Araştırma Makalesi
BibTex RIS Kaynak Göster

Approximation Results for Urysohn Type Two Dimensional Nonlinear Bernstein Operators

Yıl 2018, Cilt: 1 Sayı: 1, 45 - 57, 15.09.2018
https://doi.org/10.33205/cma.453027

Öz

In the present work, our aim of this study is generalization and extension of the theory of interpolation of two dimensional functions to functionals or operators by means of Urysohn type nonlinear operators. In accordance with this purpose, we introduce and study a new type of Urysohn type nonlinear operators. In particular, we investigate the convergence problem for nonlinear operators that approximate the Urysohn type operator in two dimensional case. The starting point of this study is motivated by the important applications that approximation properties of certain families of nonlinear operators have in signal-image reconstruction and in other related fields. We construct our nonlinear operators by using a nonlinear form of the kernels together with the Urysohn type operator values instead of the sampling values of the function.

Kaynakça

  • [1] Bardaro, C., Mantellini, I., A Voronovskaya-type theorem for a general classof discrete operators, Rocky Mountain J. Math. 39 (5) (2009) 1411-1442.
  • [2] Bardaro, C., Mantellini, I., Pointwise convergence theorems for nonlinearMellin convolution operators. Int. J. Pure Appl. Math. 27 (2006), no. 4,431-447.
  • [3] Bardaro, C., Mantellini, I., On the reconstruction of functions by means ofnonlinear discrete operators. J. Concr. Appl. Math. 1 (2003), no. 4, 273-285.
  • [4] Bardaro, C., Mantellini, I., Approximation properties in abstract modularspaces for a class of general sampling-type operators. Appl. Anal. 85 (2006),no. 4, 383-413.
  • [5] Bardaro, C., Vinti, G., Urysohn integral operators with homogeneous kernel:approximation properties in modular spaces. Comment. Math. (PraceMat.) 42 (2002), no. 2, 145-182.
  • [6] Bardaro, C., Musielak, J., Vinti, G., Nonlinear Integral Operators andApplications, De Gruyter Series in Nonlinear Analysis and Applications,Vol. 9, xii + 201 pp., 2003.
  • [7] Bardaro, C., Karsli, H. and Vinti, G., Nonlinear integral operators withhomogeneous kernels: pointwise approximation theorems, Applicable Analysis,Vol. 90, Nos. 3{4, March{April (2011), 463-474.
  • [8] Bardaro, C., Karsli, H. and Vinti, G., On pointwise convergence of linearintegral operators with homogeneous kernels , Integral Transforms andSpecial Functions, 19(6), (2008), 429-439.
  • [9] S. N Bernstein, Demonstration du Th ̆eoreme de Weierstrass fond ̆ee sur le calcul des probabilit ̆es, Comm. Soc. Math. Kharkow 13, (1912/13), 1
  • [10] Bojanic R. and Cheng F., Rate of convergence of Bernstein polynomials forfunctions with derivatives of bounded variation, J. Math. Anal.and Appl.,141, (1989), 136-151.
  • [11] P. L. Butzer, On two dimensional Bernstein polynomials, Canad. J. Math.5 (1953) 107-113.
  • [12] P. L. Butzer, On Bernstein Polynomials, Ph.D. Thesis, University of Toronto in November, (1951).
  • [13] Costarelli, D., Vinti, G., Degree of approximation for nonlinear multivariatesampling Kantorovich operators on some functions spaces. Numer. Funct.Anal. Optim. 36 (2015), no. 8, 964-990.
  • [14] Costarelli, D., Vinti, G., Approximation by nonlinear multivariate samplingKantorovich type operators and applications to image processing. Numer.Funct. Anal. Optim. 34 (2013), no. 8, 819-844.
  • [15] Demkiv I. On approximation of Urison operator with operator polynomialsof Bernstein type // Visn. Lviv univ. Ser. appl. math. and inform. 2000.Vol. 2. p.26-30.
  • [16] Demkiv I. On approximation of Urison operator with operator polynomialsof Bernstein type in the case two variables // Visn. Lviv polytechnicNational University. Ser. appl. math. 2000. p.111-115.
  • [17] DeVore R.A., Lorentz G.G., Constructive Approximation, Springer, NewYork, 1993.
  • [18] Karsli, H., Some convergence results for nonlinear singular integral operators,Demonstratio. Math., Vol. XLVI No 4, 729-740 (2013).
  • [19] Karsli, H., Convergence and rate of convergence by nonlinear singular integraloperators depending on two parameters, Appl. Anal. 85(6,7), (2006),781-791.
  • [20] Karsli, H., Tiryaki, I. U.; Altin, H. E., On convergence of certain nonlinearBernstein operators. Filomat 30 (2016), no. 1, 141-155.
  • [21] H. Karsli, H.E. Altin, A Voronovskaya-type theorem for a certain nonlinear Bernstein operators. Stud. Univ. Babe ̧s- Bolyai Math. 60 (2015), no. 2, 249–258
  • [22] H. Karsli, H.E. Altin, Convergence of certain nonlinear counterpart of the Bernstein operators. Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. 64 (2015), no. 1, 75–86
  • [23] Karsli H., Tiryaki I. U., Altin H. E., Some approximation properties of acertain nonlinear Bernstein operators, Filomat 28:6 (2014), 1295-1305.
  • [24] H. Karsli, Approximation by Urysohn type Meyer-König and Zeller operators to Urysohn integral operators. Results Math. 72 (2017), no. 3, 1571–15
  • [25] Karsli, H., Approximation results for Urysohn type nonlinear Bernstein operators,Advances in Summability and Approximation Theory, Book Chapter,Springer-Verlag, (2018), accepted.
  • [26] Karsli, H., Voronovskaya-type theorems for Urysohn type nonlinear Bernsteinoperators, Mathematical Methods in the Applied Sciences, (2018), accepted.
  • [27] Lorentz G.G., Bernstein Polynomials, University of Toronto Press,Toronto(1953).
  • [28] V. L. Makarov and V.V. Khlobystov, On the identification of Nonlinear operators and its application, BEM IX, (1987), No. 1, 43 - 58.
  • [29] J. Musielak, On some approximation problems in modular spaces, In Constructive Function Theory 1981, (Proc. Int. Conf., Varna, June 1-5, 1981), pp. 455-461, Publ. House Bulgarian Acad. Sci., Sofia (1983)
  • [30] Urysohn, P. (1923). Sur une classe d'equations integrales non lineaires, Mat.Sb., 31, 236 - 255.
  • [31] Urysohn, P.: On a type of nonlinear integral equation. Mat. Sb., 31 236{355(1924)
  • [32] Wazwaz, A. M. (2011). Linear and Nonlinear Integral Equations: Methodsand Applications, Beijing and Springer - Verlag Berlin, Higher Educationpress.
  • [33] P. P. Zabreiko, A.I. Koshelev, M.A. Krasnosel’skii, S.G. Mikhlin, L.S. Rakovscik and V.Ja. Stetsenko, Integral Equa- tions: A Reference Text, Noordhoff Int. Publ., Leyden, (1975)
Yıl 2018, Cilt: 1 Sayı: 1, 45 - 57, 15.09.2018
https://doi.org/10.33205/cma.453027

Öz

Kaynakça

  • [1] Bardaro, C., Mantellini, I., A Voronovskaya-type theorem for a general classof discrete operators, Rocky Mountain J. Math. 39 (5) (2009) 1411-1442.
  • [2] Bardaro, C., Mantellini, I., Pointwise convergence theorems for nonlinearMellin convolution operators. Int. J. Pure Appl. Math. 27 (2006), no. 4,431-447.
  • [3] Bardaro, C., Mantellini, I., On the reconstruction of functions by means ofnonlinear discrete operators. J. Concr. Appl. Math. 1 (2003), no. 4, 273-285.
  • [4] Bardaro, C., Mantellini, I., Approximation properties in abstract modularspaces for a class of general sampling-type operators. Appl. Anal. 85 (2006),no. 4, 383-413.
  • [5] Bardaro, C., Vinti, G., Urysohn integral operators with homogeneous kernel:approximation properties in modular spaces. Comment. Math. (PraceMat.) 42 (2002), no. 2, 145-182.
  • [6] Bardaro, C., Musielak, J., Vinti, G., Nonlinear Integral Operators andApplications, De Gruyter Series in Nonlinear Analysis and Applications,Vol. 9, xii + 201 pp., 2003.
  • [7] Bardaro, C., Karsli, H. and Vinti, G., Nonlinear integral operators withhomogeneous kernels: pointwise approximation theorems, Applicable Analysis,Vol. 90, Nos. 3{4, March{April (2011), 463-474.
  • [8] Bardaro, C., Karsli, H. and Vinti, G., On pointwise convergence of linearintegral operators with homogeneous kernels , Integral Transforms andSpecial Functions, 19(6), (2008), 429-439.
  • [9] S. N Bernstein, Demonstration du Th ̆eoreme de Weierstrass fond ̆ee sur le calcul des probabilit ̆es, Comm. Soc. Math. Kharkow 13, (1912/13), 1
  • [10] Bojanic R. and Cheng F., Rate of convergence of Bernstein polynomials forfunctions with derivatives of bounded variation, J. Math. Anal.and Appl.,141, (1989), 136-151.
  • [11] P. L. Butzer, On two dimensional Bernstein polynomials, Canad. J. Math.5 (1953) 107-113.
  • [12] P. L. Butzer, On Bernstein Polynomials, Ph.D. Thesis, University of Toronto in November, (1951).
  • [13] Costarelli, D., Vinti, G., Degree of approximation for nonlinear multivariatesampling Kantorovich operators on some functions spaces. Numer. Funct.Anal. Optim. 36 (2015), no. 8, 964-990.
  • [14] Costarelli, D., Vinti, G., Approximation by nonlinear multivariate samplingKantorovich type operators and applications to image processing. Numer.Funct. Anal. Optim. 34 (2013), no. 8, 819-844.
  • [15] Demkiv I. On approximation of Urison operator with operator polynomialsof Bernstein type // Visn. Lviv univ. Ser. appl. math. and inform. 2000.Vol. 2. p.26-30.
  • [16] Demkiv I. On approximation of Urison operator with operator polynomialsof Bernstein type in the case two variables // Visn. Lviv polytechnicNational University. Ser. appl. math. 2000. p.111-115.
  • [17] DeVore R.A., Lorentz G.G., Constructive Approximation, Springer, NewYork, 1993.
  • [18] Karsli, H., Some convergence results for nonlinear singular integral operators,Demonstratio. Math., Vol. XLVI No 4, 729-740 (2013).
  • [19] Karsli, H., Convergence and rate of convergence by nonlinear singular integraloperators depending on two parameters, Appl. Anal. 85(6,7), (2006),781-791.
  • [20] Karsli, H., Tiryaki, I. U.; Altin, H. E., On convergence of certain nonlinearBernstein operators. Filomat 30 (2016), no. 1, 141-155.
  • [21] H. Karsli, H.E. Altin, A Voronovskaya-type theorem for a certain nonlinear Bernstein operators. Stud. Univ. Babe ̧s- Bolyai Math. 60 (2015), no. 2, 249–258
  • [22] H. Karsli, H.E. Altin, Convergence of certain nonlinear counterpart of the Bernstein operators. Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. 64 (2015), no. 1, 75–86
  • [23] Karsli H., Tiryaki I. U., Altin H. E., Some approximation properties of acertain nonlinear Bernstein operators, Filomat 28:6 (2014), 1295-1305.
  • [24] H. Karsli, Approximation by Urysohn type Meyer-König and Zeller operators to Urysohn integral operators. Results Math. 72 (2017), no. 3, 1571–15
  • [25] Karsli, H., Approximation results for Urysohn type nonlinear Bernstein operators,Advances in Summability and Approximation Theory, Book Chapter,Springer-Verlag, (2018), accepted.
  • [26] Karsli, H., Voronovskaya-type theorems for Urysohn type nonlinear Bernsteinoperators, Mathematical Methods in the Applied Sciences, (2018), accepted.
  • [27] Lorentz G.G., Bernstein Polynomials, University of Toronto Press,Toronto(1953).
  • [28] V. L. Makarov and V.V. Khlobystov, On the identification of Nonlinear operators and its application, BEM IX, (1987), No. 1, 43 - 58.
  • [29] J. Musielak, On some approximation problems in modular spaces, In Constructive Function Theory 1981, (Proc. Int. Conf., Varna, June 1-5, 1981), pp. 455-461, Publ. House Bulgarian Acad. Sci., Sofia (1983)
  • [30] Urysohn, P. (1923). Sur une classe d'equations integrales non lineaires, Mat.Sb., 31, 236 - 255.
  • [31] Urysohn, P.: On a type of nonlinear integral equation. Mat. Sb., 31 236{355(1924)
  • [32] Wazwaz, A. M. (2011). Linear and Nonlinear Integral Equations: Methodsand Applications, Beijing and Springer - Verlag Berlin, Higher Educationpress.
  • [33] P. P. Zabreiko, A.I. Koshelev, M.A. Krasnosel’skii, S.G. Mikhlin, L.S. Rakovscik and V.Ja. Stetsenko, Integral Equa- tions: A Reference Text, Noordhoff Int. Publ., Leyden, (1975)
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Harun Karslı

Yayımlanma Tarihi 15 Eylül 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 1 Sayı: 1

Kaynak Göster

APA Karslı, H. (2018). Approximation Results for Urysohn Type Two Dimensional Nonlinear Bernstein Operators. Constructive Mathematical Analysis, 1(1), 45-57. https://doi.org/10.33205/cma.453027
AMA Karslı H. Approximation Results for Urysohn Type Two Dimensional Nonlinear Bernstein Operators. CMA. Eylül 2018;1(1):45-57. doi:10.33205/cma.453027
Chicago Karslı, Harun. “Approximation Results for Urysohn Type Two Dimensional Nonlinear Bernstein Operators”. Constructive Mathematical Analysis 1, sy. 1 (Eylül 2018): 45-57. https://doi.org/10.33205/cma.453027.
EndNote Karslı H (01 Eylül 2018) Approximation Results for Urysohn Type Two Dimensional Nonlinear Bernstein Operators. Constructive Mathematical Analysis 1 1 45–57.
IEEE H. Karslı, “Approximation Results for Urysohn Type Two Dimensional Nonlinear Bernstein Operators”, CMA, c. 1, sy. 1, ss. 45–57, 2018, doi: 10.33205/cma.453027.
ISNAD Karslı, Harun. “Approximation Results for Urysohn Type Two Dimensional Nonlinear Bernstein Operators”. Constructive Mathematical Analysis 1/1 (Eylül 2018), 45-57. https://doi.org/10.33205/cma.453027.
JAMA Karslı H. Approximation Results for Urysohn Type Two Dimensional Nonlinear Bernstein Operators. CMA. 2018;1:45–57.
MLA Karslı, Harun. “Approximation Results for Urysohn Type Two Dimensional Nonlinear Bernstein Operators”. Constructive Mathematical Analysis, c. 1, sy. 1, 2018, ss. 45-57, doi:10.33205/cma.453027.
Vancouver Karslı H. Approximation Results for Urysohn Type Two Dimensional Nonlinear Bernstein Operators. CMA. 2018;1(1):45-57.