor subtypes in different brain regions of rats treated with fluoxetine or propranolol in a Post-traumatic stress disorder model. Behav Brain Res 2012; 232:124-129. doi: 10.1016/j.bbr.2012.04.002 35. Pepeu G, Giovannini M. The fate of the brain cholinergic neurons in neurodegenerative diseases. Brain Res 2017; 1670:173–184. doi: 10.1016/j.brainres.2017.06.023.
  • 36. Flynn DD, Ferrari-DiLeo G, Mash DC, Levy AI. Differential regulation of molecular subtypes of muscarinic receptors in Alzheimer’s disease. J Neurochem 1995; 64:1888–1891. doi: 10.1046/j.1471-4159.1995. 64041888.x
  • 37. Soares JC, Fornari, Oliveira MG. Role of muscarinic M1 receptors in inhibitory avoidance and contextual fear conditioning. Neurobiol Learn Mem 2006; 86:188–196. doi: 10.1016/j.nlm.2006.02.006
  • 38. de Araújo DP, Camboim TGM, Silva APM, Silva CDF, de Sousa RC, Barbosa MDA, et al. Behavioral and neurochemical effects of alpha lipoic acid associated with omega-3 in tardive dyskinesia induced by chronic haloperidol in rats. Can J Physiol Pharmacol 2017; 7:837–843. doi:10.1139/cjpp-2016-0307
  • 39. Mahboob A, Farhat SM, Iqbal G, Babar MM, Zaidi NU, Nabavi SM, et al. Alpha-lipoic acid-mediated activation of muscarinic receptors improves hippocampus- and amygdala-dependent memory. Brain Res Bul 2016; 122:19-28. doi: 10.1016/j.brainresbull.2016.02.014
Year 2021, Volume: 11 Issue: 4, 733 - 741, 26.10.2021
https://doi.org/10.33808/clinexphealthsci.856459

Abstract

Project Number

-

References

  • 1. Wang R, Reddy PH. Role of glutamate and NMDA receptors in Alzheimer’s disease. J Alzheimer’s Dis 2017; 57:1041–1048. doi:10.3233/JAD-160763
  • 2. Schliebs R, Arendt T. The cholinergic system in aging and neuronal degeneration. Behav Brain Res 2011; 221:555-563. doi: 10.1016/j.bbr.2010.11.058
  • 3. Falsafi SK, Deli A, Höger H, Pollak A, Lubec G. Scopolamine Administration Modulates Muscarinic, Nicotinic and NMDA Receptor Systems. PLoS One 2012; 7:e32082. doi: 10.1371/journal.pone.0032082
  • 4. Volpicelli LA, Levey AI. Muscarinic acetylcholine receptor subtypes in cerebral cortex and hippocampus. Prog Brain Res 2004; 145:59–66. doi: 10.1016/S0079-6123(03)45003-6
  • 5. Weinstein G, Beiser AS, Choi SH, Preis SR, Chen TC, Vorgas D, et al. Serum brain-derived neurotrophic factor and the risk for dementia: the Framingham Heart Study. JAMA Neurology 2014; 71:55-61. doi:10. 1001/jamaneurol.2013.4781
  • 6. Song JH, Yu JT, Tan L. Brain-Derived Neurotrophic Factor in Alzheimer’s Disease: Risk, Mechanisms, and Therapy. Mol Neurobiol 2015; 52:1477–1493. doi:10.1007/s12035-014-8958-4
  • 7. Mishizen-Eber AJ, Robert A, Rissman RA, Ikonomovic MD, Wolfe BB, Armstrong DM. Biochemical and molecular studies of NMDA receptor subunits NR1/ 2A/2B in hippocampal subregions throughout progression of Alzheimer’s disease pathology. Neurobiol Dis 2004; 15:80-92. doi: 10.1016/j.nbd.2003.09.016
  • 8. Liu J, Chang L, Song Y, Li H, Wu Y. The Role of NMDA Receptors in Alzheimer’s Disease. Front Neurosci 2019; 13:43. doi: 10.3389/fnins.2019.00043
  • 9. Ota H, Ogawa S, Ouchi Y, Akishita M. Protective effects of NMDA receptor antagonist, memantine, against senescence of PC12 cells: A possible role of nNOS and combined effects with donepezil. Exp Gerontol 2015; 72:109-116. doi: 10.1016/j.exger.2015.09.016
  • 10. Liang YQ, Tang XC. Comparative effects of huperzine A, donepezil and rivastigmine on cortical acetylcholine level and acetylcholinesterase activity in rats. Neurosci Let 2004; 361:56-59. doi: 10.1016/j.neulet.2003.12.071
  • 11. Rahman A, Lamberty Y, Schenker E, Cella M, Languille S, Bordet R, et al. Effects of acute administration of donepezil or memantine on sleep-deprivation-induced spatial memory deficit in young and aged non-human primate grey mouse lemurs (Microcebus murinus). Plos One 2017; 12:e0184822. doi: 10.1371/journal. pone.0184822
  • 12. Li Q, Chen M, Liu H, Yang G Yang L. Expression of APP, BACE1, AChE and ChAT in an AD model in rats and the effect of donepezil hydrochloride treatment. Mol Med Rep 2012; 6:1450–1454. doi: 10.3892/mmr.2012.1102
  • 13. Raina P, Santaguida P, Ismaila A, Patterson C, Cowan D, Lewine M, et al. Effectiveness of cholinesterase inhibitors and memantine for treating dementia: evidence review for a clinical practice guideline. Ann Inter Med 2008; 148:379–397. doi: 10.7326/0003-4819-148-5-200803040-00009
  • 14. Dos Santos SM, Romeiro CFR, Rodrigues CA, Cerqueira ARL, Monteiro MC. Mitochondrial Dysfunction and Alpha-Lipoic Acid: Beneficial or Harmful in Alzheimer's Disease? Oxid Med Cell Longev 2019; 8409329. doi:10.1155/2019/8409329
  • 15. Khalili M, Eghtesadi S, Mirshafiey A, Eskandari G, Sanoobar M, Sahraian MA, et al. Effect of lipoic acid consumption on oxidative stress among multiple sclerosis patients: a randomized controlled clinical trial. Nutr Neurosci 2014; 17(1):16-20. doi: 10.1179/1476830513Y.0000000060.
  • 16. Martin DS, Towey M, Horrobin DF, Lynch MA. A Diet Enriched in α-Lipoic Acid Reverses the Age-Related Compromise in Antioxidant Defences in Rat Cortical Tissue. Nutr Neurosci 2000; 3(3):193-206. doi: 10.1080/1028415X.2000.11747316.
  • 17. de Sousa CNS, da Silva Leite CMG, da Silva Medeiros I, Vasconcelos LC, Cabral LM, Patrocínio CFV, et al. Alpha-lipoic acid in the treatment of psychiatric and neurological disorders: a systematic review. Metab Brain Dis 2019; 34(1):39-52. doi: 10.1007/s11011-018-0344-x.
  • 18. Zhang YH, Wang DW, Xu SF, Zhang S, Fan YG, Yang YY, et al. α-Lipoic acid improves abnormal behavior by mitigation of oxidative stress, inflammation, ferroptosis, and tauopathy in P301S Tau transgenic mice. Redox Biol 2018; 14:535-548. doi: 10.1016/j.redox.2017.11.001
  • 19. Kamarudin MN, Mohd Raflee NA, Hussein SS, Lo JY, Supriady H, Abdul Kadir H. (R)-(+)-α-lipoic acid protected NG108-15 cells against H₂O₂-induced cell death through PI3K-Akt/GSK-3β pathway and suppression of NF-κβ-cytokines. Drug Des Devel Ther 2014; 8:1765-1780. doi: 10.2147/DDDT.S67980
  • 20. Sehirli AO, Aksoy U, Kermeoglu F, Kalender A, Savtekin G, Ozkayalar H, et al. Protective effect of alpha-lipoic acid against apical periodontitis-induced cardiac injury in rats. Eur J Oral Sci 2019; 127:333–339. doi: 10.1111/eos.12618
  • 21. Aykac A, Ozbeyli D, Uncu M, Ertaş B, Kılınç O, Şen A, et al. Evaluation of the protective effect of Myrtus communis in scopolamine-induced Alzheimer model through cholinergic receptors. Gene 2019; 689:194-201. doi: 10.1016/j.gene.2018.12.007
  • 22. Mohammadpour T, Hosseini M, Naderi A, Karami R, Sadeghnia HR, Soukhtanloo M, Vafaee F. Protection against brain tissues oxidative damage as a possible mechanism for the beneficial effects of Rosa damascena hydroalcoholic extract on scopolamine induced memory impairment in rats. Nutr Neurosci 2015; 18(7):329-336. doi: 10.1179/1476830514Y.0000000137.
  • 23. Paxinos G and Watson C. (1986). The rat brain in stereotaxic coordinates. 2nd ed. London: Academic Press.
  • 24. Mathiasen JR, DiCamillo A. Novel object recognition in the rat: a facile assay for cognition function. Animal model of Diseases. Cur Protoc Pharmacol 2010; 5.59.1-5.59.19. doi: 10.1002/0471141755.ph0559s49
  • 25. Wahl D, Coogan SC, Solon-Biet SM, de Cabo R, Haran JB, Raubenheimer D, et al. Cognitive and behavioral evaluation of nutritional interventions in rodent models of brain aging and dementia. Clin Interv Aging 2017; 12:1419-1428. doi:10.2147/CIA.S145247
  • 26. Lee S, Park HJ, Jeon SJ, Kim E, Lee HE, Kim H, et al. Cognitive Ameliorating Effect of Acanthopanax koreanum Against Scopolamine-Induced Memory Impairment in Mice. Phytother Res 2017; 31:425-432. doi: 10.1002/ptr.5764.
  • 27. Dixit S, Dhar P, Mehra RD. Alpha lipoic acid (ALA) modulates expression of apoptosis associated proteins in hippocampus of rats exposed during postnatal period to sodium arsenite (NaAsO2). Toxicol Reports 2015; 2:78–87. doi: 10.1016/j.toxrep.2015.01.011
  • 28. Vasconcelos GS, Ximenes NC, de Sousa CN, Oliveira Tde Q, Lima LL, de Lucena DF, et al. Alpha-lipoic acid alone and combined with clozapine reverses schizophrenia-like symptoms induced by ketamine in mice: participation of antioxidant, nitrergic and neurotrophic mechanisms. Schizophr Res 2015; 165:163–170. doi: 10.1016/j.schres.2015.04.017
  • 29. Peng S, Garzon DJ, Marchese M, Klein W, Ginsberg SD, Francis BM, et al. Decreased brain-derived neurotrophic factor depends on amyloid aggregation state in transgenic mouse models of Alzheimer’s disease. J Neurosci 2009; 29:9321–9329. doi:10. 1523/jneurosci. 4736-08.2009
  • 30. Sakr HF, Khalil KI, Hussein AM, Zaki MS, Eid RA, Alkhateeb M. Effect of dehydroepiandrosterone (DHEA) on memory and brain derived neurotrophic factor (BDNF) in a rat model of vascular dementia. J Physiol Pharmacol 2014; 65:41–53.
  • 31. Leveille F, El Gaamouch F, Gouix E, Lecocq M, Lobner D, Nicole O, et al. Neuronal viability is controlled by a functional relation between synaptic and extrasynaptic NMDA receptors. FASEB J 2008; 22:4258–4271. doi: 10.1096/fj.08-107268
  • 32. Ihalainen J, Sarajarvi T, Rasmusson D, Kemppainen S, Keski-Rahkonen P, Lehtonen M, et al. Effects of memantine and donepezil on cortical and hippocampal acetylcholine levels and object recognition memory in rats. Neuropharmacol 2011; 61:891–899. doi: 10.1016/j.neuropharm.2011.06.008
  • 33. Wu HM, Tzeng NS, Qian L, Wei SJ, Hu X, Chen SH, et al. Novel neuroprotective mechanisms of memantine: increase in neurotrophic factor release from astroglia and anti-inflammation by preventing microglial activation. Neuropsychopharmacol 2009; 34:2344–2357. doi:10.1038/npp.2009.64
  • 34. Aykac A, Aydın B, Cabadak H, Gören MZ. The change in muscarinic receptor subtypes in different brain regions of rats treated with fluoxetine or propranolol in a Post-traumatic stress disorder model. Behav Brain Res 2012; 232:124-129. doi: 10.1016/j.bbr.2012.04.002 35. Pepeu G, Giovannini M. The fate of the brain cholinergic neurons in neurodegenerative diseases. Brain Res 2017; 1670:173–184. doi: 10.1016/j.brainres.2017.06.023.
  • 36. Flynn DD, Ferrari-DiLeo G, Mash DC, Levy AI. Differential regulation of molecular subtypes of muscarinic receptors in Alzheimer’s disease. J Neurochem 1995; 64:1888–1891. doi: 10.1046/j.1471-4159.1995. 64041888.x
  • 37. Soares JC, Fornari, Oliveira MG. Role of muscarinic M1 receptors in inhibitory avoidance and contextual fear conditioning. Neurobiol Learn Mem 2006; 86:188–196. doi: 10.1016/j.nlm.2006.02.006
  • 38. de Araújo DP, Camboim TGM, Silva APM, Silva CDF, de Sousa RC, Barbosa MDA, et al. Behavioral and neurochemical effects of alpha lipoic acid associated with omega-3 in tardive dyskinesia induced by chronic haloperidol in rats. Can J Physiol Pharmacol 2017; 7:837–843. doi:10.1139/cjpp-2016-0307
  • 39. Mahboob A, Farhat SM, Iqbal G, Babar MM, Zaidi NU, Nabavi SM, et al. Alpha-lipoic acid-mediated activation of muscarinic receptors improves hippocampus- and amygdala-dependent memory. Brain Res Bul 2016; 122:19-28. doi: 10.1016/j.brainresbull.2016.02.014
There are 38 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Articles
Authors

Aslı Aykaç 0000-0002-4885-5070

Dilek Özbeyli 0000-0002-4141-6913

Gizem Pekol This is me 0000-0001-7789-4637

Ahmet Özer Şehirli 0000-0002-5175-9290

Project Number -
Publication Date October 26, 2021
Submission Date January 8, 2021
Published in Issue Year 2021 Volume: 11 Issue: 4

Cite

APA Aykaç, A., Özbeyli, D., Pekol, G., Şehirli, A. Ö. (2021). Evaluation of the effects of donepezil, memantine and α-lipoic acid combined administration in amnesia rats on impaired cognitive functions in terms of behavioural, apoptotic, cholinergic and glutamatergic systems. Clinical and Experimental Health Sciences, 11(4), 733-741. https://doi.org/10.33808/clinexphealthsci.856459
AMA Aykaç A, Özbeyli D, Pekol G, Şehirli AÖ. Evaluation of the effects of donepezil, memantine and α-lipoic acid combined administration in amnesia rats on impaired cognitive functions in terms of behavioural, apoptotic, cholinergic and glutamatergic systems. Clinical and Experimental Health Sciences. October 2021;11(4):733-741. doi:10.33808/clinexphealthsci.856459
Chicago Aykaç, Aslı, Dilek Özbeyli, Gizem Pekol, and Ahmet Özer Şehirli. “Evaluation of the Effects of Donepezil, Memantine and α-Lipoic Acid Combined Administration in Amnesia Rats on Impaired Cognitive Functions in Terms of Behavioural, Apoptotic, Cholinergic and Glutamatergic Systems”. Clinical and Experimental Health Sciences 11, no. 4 (October 2021): 733-41. https://doi.org/10.33808/clinexphealthsci.856459.
EndNote Aykaç A, Özbeyli D, Pekol G, Şehirli AÖ (October 1, 2021) Evaluation of the effects of donepezil, memantine and α-lipoic acid combined administration in amnesia rats on impaired cognitive functions in terms of behavioural, apoptotic, cholinergic and glutamatergic systems. Clinical and Experimental Health Sciences 11 4 733–741.
IEEE A. Aykaç, D. Özbeyli, G. Pekol, and A. Ö. Şehirli, “Evaluation of the effects of donepezil, memantine and α-lipoic acid combined administration in amnesia rats on impaired cognitive functions in terms of behavioural, apoptotic, cholinergic and glutamatergic systems”, Clinical and Experimental Health Sciences, vol. 11, no. 4, pp. 733–741, 2021, doi: 10.33808/clinexphealthsci.856459.
ISNAD Aykaç, Aslı et al. “Evaluation of the Effects of Donepezil, Memantine and α-Lipoic Acid Combined Administration in Amnesia Rats on Impaired Cognitive Functions in Terms of Behavioural, Apoptotic, Cholinergic and Glutamatergic Systems”. Clinical and Experimental Health Sciences 11/4 (October 2021), 733-741. https://doi.org/10.33808/clinexphealthsci.856459.
JAMA Aykaç A, Özbeyli D, Pekol G, Şehirli AÖ. Evaluation of the effects of donepezil, memantine and α-lipoic acid combined administration in amnesia rats on impaired cognitive functions in terms of behavioural, apoptotic, cholinergic and glutamatergic systems. Clinical and Experimental Health Sciences. 2021;11:733–741.
MLA Aykaç, Aslı et al. “Evaluation of the Effects of Donepezil, Memantine and α-Lipoic Acid Combined Administration in Amnesia Rats on Impaired Cognitive Functions in Terms of Behavioural, Apoptotic, Cholinergic and Glutamatergic Systems”. Clinical and Experimental Health Sciences, vol. 11, no. 4, 2021, pp. 733-41, doi:10.33808/clinexphealthsci.856459.
Vancouver Aykaç A, Özbeyli D, Pekol G, Şehirli AÖ. Evaluation of the effects of donepezil, memantine and α-lipoic acid combined administration in amnesia rats on impaired cognitive functions in terms of behavioural, apoptotic, cholinergic and glutamatergic systems. Clinical and Experimental Health Sciences. 2021;11(4):733-41.

14639   14640