Araştırma Makalesi
BibTex RIS Kaynak Göster

Computational Analysis of Cohesin Complex Genes and their Role in the Pathogenesis of AML

Yıl 2024, Cilt: 14 Sayı: 3, 706 - 718, 30.09.2024
https://doi.org/10.33808/clinexphealthsci.1330630

Öz

Objective: Anomalies in the cohesion complex contribute to the pathogenesis of myeloid malignancies by affecting the self-renewal capacity of hematopoietic and progenitor stem cells, but the underlying mechanisms of this phenotype are not fully understood. Therefore, this study aims
to shed light on the relationship between AML pathogenesis and the cohesion complex by comprehensively determining the mutations and expression profiles in the genes constituting the cohesion complex and investigating the effect of expression on survival using bioinformatics databases and tools.
Methods: A total of 96 different mutations were identified in 13 genes. Out of these 96 mutations, 26 were classified as pathogenic/oncogenic. The expression levels of STAG1, REC8, MAU2, CDCA5, and PDS5B were significantly higher in the patient group compared to the healthy group (p< .01). Survival analysis based on low and high gene expression profiles revealed that increased REC8 expression was significantly associated with survival (p= .024), which is considered a prognostic marker. In STRING analysis, it was determined that hub proteins interact with acetyltransferases ESCO1 and ESCO2 involved in sister chromatid cohesion, with TERF1, a component of the telomere nucleoprotein complex, and with PDS5A and BRCA2, which are functionally related to genetic stability and genetic recombination, respectively.
Results: An increase in language outcomes, particularly in repetition, was observed following the treatments. It was also found that therapy gains were more robust following bihemispheric stimulation of the posterior temporal sites compared to the inferior frontal targets.
Conclusion: Overall, none of the target genes except the mutated REC8 showed a significant and independent effect on the clinical outcome defined as overall survival. However, we have identified the diversity of genetic alterations in individual cohesin subunits through comprehensive
molecular analysis. The results may be beneficial in the development of targeted drug therapies and personalized medicine approaches.

Destekleyen Kurum

yok

Proje Numarası

yok

Teşekkür

The data used in our study are obtained from public database the TCGA Research Network: https:// www.cancer.gov/tcga. We thank the TCGA, GEPIA, cbio Portal, TIMER-2 and STRING databases for the availability of the data.

Kaynakça

  • Newell LF, Cook RJ. Advances in acute myeloid leukemia. BMJ 2021;375:n2026. DOI: 10.1136/bmj.n2026.
  • Pasquer H, Tostain M, Kaci N, Roux B, Benajiba L. Descriptive and Functional Genomics in Acute Myeloid Leukemia (AML): Paving the road for a cure. Cancers (Basel). 2021;13(4):748. DOI: 10.3390/cancers13040748.
  • Heimbruch KE, Meyer AE, Agrawal P, Viny AD, Rao S. A cohesive look at leukemogenesis: The cohesin complex and other driving mutations in AML. Neoplasia 2021;23(3):337-347. DOI: 10.1016/j.neo.2021.01.003.
  • Jann JC, Tothova Z. Cohesin mutations in myeloid malignancies. Blood 2021;138(8):649-661. DOI: 10.1182/blood.2019004259.
  • Han C, Gao X, Li Y, Zhang J, Yang E, Zhang L, Yu L. Characteristics of cohesin mutation in acute myeloid leukemia and its clinical significance. Front Oncol. 2021;11:579881. DOI: 10.3389/fonc.2021.579881.
  • Tothova Z, Valton AL, Gorelov RA, Vallurupalli M, Krill-Burger JM, Holmes A, Landers CC, Haydu JE, Malolepsza E, Hartigan C, Donahue M, Popova KD, Koochaki S, Venev SV, Rivera J, Chen E, Lage K, Schenone M, D'Andrea AD, Carr SA, Morgan EA, Dekker J, Ebert BL. Cohesin mutations alter DNA damage repair and chromatin structure and create therapeutic vulnerabilities in MDS/AML. JCI Insight 2021;6(3):e142149. DOI.org/10.1172/jci.insight.142149.
  • Mazumdar C, Majeti R. The role of mutations in the cohesin complex in acute myeloid leukemia. Int J Hematol. 2017;105(1):31-36. DOI: 10.1007/s12185-016-2119-7.
  • Jahn N, Terzer T, Sträng E, Dolnik A, Cocciardi S, Panina E, Corbacioglu A, Herzig J, Weber D, Schrade A, Götze K, Schröder T, Lübbert M, Wellnitz D, Koller E, Schlenk RF, Gaidzik VI, Paschka P, Rücker FG, Heuser M, Thol F, Ganser A, Benner A, Döhner H, Bullinger L, Döhner K. Genomic heterogeneity in core-binding factor acute myeloid leukemia and its clinical implication. Blood Adv. 2020;4(24):6342-6352. DOI: 10.1182/bloodadvances.2020002673.
  • Carico ZM, Stefan HC, Justice M, Yimit A, Dowen JM. A cohesin cancer mutation reveals a role for the hinge domain in genome organization and gene expression. PLoS Genet. 2021;17(3):e1009435. DOI: 10.1371/journal.pgen.1009435.
  • Brar GA, Hochwagen A, Ee LS, Amon A. The multiple roles of cohesin in meiotic chromosome morphogenesis and pairing. Mol Biol Cell 2009;20(3):1030-1047. DOI: 10.1091/mbc.e08-06-0637.
  • Liu J, Krantz ID. Cohesin and human disease. Annu Rev Genomics Hum Genet. 2008;9:303-320. DOI: 10.1146/annurev.genom.9.081307.164211
  • Chatterjee A, Zakian S, Hu XW, Singleton MR. Structural insights into the regulation of cohesion establishment by Wpl1. EMBO J. 2013;32(5):677-687. DOI: 10.1038/emboj.2013.16.
  • Chandrasekaran V, Oparina N, Garcia-Bonete MJ, Wasén C, Erlandsson MC, Malmhäll-Bah E, Andersson KME, Jensen M, Silfverswärd ST, Katona G, Bokarewa MI. Cohesin-mediated chromatin interactions and autoimmunity. Front Immunol. 2022;13:840002. DOI.org/10.3389/fimmu.2022.840002
  • Zhang N, Coutinho LE, Pati D. PDS5A and PDS5B in cohesin function and human disease. Int J Mol Sci. 2021;22(11):5868. DOI: 10.3390/ijms22115868.
  • Williams MS, Somervaille TCP. Leukemogenic activity of cohesin rings True. Cell Stem Cell 2015;17(6):642-644. DOI: 10.1016/j.stem.2015.11.008.
  • Viny AD, Levine RL. Cohesin mutations in myeloid malignancies made simple. Curr Opin Hematol. 2018;25(2):61-66. DOI: 10.1097/MOH.0000000000000405.
  • Cerami E, Gao J, Dogrusoz U. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401e4. DOI: 10.1158/2159-8290.CD-12-0095
  • Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet. 2013;76:7e20. DOI: 10.1002/0471142905.hg0720s76
  • Ng PC, Henikoff S. Predicting deleterious amino acid substitutions. Genome Res 2001;11(5):863e74. DOI: 10.1101/gr.176601
  • Chakravarty D, Gao J, Phillips SM, Kundra R, Zhang H, Wang J, Rudolph JE, Yaeger R, Soumerai T, Nissan MH, Chang MT, Chandarlapaty S, Traina TA, Paik PK, Ho AL, Hantash FM, Grupe A, Baxi SS, Callahan MK, Snyder A, Chi P, Danila D, Gounder M, Harding JJ, Hellmann MD, Iyer G, Janjigian Y, Kaley T, Levine DA, Lowery M, Omuro A, Postow MA, Rathkopf D, Shoushtari AN, Shukla N, Voss M, Paraiso E, Zehir A, Berger MF, Taylor BS, Saltz LB, Riely GJ, Ladanyi M, Hyman DM, Baselga J, Sabbatini P, Solit DB, Schultz N. OncoKB: A precision oncology knowledge base. JCO Precis Oncol. 2017;2017:PO.17.00011. DOI: 10.1200/PO.17.00011
  • 21. Tang Z, Li C, Kang B. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45(1):98e102. DOI: 10.1093/nar/gkx247
  • Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019 ;47(D1):D607-D613. DOI: 10.1093/nar/gky1131.
  • Cuadrado A, Losada A. Specialized functions of cohesins STAG1 and STAG2 in 3D genome architecture. Curr Opin Genet Dev. 2020;61:9-16. DOI: 10.1016/j.gde.2020.02.024.
  • Cheng H, Zhang N, Pati D. Cohesin subunit RAD21: From biology to disease. Gene 2020;758:144966. DOI: 10.1016/j.gene.2020.144966.
  • Mannini L, Liu J, Krantz ID, Musio A. Spectrum and consequences of SMC1A mutations: The unexpected involvement of a core component of cohesin in human disease. Hum Mutat. 2010;31(1):5-10. DOI: 10.1002/humu.21129.
  • Rivera-Colón Y, Maguire A, Liszczak GP, Olia AS, Marmorstein R. Molecular basis for cohesin acetylation by establishment of sister chromatid cohesion n-acetyltransferase ESCO1. J Biol Chem. 2016;291(51):26468-26477. DOI 10.1074/jbc.M116.752220.
  • Tooley J, Stukenberg PT. The Ndc80 complex: Integrating the kinetochore's many movements. Chromosome Res. 2011;19(3):377-391. DOI. 10.1007/s10577-010-9180-5.
  • Porreca RM, Herrera-Moyano E, Skourti E, Law PP, Gonzalez Franco R, Montoya A, Faull P, Kramer H, Vannier JB. TRF1 averts chromatin remodelling, recombination and replication dependent-break induced replication at mouse telomeres. Elife 2020 14;9:e49817. DOI: 10.7554/eLife.49817
  • Gorodetska I, Kozeretska I, Dubrovska A. BRCA Genes: The role in genome stability, cancer stemness and therapy resistance. J Cancer 2019;10(9):2109-2127. DOI: 10.7150/jca.30410.
  • Lagunas-Rangel FA, Chávez-Valencia V, Gómez-Guijosa MÁ, Cortes-Penagos C. Acute myeloid leukemia-genetic alterations and their clinical prognosis. Int J Hematol Oncol Stem Cell Res. 2017;11(4):328-339.
  • Fisher JB, McNulty M, Burke MJ, Crispino JD, Rao S. Cohesin mutations in myeloid malignancies. Trends Cancer 2017;3(4):282-293. DOI: 10.1016/j.trecan.2017.02.006.
  • Kumar CC. Genetic abnormalities and challenges in the treatment of acute myeloid leukemia. Genes Cancer 2011;2(2):95-107. DOI: 10.1177/1947601911408076.
  • Thol F, Bollin R, Gehlhaar M, Walter C, Dugas M, Suchanek KJ, Kirchner A, Huang L, Chaturvedi A, Wichmann M, Wiehlmann L, Shahswar R, Damm F, Göhring G, Schlegelberger B, Schlenk R, Döhner K, Döhner H, Krauter J, Ganser A, Heuser M. Mutations in the cohesin complex in acute myeloid leukemia: Clinical and prognostic implications. Blood 2014;123(6):914-920. DOI: 10.1182/blood-2013-07-518746.
  • Chin CV, Antony J, Ketharnathan S, Labudina A, Gimenez G, Parsons KM, He J, George AJ, Pallotta MM, Musio A, Braithwaite A, Guilford P, Hannan RD, Horsfield JA. Cohesin mutations are synthetic lethal with stimulation of WNT signaling. Elife 2020;9:e61405. DOI: 10.7554/eLife.61405
  • Sun Y, Xu X, Zhao W, Zhang Y, Chen K, Li Y, Wang X, Zhang M, Xue B, Yu W, Hou Y, Wang C, Xie W, Li C, Kong D, Wang S, Sun Y. RAD21 is the core subunit of the cohesin complex involved in directing genome organization. Genome Biol. 2023;24(1):155. DOI: 10.1016/j.jcmgh.2022.02.008.
  • Misulovin Z, Pherson M, Gause M, Dorsett D. Brca2, Pds5 and Wapl differentially control cohesin chromosome association and function. PLoS Genet. 2018;14(2):e1007225.
  • Muir KW, Kschonsak M, Li Y, Metz J, Haering CH, Panne D. Structure of the Pds5-Scc1 complex and implications for cohesin function. Cell Rep. 2016;14(9):2116-2126. DOI :10.1016/j.celrep.2016.01.078.
  • Ochi Y, Ogawa S. Chromatin-spliceosome mutations in acute myeloid leukemia. Cancers (Basel). 2021;13(6):1232. DOI: 10.3390/cancers13061232.
  • Shamsuddin AM. Metabolism and cellular functions of IP6: A review. Anticancer Res. 1999;19(5A):3733-3736.
  • Ouyang Z, Zheng G, Tomchick DR, Luo X, Yu H. Structural basis and IP6 requirement for Pds5-dependent cohesin dynamics. Mol Cell. 2016;62(2):248-259. DOI: 10.1073/pnas.1304594110.
  • Ouyang Z, Zheng G, Song J, Borek DM, Otwinowski Z, Brautigam CA, Tomchick DR, Rankin S, Yu H. Structure of the human cohesin inhibitor Wapl. Proc Natl Acad Sci U S A. 2013;110(28):11355-11360. DOI: 10.1073/pnas.1304594110.
  • Sakuno T, Hiraoka Y. Rec8 cohesin: A Structural platform for shaping the meiotic chromosomes. Genes (Basel). 2022;13(2):200 DOI:10.3390/genes13020200
  • Mannini L, Liu J, Krantz ID, Musio A. Spectrum and consequences of SMC1A mutations: The unexpected involvement of a core component of cohesin in human disease. Hum Mutat. 2010;31(1):5-10. DOI: 10.1002/humu.21129.
  • Musio A. The multiple facets of the SMC1A gene. Gene 2020;743:144612. DOI: 10.1016/j.gene.2020.144612
  • Xu X, Kanai R, Wang L, Yanagida M. Cohesin ATPase activities regulate DNA binding and coiled-coil configuration. Proc Natl Acad Sci U S A. 2022;119(33):e2208004119. DOI.org/10.1073/pnas.2208004119
  • Kleyman M, Kabeche L, Compton DA. STAG2 promotes error correction in mitosis by regulating kinetochore-microtubule attachments. J Cell Sci. 2014;127(Pt 19):4225-4233. DOI: 10.1242/jcs.151613.
  • Cuadrado A, Losada A. Specialized functions of cohesins STAG1 and STAG2 in 3D genome architecture. Curr Opin Genet Dev. 2020;61:9-16. DOI: 10.1016/j.gde.2020.02.024.
  • Eckardt JN, Stasik S, Röllig C, Sauer T, Scholl S, Hochhaus A, Crysandt M, Brümmendorf TH, Naumann R, Steffen B, Kunzmann V, Einsele H, Schaich M, Burchert A, Neubauer A, Schäfer-Eckart K, Schliemann C, Krause SW, Herbst R, Hänel M, Hanoun M, Kaiser U, Kaufmann M, Rácil Z, Mayer J, Cerqueira T, Kroschinsky F, Berdel WE, Serve H, Müller-Tidow C, Platzbecker U, Baldus CD, Schetelig J, Siepmann T, Bornhäuser M, Middeke JM, Thiede C. Alterations of cohesin complex genes in acute myeloid leukemia: Differential co-mutations, clinical presentation and impact on outcome. Blood Cancer J. 2023;13(1):18. DOI: 10.1038/S41408-023-00790-1.
  • Casa V, Moronta Gines M, Gade Gusmao E, Slotman JA, Zirkel A, Josipovic N, Oole E, van IJcken WFJ, Houtsmuller AB, Papantonis A, Wendt KS. Redundant and specific roles of cohesin STAG subunits in chromatin looping and transcriptional control. Genome Res. 2020;30(4):515-527. DOI: 10.1101/gr.253211.119.
  • Arruda NL, Carico ZM, Justice M, Liu YF, Zhou J, Stefan HC, Dowen JM. Distinct and overlapping roles of STAG1 and STAG2 in cohesin localization and gene expression in embryonic stem cells. Epigenetics Chromatin. 2020;13(1):32. DOI: 10.1186/s13072-020-00353-9.
  • Viny AD, Bowman RL, Liu Y, Lavallée VP, Eisman SE, Xiao W, Durham BH, Navitski A, Park J, Braunstein S, Alija B, Karzai A, Csete IS, Witkin M, Azizi E, Baslan T, Ott CJ, Pe'er D, Dekker J, Koche R, Levine RL. Cohesin members Stag1 and Stag2 display distinct roles in chromatin accessibility and topological control of HSC self-renewal and differentiation. Cell Stem Cell. 2019;25(5):682-696. DOI: 10.1016/j.gene.2020.144966.
Yıl 2024, Cilt: 14 Sayı: 3, 706 - 718, 30.09.2024
https://doi.org/10.33808/clinexphealthsci.1330630

Öz

Proje Numarası

yok

Kaynakça

  • Newell LF, Cook RJ. Advances in acute myeloid leukemia. BMJ 2021;375:n2026. DOI: 10.1136/bmj.n2026.
  • Pasquer H, Tostain M, Kaci N, Roux B, Benajiba L. Descriptive and Functional Genomics in Acute Myeloid Leukemia (AML): Paving the road for a cure. Cancers (Basel). 2021;13(4):748. DOI: 10.3390/cancers13040748.
  • Heimbruch KE, Meyer AE, Agrawal P, Viny AD, Rao S. A cohesive look at leukemogenesis: The cohesin complex and other driving mutations in AML. Neoplasia 2021;23(3):337-347. DOI: 10.1016/j.neo.2021.01.003.
  • Jann JC, Tothova Z. Cohesin mutations in myeloid malignancies. Blood 2021;138(8):649-661. DOI: 10.1182/blood.2019004259.
  • Han C, Gao X, Li Y, Zhang J, Yang E, Zhang L, Yu L. Characteristics of cohesin mutation in acute myeloid leukemia and its clinical significance. Front Oncol. 2021;11:579881. DOI: 10.3389/fonc.2021.579881.
  • Tothova Z, Valton AL, Gorelov RA, Vallurupalli M, Krill-Burger JM, Holmes A, Landers CC, Haydu JE, Malolepsza E, Hartigan C, Donahue M, Popova KD, Koochaki S, Venev SV, Rivera J, Chen E, Lage K, Schenone M, D'Andrea AD, Carr SA, Morgan EA, Dekker J, Ebert BL. Cohesin mutations alter DNA damage repair and chromatin structure and create therapeutic vulnerabilities in MDS/AML. JCI Insight 2021;6(3):e142149. DOI.org/10.1172/jci.insight.142149.
  • Mazumdar C, Majeti R. The role of mutations in the cohesin complex in acute myeloid leukemia. Int J Hematol. 2017;105(1):31-36. DOI: 10.1007/s12185-016-2119-7.
  • Jahn N, Terzer T, Sträng E, Dolnik A, Cocciardi S, Panina E, Corbacioglu A, Herzig J, Weber D, Schrade A, Götze K, Schröder T, Lübbert M, Wellnitz D, Koller E, Schlenk RF, Gaidzik VI, Paschka P, Rücker FG, Heuser M, Thol F, Ganser A, Benner A, Döhner H, Bullinger L, Döhner K. Genomic heterogeneity in core-binding factor acute myeloid leukemia and its clinical implication. Blood Adv. 2020;4(24):6342-6352. DOI: 10.1182/bloodadvances.2020002673.
  • Carico ZM, Stefan HC, Justice M, Yimit A, Dowen JM. A cohesin cancer mutation reveals a role for the hinge domain in genome organization and gene expression. PLoS Genet. 2021;17(3):e1009435. DOI: 10.1371/journal.pgen.1009435.
  • Brar GA, Hochwagen A, Ee LS, Amon A. The multiple roles of cohesin in meiotic chromosome morphogenesis and pairing. Mol Biol Cell 2009;20(3):1030-1047. DOI: 10.1091/mbc.e08-06-0637.
  • Liu J, Krantz ID. Cohesin and human disease. Annu Rev Genomics Hum Genet. 2008;9:303-320. DOI: 10.1146/annurev.genom.9.081307.164211
  • Chatterjee A, Zakian S, Hu XW, Singleton MR. Structural insights into the regulation of cohesion establishment by Wpl1. EMBO J. 2013;32(5):677-687. DOI: 10.1038/emboj.2013.16.
  • Chandrasekaran V, Oparina N, Garcia-Bonete MJ, Wasén C, Erlandsson MC, Malmhäll-Bah E, Andersson KME, Jensen M, Silfverswärd ST, Katona G, Bokarewa MI. Cohesin-mediated chromatin interactions and autoimmunity. Front Immunol. 2022;13:840002. DOI.org/10.3389/fimmu.2022.840002
  • Zhang N, Coutinho LE, Pati D. PDS5A and PDS5B in cohesin function and human disease. Int J Mol Sci. 2021;22(11):5868. DOI: 10.3390/ijms22115868.
  • Williams MS, Somervaille TCP. Leukemogenic activity of cohesin rings True. Cell Stem Cell 2015;17(6):642-644. DOI: 10.1016/j.stem.2015.11.008.
  • Viny AD, Levine RL. Cohesin mutations in myeloid malignancies made simple. Curr Opin Hematol. 2018;25(2):61-66. DOI: 10.1097/MOH.0000000000000405.
  • Cerami E, Gao J, Dogrusoz U. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401e4. DOI: 10.1158/2159-8290.CD-12-0095
  • Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet. 2013;76:7e20. DOI: 10.1002/0471142905.hg0720s76
  • Ng PC, Henikoff S. Predicting deleterious amino acid substitutions. Genome Res 2001;11(5):863e74. DOI: 10.1101/gr.176601
  • Chakravarty D, Gao J, Phillips SM, Kundra R, Zhang H, Wang J, Rudolph JE, Yaeger R, Soumerai T, Nissan MH, Chang MT, Chandarlapaty S, Traina TA, Paik PK, Ho AL, Hantash FM, Grupe A, Baxi SS, Callahan MK, Snyder A, Chi P, Danila D, Gounder M, Harding JJ, Hellmann MD, Iyer G, Janjigian Y, Kaley T, Levine DA, Lowery M, Omuro A, Postow MA, Rathkopf D, Shoushtari AN, Shukla N, Voss M, Paraiso E, Zehir A, Berger MF, Taylor BS, Saltz LB, Riely GJ, Ladanyi M, Hyman DM, Baselga J, Sabbatini P, Solit DB, Schultz N. OncoKB: A precision oncology knowledge base. JCO Precis Oncol. 2017;2017:PO.17.00011. DOI: 10.1200/PO.17.00011
  • 21. Tang Z, Li C, Kang B. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45(1):98e102. DOI: 10.1093/nar/gkx247
  • Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019 ;47(D1):D607-D613. DOI: 10.1093/nar/gky1131.
  • Cuadrado A, Losada A. Specialized functions of cohesins STAG1 and STAG2 in 3D genome architecture. Curr Opin Genet Dev. 2020;61:9-16. DOI: 10.1016/j.gde.2020.02.024.
  • Cheng H, Zhang N, Pati D. Cohesin subunit RAD21: From biology to disease. Gene 2020;758:144966. DOI: 10.1016/j.gene.2020.144966.
  • Mannini L, Liu J, Krantz ID, Musio A. Spectrum and consequences of SMC1A mutations: The unexpected involvement of a core component of cohesin in human disease. Hum Mutat. 2010;31(1):5-10. DOI: 10.1002/humu.21129.
  • Rivera-Colón Y, Maguire A, Liszczak GP, Olia AS, Marmorstein R. Molecular basis for cohesin acetylation by establishment of sister chromatid cohesion n-acetyltransferase ESCO1. J Biol Chem. 2016;291(51):26468-26477. DOI 10.1074/jbc.M116.752220.
  • Tooley J, Stukenberg PT. The Ndc80 complex: Integrating the kinetochore's many movements. Chromosome Res. 2011;19(3):377-391. DOI. 10.1007/s10577-010-9180-5.
  • Porreca RM, Herrera-Moyano E, Skourti E, Law PP, Gonzalez Franco R, Montoya A, Faull P, Kramer H, Vannier JB. TRF1 averts chromatin remodelling, recombination and replication dependent-break induced replication at mouse telomeres. Elife 2020 14;9:e49817. DOI: 10.7554/eLife.49817
  • Gorodetska I, Kozeretska I, Dubrovska A. BRCA Genes: The role in genome stability, cancer stemness and therapy resistance. J Cancer 2019;10(9):2109-2127. DOI: 10.7150/jca.30410.
  • Lagunas-Rangel FA, Chávez-Valencia V, Gómez-Guijosa MÁ, Cortes-Penagos C. Acute myeloid leukemia-genetic alterations and their clinical prognosis. Int J Hematol Oncol Stem Cell Res. 2017;11(4):328-339.
  • Fisher JB, McNulty M, Burke MJ, Crispino JD, Rao S. Cohesin mutations in myeloid malignancies. Trends Cancer 2017;3(4):282-293. DOI: 10.1016/j.trecan.2017.02.006.
  • Kumar CC. Genetic abnormalities and challenges in the treatment of acute myeloid leukemia. Genes Cancer 2011;2(2):95-107. DOI: 10.1177/1947601911408076.
  • Thol F, Bollin R, Gehlhaar M, Walter C, Dugas M, Suchanek KJ, Kirchner A, Huang L, Chaturvedi A, Wichmann M, Wiehlmann L, Shahswar R, Damm F, Göhring G, Schlegelberger B, Schlenk R, Döhner K, Döhner H, Krauter J, Ganser A, Heuser M. Mutations in the cohesin complex in acute myeloid leukemia: Clinical and prognostic implications. Blood 2014;123(6):914-920. DOI: 10.1182/blood-2013-07-518746.
  • Chin CV, Antony J, Ketharnathan S, Labudina A, Gimenez G, Parsons KM, He J, George AJ, Pallotta MM, Musio A, Braithwaite A, Guilford P, Hannan RD, Horsfield JA. Cohesin mutations are synthetic lethal with stimulation of WNT signaling. Elife 2020;9:e61405. DOI: 10.7554/eLife.61405
  • Sun Y, Xu X, Zhao W, Zhang Y, Chen K, Li Y, Wang X, Zhang M, Xue B, Yu W, Hou Y, Wang C, Xie W, Li C, Kong D, Wang S, Sun Y. RAD21 is the core subunit of the cohesin complex involved in directing genome organization. Genome Biol. 2023;24(1):155. DOI: 10.1016/j.jcmgh.2022.02.008.
  • Misulovin Z, Pherson M, Gause M, Dorsett D. Brca2, Pds5 and Wapl differentially control cohesin chromosome association and function. PLoS Genet. 2018;14(2):e1007225.
  • Muir KW, Kschonsak M, Li Y, Metz J, Haering CH, Panne D. Structure of the Pds5-Scc1 complex and implications for cohesin function. Cell Rep. 2016;14(9):2116-2126. DOI :10.1016/j.celrep.2016.01.078.
  • Ochi Y, Ogawa S. Chromatin-spliceosome mutations in acute myeloid leukemia. Cancers (Basel). 2021;13(6):1232. DOI: 10.3390/cancers13061232.
  • Shamsuddin AM. Metabolism and cellular functions of IP6: A review. Anticancer Res. 1999;19(5A):3733-3736.
  • Ouyang Z, Zheng G, Tomchick DR, Luo X, Yu H. Structural basis and IP6 requirement for Pds5-dependent cohesin dynamics. Mol Cell. 2016;62(2):248-259. DOI: 10.1073/pnas.1304594110.
  • Ouyang Z, Zheng G, Song J, Borek DM, Otwinowski Z, Brautigam CA, Tomchick DR, Rankin S, Yu H. Structure of the human cohesin inhibitor Wapl. Proc Natl Acad Sci U S A. 2013;110(28):11355-11360. DOI: 10.1073/pnas.1304594110.
  • Sakuno T, Hiraoka Y. Rec8 cohesin: A Structural platform for shaping the meiotic chromosomes. Genes (Basel). 2022;13(2):200 DOI:10.3390/genes13020200
  • Mannini L, Liu J, Krantz ID, Musio A. Spectrum and consequences of SMC1A mutations: The unexpected involvement of a core component of cohesin in human disease. Hum Mutat. 2010;31(1):5-10. DOI: 10.1002/humu.21129.
  • Musio A. The multiple facets of the SMC1A gene. Gene 2020;743:144612. DOI: 10.1016/j.gene.2020.144612
  • Xu X, Kanai R, Wang L, Yanagida M. Cohesin ATPase activities regulate DNA binding and coiled-coil configuration. Proc Natl Acad Sci U S A. 2022;119(33):e2208004119. DOI.org/10.1073/pnas.2208004119
  • Kleyman M, Kabeche L, Compton DA. STAG2 promotes error correction in mitosis by regulating kinetochore-microtubule attachments. J Cell Sci. 2014;127(Pt 19):4225-4233. DOI: 10.1242/jcs.151613.
  • Cuadrado A, Losada A. Specialized functions of cohesins STAG1 and STAG2 in 3D genome architecture. Curr Opin Genet Dev. 2020;61:9-16. DOI: 10.1016/j.gde.2020.02.024.
  • Eckardt JN, Stasik S, Röllig C, Sauer T, Scholl S, Hochhaus A, Crysandt M, Brümmendorf TH, Naumann R, Steffen B, Kunzmann V, Einsele H, Schaich M, Burchert A, Neubauer A, Schäfer-Eckart K, Schliemann C, Krause SW, Herbst R, Hänel M, Hanoun M, Kaiser U, Kaufmann M, Rácil Z, Mayer J, Cerqueira T, Kroschinsky F, Berdel WE, Serve H, Müller-Tidow C, Platzbecker U, Baldus CD, Schetelig J, Siepmann T, Bornhäuser M, Middeke JM, Thiede C. Alterations of cohesin complex genes in acute myeloid leukemia: Differential co-mutations, clinical presentation and impact on outcome. Blood Cancer J. 2023;13(1):18. DOI: 10.1038/S41408-023-00790-1.
  • Casa V, Moronta Gines M, Gade Gusmao E, Slotman JA, Zirkel A, Josipovic N, Oole E, van IJcken WFJ, Houtsmuller AB, Papantonis A, Wendt KS. Redundant and specific roles of cohesin STAG subunits in chromatin looping and transcriptional control. Genome Res. 2020;30(4):515-527. DOI: 10.1101/gr.253211.119.
  • Arruda NL, Carico ZM, Justice M, Liu YF, Zhou J, Stefan HC, Dowen JM. Distinct and overlapping roles of STAG1 and STAG2 in cohesin localization and gene expression in embryonic stem cells. Epigenetics Chromatin. 2020;13(1):32. DOI: 10.1186/s13072-020-00353-9.
  • Viny AD, Bowman RL, Liu Y, Lavallée VP, Eisman SE, Xiao W, Durham BH, Navitski A, Park J, Braunstein S, Alija B, Karzai A, Csete IS, Witkin M, Azizi E, Baslan T, Ott CJ, Pe'er D, Dekker J, Koche R, Levine RL. Cohesin members Stag1 and Stag2 display distinct roles in chromatin accessibility and topological control of HSC self-renewal and differentiation. Cell Stem Cell. 2019;25(5):682-696. DOI: 10.1016/j.gene.2020.144966.
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kanser Hücre Biyolojisi
Bölüm Articles
Yazarlar

Dilara Fatma Akın 0000-0002-0903-0017

Didem Özkan 0000-0003-4210-5073

Romyla Bourouba 0000-0001-8135-6751

Proje Numarası yok
Erken Görünüm Tarihi 27 Eylül 2024
Yayımlanma Tarihi 30 Eylül 2024
Gönderilme Tarihi 25 Temmuz 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 3

Kaynak Göster

APA Akın, D. F., Özkan, D., & Bourouba, R. (2024). Computational Analysis of Cohesin Complex Genes and their Role in the Pathogenesis of AML. Clinical and Experimental Health Sciences, 14(3), 706-718. https://doi.org/10.33808/clinexphealthsci.1330630
AMA Akın DF, Özkan D, Bourouba R. Computational Analysis of Cohesin Complex Genes and their Role in the Pathogenesis of AML. Clinical and Experimental Health Sciences. Eylül 2024;14(3):706-718. doi:10.33808/clinexphealthsci.1330630
Chicago Akın, Dilara Fatma, Didem Özkan, ve Romyla Bourouba. “Computational Analysis of Cohesin Complex Genes and Their Role in the Pathogenesis of AML”. Clinical and Experimental Health Sciences 14, sy. 3 (Eylül 2024): 706-18. https://doi.org/10.33808/clinexphealthsci.1330630.
EndNote Akın DF, Özkan D, Bourouba R (01 Eylül 2024) Computational Analysis of Cohesin Complex Genes and their Role in the Pathogenesis of AML. Clinical and Experimental Health Sciences 14 3 706–718.
IEEE D. F. Akın, D. Özkan, ve R. Bourouba, “Computational Analysis of Cohesin Complex Genes and their Role in the Pathogenesis of AML”, Clinical and Experimental Health Sciences, c. 14, sy. 3, ss. 706–718, 2024, doi: 10.33808/clinexphealthsci.1330630.
ISNAD Akın, Dilara Fatma vd. “Computational Analysis of Cohesin Complex Genes and Their Role in the Pathogenesis of AML”. Clinical and Experimental Health Sciences 14/3 (Eylül 2024), 706-718. https://doi.org/10.33808/clinexphealthsci.1330630.
JAMA Akın DF, Özkan D, Bourouba R. Computational Analysis of Cohesin Complex Genes and their Role in the Pathogenesis of AML. Clinical and Experimental Health Sciences. 2024;14:706–718.
MLA Akın, Dilara Fatma vd. “Computational Analysis of Cohesin Complex Genes and Their Role in the Pathogenesis of AML”. Clinical and Experimental Health Sciences, c. 14, sy. 3, 2024, ss. 706-18, doi:10.33808/clinexphealthsci.1330630.
Vancouver Akın DF, Özkan D, Bourouba R. Computational Analysis of Cohesin Complex Genes and their Role in the Pathogenesis of AML. Clinical and Experimental Health Sciences. 2024;14(3):706-18.

14639   14640