Some inequalities for synchronous functions that are a mixture between Cebyšev’s and Jensen's inequality are provided. Applications for $f$ -divergence measure and some particular instances including Kullback-Leibler divergence, Jeffreys divergence and $\chi ^{2}$-divergence are also given.
Synchronous Functions Lipschitzian functions Jensen's inequality $f$-divergence measure Kullback-Leibler divergence Jeffreys divergence measure
Birincil Dil | İngilizce |
---|---|
Konular | Matematik |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 1 Eylül 2019 |
Yayımlandığı Sayı | Yıl 2019 |