It is known that the restricted Riesz transform of a Lebesgue integrable function is not Lebesgue integrable. In this paper we prove that the restricted Riesz transform of a Lebesgue integrable function is A-integrable and the analogue of Riesz's equality holds.
ABSTRACT.It is known that the restricted Riesz transform of a Lebesgue integrable function is not Lebesgue inte-grable. In this paper, we prove that the restricted Riesz transform of a Lebesgue integrable function isA-integrableand the analogue of Riesz’s equality holds
Riesz transform A-integral Riesz's inequality covering theorem
Birincil Dil | İngilizce |
---|---|
Konular | Matematik |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 14 Eylül 2020 |
Yayımlandığı Sayı | Yıl 2020 |