Research Article
BibTex RIS Cite
Year 2022, Volume: 12 Issue: 1, 87 - 93, 30.03.2022
https://doi.org/10.33808/clinexphealthsci.824559

Abstract

References

  • 1.Chang PC, Lang NP, Giannobile WV. Evaluation of functional dynamics during osseointegration and regeneration associated with oral implants. Clin Oral Implants Res 2010; 21(1):1-12.
  • 2.Branemark PI. Osseointegration and its experimental background. J Prosthet Dent 1983; 50(3):399-410.
  • 3.Misch C. Contemporary Implant Dentistry. St. Louis: Mosby, 1998.
  • 4.Dilek O, Tezulas E, Dincel M. Required minimum primary stability and torque values for immediate loading of mini dental implants: an experimental study in nonviable bovine femoral bone. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 2008; 105(2):20-27.
  • 5.Lee CC, Lin SC, Kang MJ, Wu SW, Fu PY. Effects of implant threads on the contact area and stress distribution of marginal bone. Journal of Dental Sciences 2010; 5(3):156-165.
  • 6.O'Sullivan D, Sennerby L, Meredith N. Measurements comparing the initial stability of five designs of dental implants: a human cadaver study. Clin Implant Dent Relat Res 2000; 2(2):85-92.
  • 7.Valente ML, de Castro DT, Shimano AC, Lepri CP, dos Reis AC. Analysis of the influence of implant shape on primary stability using the correlation of multiple methods. Clin Oral Investig 2015; 19(8):1861-1866.
  • 8.Gehrke SA, da Silva UT, Del Fabbro M. Does Implant Design Affect Implant Primary Stability? A Resonance Frequency Analysis-Based Randomized Split-Mouth Clinical Trial. J Oral Implantol 2015; 41(6):281-286.
  • 9.Tabassum A, Meijer GJ, Walboomers XF, Jansen JA. Evaluation of primary and secondary stability of titanium implants using different surgical techniques. Clinical oral implants research 2014; 25(4):487-492.
  • 10.Augustin G, Davila S, Mihoci K, Udiljak T, Vedrina DS, Antabak A. Thermal osteonecrosis and bone drilling parameters revisited. Archives of Orthopaedic and Trauma Surgery 2008; 128(1):71-77.
  • 11.Saha S, Pal S, Albright JA. Surgical drilling: design and performance of an improved drill. J Biomech Eng 1982; 104(3):245-252.
  • 12.Karaca F, Aksakal B. Effects of various drilling parameters on bone during implantology: An in vitro experimental study. Acta Bioeng Biomech 2013; 15(4):25-32.
  • 13.Van Oosterwyck H, Duyck J, Vander Sloten J, Van der Perre G, De Coomans M, Lieven S, Puers R, Naert I. The influence of bone mechanical properties and implant fixation upon bone loading around oral implants. Clinical oral implants research 1998; 9(6):407-418.
  • 14.Misch CE. Density of bone: effect on treatment plans, surgical approach, healing, and progressive boen loading. The International journal of oral implantology: implantologist 1990; 6(2):23.
  • 15.Wolff J. The law of bone transformation. Berlin: Hirschwald, 1892.
  • 16.Pugh JW, Rose RM, Radin EL. Elastic and viscoelastic properties of trabecular bone: dependence on structure. Journal of biomechanics 1973; 6(5):475-485.
  • 17.Isidor F. Influence of forces on peri‐implant bone. Clinical oral implants research 2006; 17(2):8-18.
  • 18.Tada S, Stegaroiu R, Kitamura E, Miyakawa O, Kusakari H. Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis. International Journal of Oral & Maxillofacial Implants 2003; 18(3):357-368.
  • 19.Guan H, Van Staden RC, Johnson NW, Loo YC. Dynamic modelling and simulation of dental implant insertion process—A finite element study. Finite Elements in Analysis and Design 2011; 47(8):886-897.
  • 20.Lekholm U ZG. Patient Selection and Preparation. Chicago: Quintessence, 1985.
  • 21.Meyer U, Vollmer D, Runte C, Bourauel C, Joos U. Bone loading pattern around implants in average and atrophic edentulous maxillae: a finite-element analysis. J Craniomaxillofac Surg 2001; 29(2):100-105.
  • 22.Fugazzotto PA, Wheeler SL, Lindsay JA. Success and failure rates of cylinder implants in type IV bone. J Periodontol 1993; 64(11):1085-1087.
  • 23.Papavasiliou G, Kamposiora P, Bayne SC, Felton DA. Three-dimensional finite element analysis of stress-distribution around single tooth implants as a function of bony support, prosthesis type, and loading during function. J Prosthet Dent 1996; 76(6):633-640.
  • 24.Guan H, van Staden R, Loo YC, Johnson N, Ivanovski S, Meredith N. Influence of bone and dental implant parameters on stress distribution in the mandible: a finite element study. Int J Oral Maxillofac Implants 2009; 24(5):866-876.
  • 25.Orenstein IH, Tarnow DP, Morris HF, Ochi S. Three-year post-placement survival of implants mobile at placement. Ann Periodontol 2000; 5(1):32-41.
  • 26.Hoshaw SJ, Brunski JB, Cochran GV. Mechanical Loading of Brånemark Implants Affects Interfacial Bone Modeling and Remodeling. International Journal of Oral & Maxillofacial Implants 1994; 9(3):345-360.
  • 27.Frost HM. A 2003 update of bone physiology and Wolff's Law for clinicians. Angle Orthod 2004; 74(1):3-15.
  • 28.Stanford CM, Brand RA. Toward an understanding of implant occlusion and strain adaptive bone modeling and remodeling. J Prosthet Dent 1999; 81(5):553-561.
  • 29.Al-Sukhun J, Kelleway J, Helenius M. Development of a three-dimensional finite element model of a human mandible containing endosseous dental implants. I. Mathematical validation and experimental verification. J Biomed Mater Res A 2007; 80(1):234-246.
  • 30.Olsen S, Ferguson SJ, Sigrist C, Fritz WR, Nolte LP, Hallermann W, Caversaccio M. A novel computational method for real‐time preoperative assessment of primary dental implant stability. Clinical oral implants research 2005; 16(1):53-9.
  • 31.Wu SW, Lee CC, Fu PY, Lin SC. The effects of flute shape and thread profile on the insertion torque and primary stability of dental implants. Med Eng Phys 2012; 34(7):797-805.
  • 32.Okumura N, Stegaroiu R, Kitamura E, Kurokawa K, Nomura S. Influence of maxillary cortical bone thickness, implant design and implant diameter on stress around implants: a three-dimensional finite element analysis. J Prosthodont Res 2010; 54(3):133-142.
  • 33.Szmukler-Moncler S, Piattelli A, Favero GA, Dubruille JH. Considerations preliminary to the application of early and immediate loading protocols in dental implantology. Clin Oral Implants Res 2000; 11(1):12-25.
  • 34.Brunski JB. In vivo bone response to biomechanical loading at the bone/dental-implant interface. Adv Dent Res 1999; 13:99-119.
  • 35.Mailath G, Stoiber B, Watzek G, Matejka M. Bone resorption at the entry of osseointegrated implants-a biomechanical phenomenon. Finite element study. Z Stomatol 1989; 86(4):207-216.
  • 36.Matsushita Y, Kitoh M, Mizuta K, Ikeda H, Suetsugu T. Two-dimensional FEM analysis of hydroxyapatite implants: diameter effects on stress distribution. J Oral Implantol 1990; 16(1):6-11.
  • 37.Patra AK, DePaolo JM, D'Souza KS, DeTolla D, Meenaghan MA. Guidelines for analysis and redesign of dental implants. Implant Dent 1998; 7(4):355-368.
  • 38.Himmlova L, Dostalova T, Kacovsky A, Konvickova S. Influence of implant length and diameter on stress distribution: a finite element analysis. J Prosthet Dent 2004; 91(1):20-25.
  • 39.Siegele D, Soltesz U. Numerical investigations of the influence of implant shape on stress distribution in the jaw bone. Int J Oral Maxillofac Implants 1989; 4(4):333-340.
  • 40.Chun HJ, Cheong SY, Han JH, Heo SJ, Chung JP, Rhyu IC, Choıi YC, Baik HK, Ku Y, Kim MH. Evaluation of design parameters of osseointegrated dental implants using finite element analysis. J Oral Rehabil 2002; 29(6):565-574.
  • 41.Norton MR. Marginal bone levels at single tooth implants with a conical fixture design. The influence of surface macro- and microstructure. Clin Oral Implants Res 1998; 9(2):91-99.
  • 42.Stegaroiu R, Kusakari H, Nishiyama S, Miyakawa O. Influence of prosthesis material on stress distribution in bone and implant: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants 1998; 13(6):781-790.
  • 43.Chen J, Lu X, Paydar N, Akay HU, Roberts WE. Mechanical simulation of the human mandible with and without an endosseous implant. Med Eng Phys 1994; 16(1):53-61.
  • 44.Petrie CS, Williams JL. Comparative evaluation of implant designs: influence of diameter, length, and taper on strains in the alveolar crest. A three-dimensional finite-element analysis. Clin Oral Implants Res 2005; 16(4):486-494.
  • 45.Kitamura E, Stegaroiu R, Nomura S, Miyakawa O. Biomechanical aspects of marginal bone resorption around osseointegrated implants: considerations based on a three-dimensional finite element analysis. Clin Oral Implants Res 2004; 15(4):401-412.
  • 46.Misch CE. Short dental implants: a literature review and rationale for use. Dent Today 2005; 24(8):64-66.
  • 47.Georgiopoulos B, Kalioras K, Provatidis C, Manda M, Koidis P. The effects of implant length and diameter prior to and after osseointegration: a 2-D finite element analysis. J Oral Implantol 2007; 33(5):243-256.
  • 48.El-Anwar MI, El-Zawahry MM. A three dimensional finite element study on dental implant design. Journal of Genetic Engineering and Biotechnology 2011; 9(1):77-82.
  • 49.van Steenberghe D, Lekholm U, Bolender C, Folmer T, Henry P, Herrmann I, Higuchi K, Laney W, Linden U, Astrand P. Applicability of osseointegrated oral implants in the rehabilitation of partial edentulism: a prospective multicenter study on 558 fixtures. Int J Oral Maxillofac Implants 1990; 5(3):272-281.
  • 50.Koca OL, Eskitascioglu G, Usumez A. Three-dimensional finite-element analysis of functional stresses in different bone locations produced by implants placed in the maxillary posterior region of the sinus floor. J Prosthet Dent 2005; 93(1):38-44.

Evaluation of Stress Levels of Dental Implants in Different Macrogeometry in Type 2 Bone: A Finite Element Analysis

Year 2022, Volume: 12 Issue: 1, 87 - 93, 30.03.2022
https://doi.org/10.33808/clinexphealthsci.824559

Abstract

Objective: Implant geometry has an impact on the initial implant stability in the surrounding bone, stress distributions, and long-term success.
The purpose of this finite element study was to measure and compare the stress values formed during the stepwise placement of conical and
cylindrical implants in the Type 2 bone.
Methods: Conical and cylindrical implants (3.75-mm in diameter, 10-mm in length) were planned to be placed in the Type 2 bone. Stresses
during insertion of the implants with clockwise torque of 450 N were measured 0.5-, 1-, and 1.5-mm distance from the implant and 2-10 mm
depths between two millimeters apart. Maximum and minimum principal stresses and von Mises stresses in the cortical and trabecular bone
were evaluated with a three-dimensional finite element analysis.
Results: The conical implant was created higher stress values than the cylindrical implant in the same condition, and the cortical bone showed
higher stresses than the trabecular bone during the placement of both implants. Besides, the stress values were decreased as the depth
increased and the distance from the implant decreased, as the depth increased from 2-mm to 10-mm and the distance from the implant
decreased from 1.5-mm to 0.5-mm.
Conclusion: When the stresses generated in the cortical and trabecular bone surrounding the implant were evaluated, the cylindrical implant
was found to be more advantageous than the conical implant of the same length and diameter

References

  • 1.Chang PC, Lang NP, Giannobile WV. Evaluation of functional dynamics during osseointegration and regeneration associated with oral implants. Clin Oral Implants Res 2010; 21(1):1-12.
  • 2.Branemark PI. Osseointegration and its experimental background. J Prosthet Dent 1983; 50(3):399-410.
  • 3.Misch C. Contemporary Implant Dentistry. St. Louis: Mosby, 1998.
  • 4.Dilek O, Tezulas E, Dincel M. Required minimum primary stability and torque values for immediate loading of mini dental implants: an experimental study in nonviable bovine femoral bone. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 2008; 105(2):20-27.
  • 5.Lee CC, Lin SC, Kang MJ, Wu SW, Fu PY. Effects of implant threads on the contact area and stress distribution of marginal bone. Journal of Dental Sciences 2010; 5(3):156-165.
  • 6.O'Sullivan D, Sennerby L, Meredith N. Measurements comparing the initial stability of five designs of dental implants: a human cadaver study. Clin Implant Dent Relat Res 2000; 2(2):85-92.
  • 7.Valente ML, de Castro DT, Shimano AC, Lepri CP, dos Reis AC. Analysis of the influence of implant shape on primary stability using the correlation of multiple methods. Clin Oral Investig 2015; 19(8):1861-1866.
  • 8.Gehrke SA, da Silva UT, Del Fabbro M. Does Implant Design Affect Implant Primary Stability? A Resonance Frequency Analysis-Based Randomized Split-Mouth Clinical Trial. J Oral Implantol 2015; 41(6):281-286.
  • 9.Tabassum A, Meijer GJ, Walboomers XF, Jansen JA. Evaluation of primary and secondary stability of titanium implants using different surgical techniques. Clinical oral implants research 2014; 25(4):487-492.
  • 10.Augustin G, Davila S, Mihoci K, Udiljak T, Vedrina DS, Antabak A. Thermal osteonecrosis and bone drilling parameters revisited. Archives of Orthopaedic and Trauma Surgery 2008; 128(1):71-77.
  • 11.Saha S, Pal S, Albright JA. Surgical drilling: design and performance of an improved drill. J Biomech Eng 1982; 104(3):245-252.
  • 12.Karaca F, Aksakal B. Effects of various drilling parameters on bone during implantology: An in vitro experimental study. Acta Bioeng Biomech 2013; 15(4):25-32.
  • 13.Van Oosterwyck H, Duyck J, Vander Sloten J, Van der Perre G, De Coomans M, Lieven S, Puers R, Naert I. The influence of bone mechanical properties and implant fixation upon bone loading around oral implants. Clinical oral implants research 1998; 9(6):407-418.
  • 14.Misch CE. Density of bone: effect on treatment plans, surgical approach, healing, and progressive boen loading. The International journal of oral implantology: implantologist 1990; 6(2):23.
  • 15.Wolff J. The law of bone transformation. Berlin: Hirschwald, 1892.
  • 16.Pugh JW, Rose RM, Radin EL. Elastic and viscoelastic properties of trabecular bone: dependence on structure. Journal of biomechanics 1973; 6(5):475-485.
  • 17.Isidor F. Influence of forces on peri‐implant bone. Clinical oral implants research 2006; 17(2):8-18.
  • 18.Tada S, Stegaroiu R, Kitamura E, Miyakawa O, Kusakari H. Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis. International Journal of Oral & Maxillofacial Implants 2003; 18(3):357-368.
  • 19.Guan H, Van Staden RC, Johnson NW, Loo YC. Dynamic modelling and simulation of dental implant insertion process—A finite element study. Finite Elements in Analysis and Design 2011; 47(8):886-897.
  • 20.Lekholm U ZG. Patient Selection and Preparation. Chicago: Quintessence, 1985.
  • 21.Meyer U, Vollmer D, Runte C, Bourauel C, Joos U. Bone loading pattern around implants in average and atrophic edentulous maxillae: a finite-element analysis. J Craniomaxillofac Surg 2001; 29(2):100-105.
  • 22.Fugazzotto PA, Wheeler SL, Lindsay JA. Success and failure rates of cylinder implants in type IV bone. J Periodontol 1993; 64(11):1085-1087.
  • 23.Papavasiliou G, Kamposiora P, Bayne SC, Felton DA. Three-dimensional finite element analysis of stress-distribution around single tooth implants as a function of bony support, prosthesis type, and loading during function. J Prosthet Dent 1996; 76(6):633-640.
  • 24.Guan H, van Staden R, Loo YC, Johnson N, Ivanovski S, Meredith N. Influence of bone and dental implant parameters on stress distribution in the mandible: a finite element study. Int J Oral Maxillofac Implants 2009; 24(5):866-876.
  • 25.Orenstein IH, Tarnow DP, Morris HF, Ochi S. Three-year post-placement survival of implants mobile at placement. Ann Periodontol 2000; 5(1):32-41.
  • 26.Hoshaw SJ, Brunski JB, Cochran GV. Mechanical Loading of Brånemark Implants Affects Interfacial Bone Modeling and Remodeling. International Journal of Oral & Maxillofacial Implants 1994; 9(3):345-360.
  • 27.Frost HM. A 2003 update of bone physiology and Wolff's Law for clinicians. Angle Orthod 2004; 74(1):3-15.
  • 28.Stanford CM, Brand RA. Toward an understanding of implant occlusion and strain adaptive bone modeling and remodeling. J Prosthet Dent 1999; 81(5):553-561.
  • 29.Al-Sukhun J, Kelleway J, Helenius M. Development of a three-dimensional finite element model of a human mandible containing endosseous dental implants. I. Mathematical validation and experimental verification. J Biomed Mater Res A 2007; 80(1):234-246.
  • 30.Olsen S, Ferguson SJ, Sigrist C, Fritz WR, Nolte LP, Hallermann W, Caversaccio M. A novel computational method for real‐time preoperative assessment of primary dental implant stability. Clinical oral implants research 2005; 16(1):53-9.
  • 31.Wu SW, Lee CC, Fu PY, Lin SC. The effects of flute shape and thread profile on the insertion torque and primary stability of dental implants. Med Eng Phys 2012; 34(7):797-805.
  • 32.Okumura N, Stegaroiu R, Kitamura E, Kurokawa K, Nomura S. Influence of maxillary cortical bone thickness, implant design and implant diameter on stress around implants: a three-dimensional finite element analysis. J Prosthodont Res 2010; 54(3):133-142.
  • 33.Szmukler-Moncler S, Piattelli A, Favero GA, Dubruille JH. Considerations preliminary to the application of early and immediate loading protocols in dental implantology. Clin Oral Implants Res 2000; 11(1):12-25.
  • 34.Brunski JB. In vivo bone response to biomechanical loading at the bone/dental-implant interface. Adv Dent Res 1999; 13:99-119.
  • 35.Mailath G, Stoiber B, Watzek G, Matejka M. Bone resorption at the entry of osseointegrated implants-a biomechanical phenomenon. Finite element study. Z Stomatol 1989; 86(4):207-216.
  • 36.Matsushita Y, Kitoh M, Mizuta K, Ikeda H, Suetsugu T. Two-dimensional FEM analysis of hydroxyapatite implants: diameter effects on stress distribution. J Oral Implantol 1990; 16(1):6-11.
  • 37.Patra AK, DePaolo JM, D'Souza KS, DeTolla D, Meenaghan MA. Guidelines for analysis and redesign of dental implants. Implant Dent 1998; 7(4):355-368.
  • 38.Himmlova L, Dostalova T, Kacovsky A, Konvickova S. Influence of implant length and diameter on stress distribution: a finite element analysis. J Prosthet Dent 2004; 91(1):20-25.
  • 39.Siegele D, Soltesz U. Numerical investigations of the influence of implant shape on stress distribution in the jaw bone. Int J Oral Maxillofac Implants 1989; 4(4):333-340.
  • 40.Chun HJ, Cheong SY, Han JH, Heo SJ, Chung JP, Rhyu IC, Choıi YC, Baik HK, Ku Y, Kim MH. Evaluation of design parameters of osseointegrated dental implants using finite element analysis. J Oral Rehabil 2002; 29(6):565-574.
  • 41.Norton MR. Marginal bone levels at single tooth implants with a conical fixture design. The influence of surface macro- and microstructure. Clin Oral Implants Res 1998; 9(2):91-99.
  • 42.Stegaroiu R, Kusakari H, Nishiyama S, Miyakawa O. Influence of prosthesis material on stress distribution in bone and implant: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants 1998; 13(6):781-790.
  • 43.Chen J, Lu X, Paydar N, Akay HU, Roberts WE. Mechanical simulation of the human mandible with and without an endosseous implant. Med Eng Phys 1994; 16(1):53-61.
  • 44.Petrie CS, Williams JL. Comparative evaluation of implant designs: influence of diameter, length, and taper on strains in the alveolar crest. A three-dimensional finite-element analysis. Clin Oral Implants Res 2005; 16(4):486-494.
  • 45.Kitamura E, Stegaroiu R, Nomura S, Miyakawa O. Biomechanical aspects of marginal bone resorption around osseointegrated implants: considerations based on a three-dimensional finite element analysis. Clin Oral Implants Res 2004; 15(4):401-412.
  • 46.Misch CE. Short dental implants: a literature review and rationale for use. Dent Today 2005; 24(8):64-66.
  • 47.Georgiopoulos B, Kalioras K, Provatidis C, Manda M, Koidis P. The effects of implant length and diameter prior to and after osseointegration: a 2-D finite element analysis. J Oral Implantol 2007; 33(5):243-256.
  • 48.El-Anwar MI, El-Zawahry MM. A three dimensional finite element study on dental implant design. Journal of Genetic Engineering and Biotechnology 2011; 9(1):77-82.
  • 49.van Steenberghe D, Lekholm U, Bolender C, Folmer T, Henry P, Herrmann I, Higuchi K, Laney W, Linden U, Astrand P. Applicability of osseointegrated oral implants in the rehabilitation of partial edentulism: a prospective multicenter study on 558 fixtures. Int J Oral Maxillofac Implants 1990; 5(3):272-281.
  • 50.Koca OL, Eskitascioglu G, Usumez A. Three-dimensional finite-element analysis of functional stresses in different bone locations produced by implants placed in the maxillary posterior region of the sinus floor. J Prosthet Dent 2005; 93(1):38-44.
There are 50 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Articles
Authors

Kadriye Ayca Dere 0000-0002-2550-7129

Murat Akkocaoglu This is me 0000-0002-9631-3663

Publication Date March 30, 2022
Submission Date November 11, 2020
Published in Issue Year 2022 Volume: 12 Issue: 1

Cite

APA Dere, K. A., & Akkocaoglu, M. (2022). Evaluation of Stress Levels of Dental Implants in Different Macrogeometry in Type 2 Bone: A Finite Element Analysis. Clinical and Experimental Health Sciences, 12(1), 87-93. https://doi.org/10.33808/clinexphealthsci.824559
AMA Dere KA, Akkocaoglu M. Evaluation of Stress Levels of Dental Implants in Different Macrogeometry in Type 2 Bone: A Finite Element Analysis. Clinical and Experimental Health Sciences. March 2022;12(1):87-93. doi:10.33808/clinexphealthsci.824559
Chicago Dere, Kadriye Ayca, and Murat Akkocaoglu. “Evaluation of Stress Levels of Dental Implants in Different Macrogeometry in Type 2 Bone: A Finite Element Analysis”. Clinical and Experimental Health Sciences 12, no. 1 (March 2022): 87-93. https://doi.org/10.33808/clinexphealthsci.824559.
EndNote Dere KA, Akkocaoglu M (March 1, 2022) Evaluation of Stress Levels of Dental Implants in Different Macrogeometry in Type 2 Bone: A Finite Element Analysis. Clinical and Experimental Health Sciences 12 1 87–93.
IEEE K. A. Dere and M. Akkocaoglu, “Evaluation of Stress Levels of Dental Implants in Different Macrogeometry in Type 2 Bone: A Finite Element Analysis”, Clinical and Experimental Health Sciences, vol. 12, no. 1, pp. 87–93, 2022, doi: 10.33808/clinexphealthsci.824559.
ISNAD Dere, Kadriye Ayca - Akkocaoglu, Murat. “Evaluation of Stress Levels of Dental Implants in Different Macrogeometry in Type 2 Bone: A Finite Element Analysis”. Clinical and Experimental Health Sciences 12/1 (March 2022), 87-93. https://doi.org/10.33808/clinexphealthsci.824559.
JAMA Dere KA, Akkocaoglu M. Evaluation of Stress Levels of Dental Implants in Different Macrogeometry in Type 2 Bone: A Finite Element Analysis. Clinical and Experimental Health Sciences. 2022;12:87–93.
MLA Dere, Kadriye Ayca and Murat Akkocaoglu. “Evaluation of Stress Levels of Dental Implants in Different Macrogeometry in Type 2 Bone: A Finite Element Analysis”. Clinical and Experimental Health Sciences, vol. 12, no. 1, 2022, pp. 87-93, doi:10.33808/clinexphealthsci.824559.
Vancouver Dere KA, Akkocaoglu M. Evaluation of Stress Levels of Dental Implants in Different Macrogeometry in Type 2 Bone: A Finite Element Analysis. Clinical and Experimental Health Sciences. 2022;12(1):87-93.

14639   14640