Research Article
BibTex RIS Cite

Kafeslerdeki bazı yarı klasik ortogonal polinomlar hakkında

Year 2025, Volume: 8 Issue: 3, 146 - 155, 15.09.2025
https://doi.org/10.33205/cma.1605090

Abstract

Belirli bir yapı ilişkileri türünden $q$-kuadratik kafes üzerindeki yarı klasik ortogonal polinomların yeni bir karakterizasyonu verilmiştir. Bu karakterizasyonlar klasik olanları içerir ve ayrıca yakın zamanda elde edilen sonucu [Mbouna, D., Suzuki, A., {Kafesler üzerindeki bazı Appell tipi ortogonal polinomlar}, Ramanujan J. (2024) 64:807-822] daha genel bir durumda genişletir.

References

  • W. Al-Salam, T. S. Chihara: Convolutions of orthonormal polynomials, SIAM J. Math. Anal., 7 (1) (1976), 16–28.
  • W. Al-Salam: Characterization theorems for orthogonal polynomials, Orthogonal polynomials, (Columbus, OH, 1989), NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 294, Kluwer Acad. Publ., Dordrecht (1990).
  • W. Al-Salam: A characterization of the Rogers q-Hermite polynomials, Internat. J. Math. and Math. Sci., 18 (4) (1995), 641–648.
  • W. Al-Salam, T. S. Chihara: Another characterization of the classical orthogonal polynomials, SIAM J. Math. Anal., 3 (1972), 65–70.
  • N. M. Atakishiyev, M. Rahman and S. K. Suslov: On classical orthogonal polynomials, Constr. Approx., 11 (1995), 181–226.
  • S. Bonan, P. Nevai: Orthogonal polynomials and their derivatives, I, J. Approx. Theory, 40 (1984), 134–147.
  • K. Castillo, D. Mbouna: Proof of two conjectures on Askey-Wilson polynomials, Proc. Amer. Math. Soc., 151 (4) (2023), 1655–1661.
  • K. Castillo, D. Mbouna: On a conjecture involving Askey-Wilson polynomials, Integral Transforms and Spec. Funct., 36 (4) (2025), 275–280.
  • K. Castillo, D. Mbouna: Epilegomena to the study of semiclassical orthogonal polynomials, arXiv:2307.10331 [math.CA], (2023).
  • K. Castillo, J. Petronilho: A First Course on Orthogonal Polynomials: Classical Orthogonal Polynomials and Related Topics, CRC Press, Chapman and Hall, New York (2024).
  • K. Castillo, D. Mbouna and J. Petronilho: On the functional equation for classical orthogonal polynomials on lattices, J. Math. Anal. Appl., 515 (2022), Article ID: 126390.
  • K. Castillo, D. Mbouna and J. Petronilho: A characterization of continuous q-Jacobi, Chebyshev of the first kind and Al-Salam Chihara polynomials, J. Math. Anal. Appl., 514 (2022), Article ID: 126358.
  • F. Foupouagnigni, M. Kenfack-Nangho and S. Mboutngam: Characterization theorem of classical orthogonal polynomials on nonuniform lattices: the functional approach, Integral Transforms Spec. Funct., 22 (2011), 739–758.
  • M. E. H Ismail: Classical and quantum orthogonal polynomials in one variable. With two chapters by W. Van Assche. With a foreword by R. Askey., Encyclopedia of Mathematics and its Applications, 98, Cambridge University Press, Cambridge (2005).
  • M. Kenfack Nangho, K. Jordaan: A characterization of Askey-Wilson polynomials, Proc. Amer. Math. Soc., 147 (2019), 2465–2480.
  • R. Koekoek, P. A. Lesky and R. F. Swarttouw: Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin (2010).
  • T. H. Koornwinder: The structure relation for Askey-Wilson polynomials, J. Comput. Appl. Math., 207 (2007), 214–226.
  • P. Lesky: Eine Charakterisierung der klassischen kontinuierlichen, diskreten und q-Orthogonalpolynome, Shaker, Aachen (2005).
  • P. Maroni: Une théorie algébrique des polynômes orthogonaux. Applications aux polynômes orthogonaux semiclassiques, In C. Brezinski et al. Eds., Orthogonal Polynomials and Their Applications, Proc. Erice 1990, IMACS, Ann. Comp. App. Math., 9 (1991), 95–130.
  • D. Mbouna, A. Suzuki: Some Appell-type orthogonal polynomials on lattices, Ramanujan J., 64 (2024), 807–822.
  • D. Mbouna, A. Suzuki: On another characterization of Askey-Wilson polynomials, Results Math., 77 (2022), Article ID: 148.
  • S. Mboutngam, M. Foupouagnigni: Characterization of semi-classical orthogonal polynomials on nonuniform lattices, Integral Transforms and Spec. Funct., 29 (4), (2018), 284–309.
  • S. Mboutngam, M. Foupouagnigni and P. Njionou Sadjang: On the modifications of semiclassical orthogonal polynomials on nonuniform lattices, J. Math. Anal. Appl., 445 (2017), 819–836.

On some semiclassical orthogonal polynomials on lattices

Year 2025, Volume: 8 Issue: 3, 146 - 155, 15.09.2025
https://doi.org/10.33205/cma.1605090

Abstract

A new characterization of semiclassical orthogonal polynomials on a $q$-quadratic lattice from certain type of structure relations is given. These characterizations include classical ones and, in addition, extend the recent result [Mbouna, D. and Suzuki, A., {Some Appell-type orthogonal polynomials on lattices}, Ramanujan J. (2024) 64:807-822] in a more general case.

References

  • W. Al-Salam, T. S. Chihara: Convolutions of orthonormal polynomials, SIAM J. Math. Anal., 7 (1) (1976), 16–28.
  • W. Al-Salam: Characterization theorems for orthogonal polynomials, Orthogonal polynomials, (Columbus, OH, 1989), NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 294, Kluwer Acad. Publ., Dordrecht (1990).
  • W. Al-Salam: A characterization of the Rogers q-Hermite polynomials, Internat. J. Math. and Math. Sci., 18 (4) (1995), 641–648.
  • W. Al-Salam, T. S. Chihara: Another characterization of the classical orthogonal polynomials, SIAM J. Math. Anal., 3 (1972), 65–70.
  • N. M. Atakishiyev, M. Rahman and S. K. Suslov: On classical orthogonal polynomials, Constr. Approx., 11 (1995), 181–226.
  • S. Bonan, P. Nevai: Orthogonal polynomials and their derivatives, I, J. Approx. Theory, 40 (1984), 134–147.
  • K. Castillo, D. Mbouna: Proof of two conjectures on Askey-Wilson polynomials, Proc. Amer. Math. Soc., 151 (4) (2023), 1655–1661.
  • K. Castillo, D. Mbouna: On a conjecture involving Askey-Wilson polynomials, Integral Transforms and Spec. Funct., 36 (4) (2025), 275–280.
  • K. Castillo, D. Mbouna: Epilegomena to the study of semiclassical orthogonal polynomials, arXiv:2307.10331 [math.CA], (2023).
  • K. Castillo, J. Petronilho: A First Course on Orthogonal Polynomials: Classical Orthogonal Polynomials and Related Topics, CRC Press, Chapman and Hall, New York (2024).
  • K. Castillo, D. Mbouna and J. Petronilho: On the functional equation for classical orthogonal polynomials on lattices, J. Math. Anal. Appl., 515 (2022), Article ID: 126390.
  • K. Castillo, D. Mbouna and J. Petronilho: A characterization of continuous q-Jacobi, Chebyshev of the first kind and Al-Salam Chihara polynomials, J. Math. Anal. Appl., 514 (2022), Article ID: 126358.
  • F. Foupouagnigni, M. Kenfack-Nangho and S. Mboutngam: Characterization theorem of classical orthogonal polynomials on nonuniform lattices: the functional approach, Integral Transforms Spec. Funct., 22 (2011), 739–758.
  • M. E. H Ismail: Classical and quantum orthogonal polynomials in one variable. With two chapters by W. Van Assche. With a foreword by R. Askey., Encyclopedia of Mathematics and its Applications, 98, Cambridge University Press, Cambridge (2005).
  • M. Kenfack Nangho, K. Jordaan: A characterization of Askey-Wilson polynomials, Proc. Amer. Math. Soc., 147 (2019), 2465–2480.
  • R. Koekoek, P. A. Lesky and R. F. Swarttouw: Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin (2010).
  • T. H. Koornwinder: The structure relation for Askey-Wilson polynomials, J. Comput. Appl. Math., 207 (2007), 214–226.
  • P. Lesky: Eine Charakterisierung der klassischen kontinuierlichen, diskreten und q-Orthogonalpolynome, Shaker, Aachen (2005).
  • P. Maroni: Une théorie algébrique des polynômes orthogonaux. Applications aux polynômes orthogonaux semiclassiques, In C. Brezinski et al. Eds., Orthogonal Polynomials and Their Applications, Proc. Erice 1990, IMACS, Ann. Comp. App. Math., 9 (1991), 95–130.
  • D. Mbouna, A. Suzuki: Some Appell-type orthogonal polynomials on lattices, Ramanujan J., 64 (2024), 807–822.
  • D. Mbouna, A. Suzuki: On another characterization of Askey-Wilson polynomials, Results Math., 77 (2022), Article ID: 148.
  • S. Mboutngam, M. Foupouagnigni: Characterization of semi-classical orthogonal polynomials on nonuniform lattices, Integral Transforms and Spec. Funct., 29 (4), (2018), 284–309.
  • S. Mboutngam, M. Foupouagnigni and P. Njionou Sadjang: On the modifications of semiclassical orthogonal polynomials on nonuniform lattices, J. Math. Anal. Appl., 445 (2017), 819–836.
There are 23 citations in total.

Details

Primary Language English
Subjects Lie Groups, Harmonic and Fourier Analysis, Mathematical Methods and Special Functions
Journal Section Research Article
Authors

Mbouna Dieudonne 0000-0002-0869-6263

Alexandre Suzuki This is me

Submission Date December 21, 2024
Acceptance Date August 31, 2025
Early Pub Date September 1, 2025
Publication Date September 15, 2025
Published in Issue Year 2025 Volume: 8 Issue: 3

Cite

APA Dieudonne, M., & Suzuki, A. (2025). On some semiclassical orthogonal polynomials on lattices. Constructive Mathematical Analysis, 8(3), 146-155. https://doi.org/10.33205/cma.1605090
AMA Dieudonne M, Suzuki A. On some semiclassical orthogonal polynomials on lattices. CMA. September 2025;8(3):146-155. doi:10.33205/cma.1605090
Chicago Dieudonne, Mbouna, and Alexandre Suzuki. “On Some Semiclassical Orthogonal Polynomials on Lattices”. Constructive Mathematical Analysis 8, no. 3 (September 2025): 146-55. https://doi.org/10.33205/cma.1605090.
EndNote Dieudonne M, Suzuki A (September 1, 2025) On some semiclassical orthogonal polynomials on lattices. Constructive Mathematical Analysis 8 3 146–155.
IEEE M. Dieudonne and A. Suzuki, “On some semiclassical orthogonal polynomials on lattices”, CMA, vol. 8, no. 3, pp. 146–155, 2025, doi: 10.33205/cma.1605090.
ISNAD Dieudonne, Mbouna - Suzuki, Alexandre. “On Some Semiclassical Orthogonal Polynomials on Lattices”. Constructive Mathematical Analysis 8/3 (September2025), 146-155. https://doi.org/10.33205/cma.1605090.
JAMA Dieudonne M, Suzuki A. On some semiclassical orthogonal polynomials on lattices. CMA. 2025;8:146–155.
MLA Dieudonne, Mbouna and Alexandre Suzuki. “On Some Semiclassical Orthogonal Polynomials on Lattices”. Constructive Mathematical Analysis, vol. 8, no. 3, 2025, pp. 146-55, doi:10.33205/cma.1605090.
Vancouver Dieudonne M, Suzuki A. On some semiclassical orthogonal polynomials on lattices. CMA. 2025;8(3):146-55.