Research Article
BibTex RIS Cite

Plantar Pressure Topography Based Sports Branch Prediction System Modeling in 7-11 Years Old Athletes

Year 2024, Volume: 14 Issue: 4, 934 - 943, 29.12.2024
https://doi.org/10.33808/clinexphealthsci.1268378

Abstract

Objective: The sole of foot plays a crucial role in sports movements, as it applies pressure to the ground and transfers loads. The foot pressing types vary depending on the sport played by the athlete. The aim of this study is to develop a model that can predict sports branches from the plantar pressure types of athletes.
Methods: A total of 80 athletes, 54 athletics and 26 combat athletes, between the ages of 7-11 were included in the study where static pedobarographic measurements of the participants were collected. First we applied conventional statistical analysis on the featured obtained from the measurements of the data using Fisher Freeman Halton Exact test. Then, we implemented sports branch prediction based on the data obtained from these measurements using advanced machine learning and deep learning techniques.
Results: There was no statistically significant difference between the plantar compression types of the participants according to the branches (p > .05). In the machine learning classification based on foot plantar compression, the best success was found to be 56.9% with Linear Support Vector Machine. When the branch prediction successes made with deep learning were examined, it was found that the average branch prediction was 82.58±7.62% in the foot with pes planus, 87.84±17.56% in the normal foot, and 85.95±21.19% in the foot with pes cavus.
Conclusion: In the study, it was determined that the success of branch prediction made with machine learning techniques was low, and the success of deep learning was high. With the development of the method used in this study in future studies, an idea can be obtained about which branch of the foot plantar pressure type is more prone to and innovations can be brought to the branch selection methods.

Ethical Statement

This study was approved by the Marmara University, Health Sciences Institute, Ethics Committee (Date: 17.01.2022; Approval number: 03)

Supporting Institution

The authors received no financial support for the research

Thanks

This study was presented as an oral presentation at the 20th International Sports Sciences Congress on 28th November-1st December 2022. This article is extracted from my doctorate dissertation entitled "Evaluation of the relationship between pattern of foot pressure and posture in children aged 7-11 playing athletics and combat sports”, supervised by Adil Deniz DURU and Mehmet ÜNAL (Ph.D. Dissertation, Marmara University, İstanbul, Türkiye, 2023).

References

  • Donald AN. Kinesiology of The Musculoskeletal System Foundations For Rehabilitation. 3.rd Edition. By Mosby, Inc., An Affiliate of Elsevier Inc; 2010.
  • Angin S, Demirbüken İ. Ankle and foot complex. In Comparative Kinesiology of the Human Body. Academic Press; 2020.p.411-439.
  • Franco AH. Pes cavus and pes planus: Analyses and treatment. Phys Ther. 1987;67(5):688-694. DOI: 10.1093/ptj/67.5.688
  • Headlee DL, Leonard JL, Hart JM, Ingersoll CD, Hertel J. Fatigue of the plantar intrinsic foot muscles increases navicular drop. J Electromyogr Kinesiol. 2008;18(3):420-425. DOI: 10.1016/j.jelekin.2006.11.004
  • Zhao X, Gu Y, Yu J, Ma Y, Zhou Z. The influence of gender, age, and body mass index on arch height and arch stiffness. J Foot Ankle Surg. 2020;59(2):298-302. DOI: 10.1053/j.jfas.2019.08.022
  • Uzun A, Aydos L, Kaya L, Kanatlı U, Esen E. Researhing the effect of longtime skate using on distribution of sole pressure in ice hockey players. Spormetre J Phys Educ Sports Sci. 2012;4:117-124. (Turkish) DOI: 10.1501/Sporm_0000000228
  • Wong P, Chamari K, Chaouachi A, Wisloff U, Hong Y. Difference in plantar pressure between the preferred and non-preferred feet in four soccer-related movements. Brit J Sports Med. 2007;41(2):84-92. DOI: 10.1136/bjsm.2006.030908
  • Stokes I, Hutton W, Stott J. Forces acting on the metatarsals during normal walking. J Anat. 1979;129(3):579-590. PMID: 541241
  • Park JH, Noh SC, Jang HS, Yu WJ, Park MK, Choi HH. The study of correlation between foot-pressure distribution and scoliosis. 13th International Conference on Biomedical Engineering: ICBME; 2008 December 3-6; Singapore. Springer Berlin Heidelberg; 2009. pp.974-978.
  • Cosca D, Navazio F. Common problems in endurance athletes. Am Fam Physician. 2007;76(2):237-244.
  • Yeap JS, Singh D, Birch R. Tibialis posterior tendon dysfunction: A primary of secondary problem? Foot Ankle Int. 2001;22(1):51-55. DOI: 10.1177/10711007010220010
  • Patel M, Shah P, Ravaliya S, Patel M. Relationship of anterior knee pain and flat foot: a cross-sectional study. Int J Health Sci Res. 2021;11(3):86-92.
  • Wong P, Chamari K, Chaouachi A, Wisloff U, Hong Y. Higher plantar pressure on the medial side in four soccer related movements. Br J Sports Med. 2007;41:93-100. DOI: 10.1136/bjsm.2006.030668
  • Orlin M, McPoil T. Plantar pressure measurement. Phys Ther. 2000;80:399-409. DOI: 10.1093/ptj/80.4.399
  • Yalçın N, Esen E, Kanatlı U, Yetkin H. Medial longitudinal arkın değerlendirilmesi: dinamik plantar basınç ölçüm sistemi ile radyografik yöntemlerin karşılaştırılması. Acta Orthop Traumatol Turc. 2010;44(3):241-245 (Turkish)
  • Balaji E, Brindha D, Balakrishnan R. Supervised machine learning based gait classification system for early detection and stage classification of Parkinson’s disease. Appl Soft Comput. 2020;94(2020):106494. DOI: 10.1016/j.asoc.2020.106494
  • Chae J, Kang YJ, Noh Y. A deep-learning approach for foot-type classification using heterogeneous pressure data. Sensors. 2020;20(16):1-19. DOI: 10.3390/s20164481
  • Ramos-Alvarez JJ, Del Castillo-Campos MJ, Polo-Portes CE, Lara-Hernandez MT, Jimenez-Herranz E, Naranjo-Ortiz C. Comparative study between symmetrical and asymmetrical sports by static structural analysis in adolescent athletes. Arch Med Deporte. 2016;33(2):98-102.
  • Lessby G, Manuel FJ, Jairo NJ, Edwin V, Diana V. Sport influence on footprints of Colombian´s powerlifters, swimmers and field athletes. In: Vilas-Boas, Machado, Kim, Veloso (eds.) Portuguese Journal of Sport Sciences 11(2); 2011; Porto, Portugal, 29 International Conference on Biomechanics in Sports, 2011.
  • Xiang L, Gu Y, Mei Q, Wang A, Shim V, Fernandez J. Automatic classification of barefoot and shod populations based on the foot metrics and plantar pressure patterns. Front Bioeng Biotechnol. 2022;10:1-10 DOI: 10.3389/fbioe.2022.843204
  • Ardhianto P, Subiakto RBR, Lin CY, Jan YK, Liau BY, Tsai JY, Akbari VBH, Lung, C. W. A deep learning method for foot progression angle detection in plantar pressure images. Sensors. 2022;22(7):1-18. DOI: 10.3390/s22072786
  • Jaruenpunyasak J, Duangsoithong R. Empirical analysis of feature reduction in deep learning and conventional methods for foot image classification. IEEE Access. 2021;9:53133-53145. DOI: 10.1109/ACCESS.2021.3069625
  • Chen KC, Yeh CJ, Kuo JF, Hsieh CL, Yang SF, Wang CH. Footprint analysis of flatfoot in preschool-aged children. Eur J Pediatr. 2011;170(5):611-617. DOI: 10.1007/s00431-010-1330-4
  • Gonzalez-Martin C, Pita-Fernandez S, Seoane-Pillado T, Lopez-Calviño B, Pertega-Diaz S, Gil-Guillen V. Variability between Clarke's angle and Chippaux-Smirak index for the diagnosis of flat feet. Colomb Med. 2017;48(1):25-31. PMID: 28559643
  • Mete HK, Yeginoğlu G. Futbol ve güreşin ayak taban yapısına etkisi. İçinde 8. Uluslararası Sağlık ve Spor Bilimlerinde Akademik Çalışmalar Sempozyumu Tam Metin Kitabı; 11-12 Eylül 2022. Asos Yayınevi; 2022. pp. 119-126.
  • Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv, 2014. DOI: 10.48550/arXiv.1712.04621.
  • Wang J, Perez L. The effectiveness of data augmentation in image classification using deep learning. Convolutional Neural Networks Vis Recognit. 2017;11:1-8.
  • Shorten C, Khoshgoftaar TM. A survey on image data augmentation for deep learning. J Big Data. 2019;6(1):1-48. DOI: 10.1186/s40537-019-0197-0
  • Perez L, Wang J. The effectiveness of data augmentation in image classification using deep learning. arXiv, 2017. DOI: 10.48550/arXiv.1712.04621
  • Colliau T, Rogers G, Hughes Z, Ozgur C. MatLab vs. Python vs. R. J Data Sci. 2017;15(3): 355-372.
  • Bengio Y. Learning deep architectures for AI. Found Trends Mach Learn. 2009;2(1):1-127. DOI: 10.1561/2200000006
  • Pathak AR, Pandey M, Rautaray S. Application of deep learning for object detection. Procedia Comput Sci. 2018;132(2018):1706-1717. DOI: 10.1016/j.procs.2018.05.144
  • Sekeroglu B, Dimililer K, Tuncal K. Artificial Intelligence in Education: Application in student performance evaluation. Dilemas Contemp Educ Política Y Valores. 2019;7(1):1-21.
  • Ren Z, Hu Y, Xu L. Identifying tuberculous pleural effusion using artificial intelligence machine learning algorithms. Respir Res. 2019;20(1):1-9. DOI: 10.1186/s12931-019-1197-5
  • Al-Khuzaie FE, Bayat O, Duru AD. Diagnosis of Alzheimer disease using 2D MRI slices by convolutional neural network. Appl Bionics Biomech. 2021; 2021(1):1-9. DOI: 10.1155/2021/6690539
  • Muazu Musa R, Abdul Majeed PPA, Taha Z, Chang SW, Ab. Nasir AF, Abdullah MR. A machine learning approach of predicting high potential archers by means of physical fitness indicators. PLoS One. 2019;14(1):e0209638. DOI: 10.1371/journal.pone.0209638
  • Karuc J, Mišigoj-Durakovic M, Šarlija M, Markovic G, Hadžic V, Trošt-Bobic T, Soric, M. Can injuries be predicted by functional movement screen in adolescents? The application of machine learning. J Strength Cond Res. 2021;35(4):910-919. DOI: 10.1519/JSC.0000000000003982
  • Klingele J, Hoppeler H, Biedert R. Statistical deviations in high-performance athletes. Schweiz Z Sportmed. 1993;41(4):55-62. PMID: 8342006
  • Ślężyński J, Dębska H. Plantographic research on the world's top wrestlers. Wychowanie Fizyczne i Sport. 1977;1:75-84. (Polish).
  • Goméz L, Manuel Franco J, Jairo Nathy J, Valencia E, Vargas D, Jimenez L. Influence of sport in the anthropometric characteristics of the female plant footprint. Educacion Fisica y Deporte. 2009;28(2):25-33. (Spanish)
  • Song HA, Lee SY. Hierarchical representation using NMF. In: Neural Information Processing: 20th International Conference, ICONIP 2013. Daegu, Korea. Springer; 2013. pp. 466-473.
  • Şeker A, Diri B, Balık HH. A review about deep learning methods and applications. Gazi J Eng Sci. 2017;3(3):47-64. (Turkish)
  • Kassem MA, Hosny KM, Damaševičius R, Eltoukhy, MM. Machine learning and deep learning methods for skin lesion classification and diagnosis: A systematic review. Diagn. 2021;11(8):1-29. DOI: 10.3390/diagnostics11081390
  • Wang P, Fan E, Wang P. Comparative analysis of image classification algorithms based on traditional machine learning and deep learning. Pattern Recognit Lett. 2021;141(2021):61-67. DOI: 10.1016/j.patrec.2020.07.042
  • Sun C, Shrivastava A, Singh S, Gupta A. Revisiting unreasonable effectiveness of data in deep learning era. In Proceedings of the IEEE international conference on computer vision; 2017. pp. 843-852.
  • Perez F, Vasconcelos C, Avila S, Valle, E. Data augmentation for skin lesion analysis. In OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis; 2018 September 16-20; Granada, Spain. Springer International Publishing; 2018. pp.303-311.
  • Pham TC, Luong CM, Visani M, Hoang VD. Deep CNN and data augmentation for skin lesion classification. In Intelligent Information and Database Systems: 10th Asian Conference, ACIIDS; 2018 March 19-21; Dong Hoi City, Vietnam. Springer International Publishing; 2018. pp.573-582.
  • O'Gara S, McGuinness K. Comparing data augmentation strategies for deep image classification. IMVIP 2019: Irish Machine Vision & Image Processing, Technological University Dublin, Dublin, Ireland, August 28-30. DOI: 10.21427/148b-ar75.
  • Anaya-Isaza A, Zequera-Diaz M. Detection of diabetes mellitus with deep learning and data augmentation techniques on foot thermography. IEEE Access. 2022;10:59564-59591.
Year 2024, Volume: 14 Issue: 4, 934 - 943, 29.12.2024
https://doi.org/10.33808/clinexphealthsci.1268378

Abstract

References

  • Donald AN. Kinesiology of The Musculoskeletal System Foundations For Rehabilitation. 3.rd Edition. By Mosby, Inc., An Affiliate of Elsevier Inc; 2010.
  • Angin S, Demirbüken İ. Ankle and foot complex. In Comparative Kinesiology of the Human Body. Academic Press; 2020.p.411-439.
  • Franco AH. Pes cavus and pes planus: Analyses and treatment. Phys Ther. 1987;67(5):688-694. DOI: 10.1093/ptj/67.5.688
  • Headlee DL, Leonard JL, Hart JM, Ingersoll CD, Hertel J. Fatigue of the plantar intrinsic foot muscles increases navicular drop. J Electromyogr Kinesiol. 2008;18(3):420-425. DOI: 10.1016/j.jelekin.2006.11.004
  • Zhao X, Gu Y, Yu J, Ma Y, Zhou Z. The influence of gender, age, and body mass index on arch height and arch stiffness. J Foot Ankle Surg. 2020;59(2):298-302. DOI: 10.1053/j.jfas.2019.08.022
  • Uzun A, Aydos L, Kaya L, Kanatlı U, Esen E. Researhing the effect of longtime skate using on distribution of sole pressure in ice hockey players. Spormetre J Phys Educ Sports Sci. 2012;4:117-124. (Turkish) DOI: 10.1501/Sporm_0000000228
  • Wong P, Chamari K, Chaouachi A, Wisloff U, Hong Y. Difference in plantar pressure between the preferred and non-preferred feet in four soccer-related movements. Brit J Sports Med. 2007;41(2):84-92. DOI: 10.1136/bjsm.2006.030908
  • Stokes I, Hutton W, Stott J. Forces acting on the metatarsals during normal walking. J Anat. 1979;129(3):579-590. PMID: 541241
  • Park JH, Noh SC, Jang HS, Yu WJ, Park MK, Choi HH. The study of correlation between foot-pressure distribution and scoliosis. 13th International Conference on Biomedical Engineering: ICBME; 2008 December 3-6; Singapore. Springer Berlin Heidelberg; 2009. pp.974-978.
  • Cosca D, Navazio F. Common problems in endurance athletes. Am Fam Physician. 2007;76(2):237-244.
  • Yeap JS, Singh D, Birch R. Tibialis posterior tendon dysfunction: A primary of secondary problem? Foot Ankle Int. 2001;22(1):51-55. DOI: 10.1177/10711007010220010
  • Patel M, Shah P, Ravaliya S, Patel M. Relationship of anterior knee pain and flat foot: a cross-sectional study. Int J Health Sci Res. 2021;11(3):86-92.
  • Wong P, Chamari K, Chaouachi A, Wisloff U, Hong Y. Higher plantar pressure on the medial side in four soccer related movements. Br J Sports Med. 2007;41:93-100. DOI: 10.1136/bjsm.2006.030668
  • Orlin M, McPoil T. Plantar pressure measurement. Phys Ther. 2000;80:399-409. DOI: 10.1093/ptj/80.4.399
  • Yalçın N, Esen E, Kanatlı U, Yetkin H. Medial longitudinal arkın değerlendirilmesi: dinamik plantar basınç ölçüm sistemi ile radyografik yöntemlerin karşılaştırılması. Acta Orthop Traumatol Turc. 2010;44(3):241-245 (Turkish)
  • Balaji E, Brindha D, Balakrishnan R. Supervised machine learning based gait classification system for early detection and stage classification of Parkinson’s disease. Appl Soft Comput. 2020;94(2020):106494. DOI: 10.1016/j.asoc.2020.106494
  • Chae J, Kang YJ, Noh Y. A deep-learning approach for foot-type classification using heterogeneous pressure data. Sensors. 2020;20(16):1-19. DOI: 10.3390/s20164481
  • Ramos-Alvarez JJ, Del Castillo-Campos MJ, Polo-Portes CE, Lara-Hernandez MT, Jimenez-Herranz E, Naranjo-Ortiz C. Comparative study between symmetrical and asymmetrical sports by static structural analysis in adolescent athletes. Arch Med Deporte. 2016;33(2):98-102.
  • Lessby G, Manuel FJ, Jairo NJ, Edwin V, Diana V. Sport influence on footprints of Colombian´s powerlifters, swimmers and field athletes. In: Vilas-Boas, Machado, Kim, Veloso (eds.) Portuguese Journal of Sport Sciences 11(2); 2011; Porto, Portugal, 29 International Conference on Biomechanics in Sports, 2011.
  • Xiang L, Gu Y, Mei Q, Wang A, Shim V, Fernandez J. Automatic classification of barefoot and shod populations based on the foot metrics and plantar pressure patterns. Front Bioeng Biotechnol. 2022;10:1-10 DOI: 10.3389/fbioe.2022.843204
  • Ardhianto P, Subiakto RBR, Lin CY, Jan YK, Liau BY, Tsai JY, Akbari VBH, Lung, C. W. A deep learning method for foot progression angle detection in plantar pressure images. Sensors. 2022;22(7):1-18. DOI: 10.3390/s22072786
  • Jaruenpunyasak J, Duangsoithong R. Empirical analysis of feature reduction in deep learning and conventional methods for foot image classification. IEEE Access. 2021;9:53133-53145. DOI: 10.1109/ACCESS.2021.3069625
  • Chen KC, Yeh CJ, Kuo JF, Hsieh CL, Yang SF, Wang CH. Footprint analysis of flatfoot in preschool-aged children. Eur J Pediatr. 2011;170(5):611-617. DOI: 10.1007/s00431-010-1330-4
  • Gonzalez-Martin C, Pita-Fernandez S, Seoane-Pillado T, Lopez-Calviño B, Pertega-Diaz S, Gil-Guillen V. Variability between Clarke's angle and Chippaux-Smirak index for the diagnosis of flat feet. Colomb Med. 2017;48(1):25-31. PMID: 28559643
  • Mete HK, Yeginoğlu G. Futbol ve güreşin ayak taban yapısına etkisi. İçinde 8. Uluslararası Sağlık ve Spor Bilimlerinde Akademik Çalışmalar Sempozyumu Tam Metin Kitabı; 11-12 Eylül 2022. Asos Yayınevi; 2022. pp. 119-126.
  • Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv, 2014. DOI: 10.48550/arXiv.1712.04621.
  • Wang J, Perez L. The effectiveness of data augmentation in image classification using deep learning. Convolutional Neural Networks Vis Recognit. 2017;11:1-8.
  • Shorten C, Khoshgoftaar TM. A survey on image data augmentation for deep learning. J Big Data. 2019;6(1):1-48. DOI: 10.1186/s40537-019-0197-0
  • Perez L, Wang J. The effectiveness of data augmentation in image classification using deep learning. arXiv, 2017. DOI: 10.48550/arXiv.1712.04621
  • Colliau T, Rogers G, Hughes Z, Ozgur C. MatLab vs. Python vs. R. J Data Sci. 2017;15(3): 355-372.
  • Bengio Y. Learning deep architectures for AI. Found Trends Mach Learn. 2009;2(1):1-127. DOI: 10.1561/2200000006
  • Pathak AR, Pandey M, Rautaray S. Application of deep learning for object detection. Procedia Comput Sci. 2018;132(2018):1706-1717. DOI: 10.1016/j.procs.2018.05.144
  • Sekeroglu B, Dimililer K, Tuncal K. Artificial Intelligence in Education: Application in student performance evaluation. Dilemas Contemp Educ Política Y Valores. 2019;7(1):1-21.
  • Ren Z, Hu Y, Xu L. Identifying tuberculous pleural effusion using artificial intelligence machine learning algorithms. Respir Res. 2019;20(1):1-9. DOI: 10.1186/s12931-019-1197-5
  • Al-Khuzaie FE, Bayat O, Duru AD. Diagnosis of Alzheimer disease using 2D MRI slices by convolutional neural network. Appl Bionics Biomech. 2021; 2021(1):1-9. DOI: 10.1155/2021/6690539
  • Muazu Musa R, Abdul Majeed PPA, Taha Z, Chang SW, Ab. Nasir AF, Abdullah MR. A machine learning approach of predicting high potential archers by means of physical fitness indicators. PLoS One. 2019;14(1):e0209638. DOI: 10.1371/journal.pone.0209638
  • Karuc J, Mišigoj-Durakovic M, Šarlija M, Markovic G, Hadžic V, Trošt-Bobic T, Soric, M. Can injuries be predicted by functional movement screen in adolescents? The application of machine learning. J Strength Cond Res. 2021;35(4):910-919. DOI: 10.1519/JSC.0000000000003982
  • Klingele J, Hoppeler H, Biedert R. Statistical deviations in high-performance athletes. Schweiz Z Sportmed. 1993;41(4):55-62. PMID: 8342006
  • Ślężyński J, Dębska H. Plantographic research on the world's top wrestlers. Wychowanie Fizyczne i Sport. 1977;1:75-84. (Polish).
  • Goméz L, Manuel Franco J, Jairo Nathy J, Valencia E, Vargas D, Jimenez L. Influence of sport in the anthropometric characteristics of the female plant footprint. Educacion Fisica y Deporte. 2009;28(2):25-33. (Spanish)
  • Song HA, Lee SY. Hierarchical representation using NMF. In: Neural Information Processing: 20th International Conference, ICONIP 2013. Daegu, Korea. Springer; 2013. pp. 466-473.
  • Şeker A, Diri B, Balık HH. A review about deep learning methods and applications. Gazi J Eng Sci. 2017;3(3):47-64. (Turkish)
  • Kassem MA, Hosny KM, Damaševičius R, Eltoukhy, MM. Machine learning and deep learning methods for skin lesion classification and diagnosis: A systematic review. Diagn. 2021;11(8):1-29. DOI: 10.3390/diagnostics11081390
  • Wang P, Fan E, Wang P. Comparative analysis of image classification algorithms based on traditional machine learning and deep learning. Pattern Recognit Lett. 2021;141(2021):61-67. DOI: 10.1016/j.patrec.2020.07.042
  • Sun C, Shrivastava A, Singh S, Gupta A. Revisiting unreasonable effectiveness of data in deep learning era. In Proceedings of the IEEE international conference on computer vision; 2017. pp. 843-852.
  • Perez F, Vasconcelos C, Avila S, Valle, E. Data augmentation for skin lesion analysis. In OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis; 2018 September 16-20; Granada, Spain. Springer International Publishing; 2018. pp.303-311.
  • Pham TC, Luong CM, Visani M, Hoang VD. Deep CNN and data augmentation for skin lesion classification. In Intelligent Information and Database Systems: 10th Asian Conference, ACIIDS; 2018 March 19-21; Dong Hoi City, Vietnam. Springer International Publishing; 2018. pp.573-582.
  • O'Gara S, McGuinness K. Comparing data augmentation strategies for deep image classification. IMVIP 2019: Irish Machine Vision & Image Processing, Technological University Dublin, Dublin, Ireland, August 28-30. DOI: 10.21427/148b-ar75.
  • Anaya-Isaza A, Zequera-Diaz M. Detection of diabetes mellitus with deep learning and data augmentation techniques on foot thermography. IEEE Access. 2022;10:59564-59591.
There are 49 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Articles
Authors

Sema Arslan Kabasakal 0000-0002-4552-9640

Mehmet Ünal 0000-0002-9275-3020

Adil Deniz Duru 0000-0003-3014-9626

Publication Date December 29, 2024
Submission Date March 20, 2023
Published in Issue Year 2024 Volume: 14 Issue: 4

Cite

APA Arslan Kabasakal, S., Ünal, M., & Duru, A. D. (2024). Plantar Pressure Topography Based Sports Branch Prediction System Modeling in 7-11 Years Old Athletes. Clinical and Experimental Health Sciences, 14(4), 934-943. https://doi.org/10.33808/clinexphealthsci.1268378
AMA Arslan Kabasakal S, Ünal M, Duru AD. Plantar Pressure Topography Based Sports Branch Prediction System Modeling in 7-11 Years Old Athletes. Clinical and Experimental Health Sciences. December 2024;14(4):934-943. doi:10.33808/clinexphealthsci.1268378
Chicago Arslan Kabasakal, Sema, Mehmet Ünal, and Adil Deniz Duru. “Plantar Pressure Topography Based Sports Branch Prediction System Modeling in 7-11 Years Old Athletes”. Clinical and Experimental Health Sciences 14, no. 4 (December 2024): 934-43. https://doi.org/10.33808/clinexphealthsci.1268378.
EndNote Arslan Kabasakal S, Ünal M, Duru AD (December 1, 2024) Plantar Pressure Topography Based Sports Branch Prediction System Modeling in 7-11 Years Old Athletes. Clinical and Experimental Health Sciences 14 4 934–943.
IEEE S. Arslan Kabasakal, M. Ünal, and A. D. Duru, “Plantar Pressure Topography Based Sports Branch Prediction System Modeling in 7-11 Years Old Athletes”, Clinical and Experimental Health Sciences, vol. 14, no. 4, pp. 934–943, 2024, doi: 10.33808/clinexphealthsci.1268378.
ISNAD Arslan Kabasakal, Sema et al. “Plantar Pressure Topography Based Sports Branch Prediction System Modeling in 7-11 Years Old Athletes”. Clinical and Experimental Health Sciences 14/4 (December 2024), 934-943. https://doi.org/10.33808/clinexphealthsci.1268378.
JAMA Arslan Kabasakal S, Ünal M, Duru AD. Plantar Pressure Topography Based Sports Branch Prediction System Modeling in 7-11 Years Old Athletes. Clinical and Experimental Health Sciences. 2024;14:934–943.
MLA Arslan Kabasakal, Sema et al. “Plantar Pressure Topography Based Sports Branch Prediction System Modeling in 7-11 Years Old Athletes”. Clinical and Experimental Health Sciences, vol. 14, no. 4, 2024, pp. 934-43, doi:10.33808/clinexphealthsci.1268378.
Vancouver Arslan Kabasakal S, Ünal M, Duru AD. Plantar Pressure Topography Based Sports Branch Prediction System Modeling in 7-11 Years Old Athletes. Clinical and Experimental Health Sciences. 2024;14(4):934-43.

14639   14640