Araştırma Makalesi
BibTex RIS Kaynak Göster

Quadrature Formulas of Gaussian Type for Fast Summation of Trigonometric Series

Yıl 2019, Cilt: 2 Sayı: 4, 168 - 182, 01.12.2019
https://doi.org/10.33205/cma.613948

Öz

A summation/integration method for fast summing trigonometric series is presented. The basic idea in this method is to transform the series to an integral with respect to some weight function on $\RR_+$ and then to approximate such an integral by the appropriate quadrature formulas of Gaussian type. The construction of these quadrature rules, as well as  the corresponding orthogonal polynomials on $\RR_+$, are also considered. Finally, in order to illustrate the efficiency of the presented  summation/integration method two numerical examples are included.

Destekleyen Kurum

Serbian Academy of Sciences and Arts, Belgrade, Serbia

Proje Numarası

Φ−96.

Teşekkür

The author was supported in part by the Serbian Academy of Sciences and Arts, Project No. Φ−96.

Kaynakça

  • T. S. Chihara: An Introduction to Orthogonal Polynomials. Gordon and Breach, New York, 1978.
  • L. Carlitz: Bernoulli and Euler numbers and orthogonal polynomials. Duke Math. J. 26 (1959), 1-16.
  • A. S. Cvetkovic and G. V. Milovanovic: The Mathematica package ``OrthogonalPolynomials''. Facta Univ. Ser. Math. Inform. 19 (2004), 17-36.
  • W. Gautschi: On generating orthogonal polynomials, SIAM J. Sci. Statist. Comput. 3 (1982), 289-317.
  • W. Gautschi: A class of slowly convergent series and their summation by Gaussian quadrature. Math. Comp. 57 (1991), 309-324.
  • W. Gautschi: Orthogonal polynomials: applications and computation, Acta Numerica (1996), 45-119.
  • W. Gautschi: Orthogonal Polynomials: Computation and Approximation, Clarendon Press, Oxford, 2004.
  • W. Gautschi: The spiral of Theodorus, numerical analysis, and special functions. J. Comput. Appl. Math. 235 (2010), 1042-1052.
  • W. Gautschi and G. V. Milovanovic: Gaussian quadrature involving Einstein and Fermi functions with an application to summation of series. Math. Comp. 44 (1985), 177-190.
  • G. H. Golub and J. H. Welsch: Calculation of Gauss quadrature rule, Math. Comp. 23 (1969), 221-230.
  • G. Mastroianni and G. V. Milovanovic: Interpolation Processes - Basic Theory and Applications. Springer Monographs in Mathematics, Springer - Verlag, Berlin - Heidelberg, 2008.
  • G. V. Milovanovic: Summation of series and Gaussian quadratures, In: Approximation and Computation (R.V.M. Zahar, ed.), pp. 459-475, ISNM Vol. 119, Birkhauser Verlag, Basel-Boston-Berlin, 1994.
  • G. V. Milovanovic: Summation of series and Gaussian quadratures, II. Numer. Algorithms 10 (1995), 127-136.
  • G. V. Milovanovic: Summation processes and Gaussian quadratures. Sarajevo J. Math.7 (20) (2011), 185-200.
  • G. V. Milovanovic: Quadrature processes and new applications. Bull. Cl. Sci. Math. Nat. Sci. Math. 38 (2013), 83-120.
  • G. V. Milovanovic: Methods for computation of slowly convergent series and finite sums based on Gauss-Christoffel quadratures, Jaen J. Approx. 6 (2014), 37-68.
  • G. V. Milovanovic: On summation/integration methods for slowly convergent series. Stud. Univ. Babes-Bolyai Math. 61 (2016), 359-375.
  • G. V. Milovanovic: Chapter 11: Orthogonal polynomials on the real line, In: Walter Gautschi: Selected Works with Commentaries, Volume 2 (C. Brezinski, A. Sameh, eds.), pp. 3--16, Birkhauser, Basel, 2014.
  • G. V. Milovanovic: Chapter 23: Computer algorithms and software packages, In: Walter Gautschi: Selected Works with Commentaries, Volume 3 (C. Brezinski, A. Sameh, eds.), pp. 9-10, Birkhauser, Basel, 2014.
  • G. V. Milovanovic: Construction and applications of Gaussian quadratures with nonclassical and exotic weight functions. Stud. Univ. Babes-Bolyai Math. 60 (2015), 211-233.
  • G. V. Milovanovic and A. S. Cvetkovic: Special classes of orthogonal polynomials and corresponding quadratures of Gaussian type. Math. Balkanica 26 (2012), 169-184.
  • A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev: Integrals and Series. Vol. 1. Elementary functions. Gordon & Breach Science Publishers, New York, 1986.
  • T. J. Stieltjes: Sur quelques integrals definies et leur developpement en fractions continues. Quart. J. Math. 24 (1890), 370-382 [Oeuvres. Vol. 2. Noordhoff, Groningen, 1918, pp. 378-394].
  • J. Touchard: Nombres exponentiels et nombres de Bernoulli. Canad. J. Math. 8 (1956), 305-320.
Yıl 2019, Cilt: 2 Sayı: 4, 168 - 182, 01.12.2019
https://doi.org/10.33205/cma.613948

Öz

Proje Numarası

Φ−96.

Kaynakça

  • T. S. Chihara: An Introduction to Orthogonal Polynomials. Gordon and Breach, New York, 1978.
  • L. Carlitz: Bernoulli and Euler numbers and orthogonal polynomials. Duke Math. J. 26 (1959), 1-16.
  • A. S. Cvetkovic and G. V. Milovanovic: The Mathematica package ``OrthogonalPolynomials''. Facta Univ. Ser. Math. Inform. 19 (2004), 17-36.
  • W. Gautschi: On generating orthogonal polynomials, SIAM J. Sci. Statist. Comput. 3 (1982), 289-317.
  • W. Gautschi: A class of slowly convergent series and their summation by Gaussian quadrature. Math. Comp. 57 (1991), 309-324.
  • W. Gautschi: Orthogonal polynomials: applications and computation, Acta Numerica (1996), 45-119.
  • W. Gautschi: Orthogonal Polynomials: Computation and Approximation, Clarendon Press, Oxford, 2004.
  • W. Gautschi: The spiral of Theodorus, numerical analysis, and special functions. J. Comput. Appl. Math. 235 (2010), 1042-1052.
  • W. Gautschi and G. V. Milovanovic: Gaussian quadrature involving Einstein and Fermi functions with an application to summation of series. Math. Comp. 44 (1985), 177-190.
  • G. H. Golub and J. H. Welsch: Calculation of Gauss quadrature rule, Math. Comp. 23 (1969), 221-230.
  • G. Mastroianni and G. V. Milovanovic: Interpolation Processes - Basic Theory and Applications. Springer Monographs in Mathematics, Springer - Verlag, Berlin - Heidelberg, 2008.
  • G. V. Milovanovic: Summation of series and Gaussian quadratures, In: Approximation and Computation (R.V.M. Zahar, ed.), pp. 459-475, ISNM Vol. 119, Birkhauser Verlag, Basel-Boston-Berlin, 1994.
  • G. V. Milovanovic: Summation of series and Gaussian quadratures, II. Numer. Algorithms 10 (1995), 127-136.
  • G. V. Milovanovic: Summation processes and Gaussian quadratures. Sarajevo J. Math.7 (20) (2011), 185-200.
  • G. V. Milovanovic: Quadrature processes and new applications. Bull. Cl. Sci. Math. Nat. Sci. Math. 38 (2013), 83-120.
  • G. V. Milovanovic: Methods for computation of slowly convergent series and finite sums based on Gauss-Christoffel quadratures, Jaen J. Approx. 6 (2014), 37-68.
  • G. V. Milovanovic: On summation/integration methods for slowly convergent series. Stud. Univ. Babes-Bolyai Math. 61 (2016), 359-375.
  • G. V. Milovanovic: Chapter 11: Orthogonal polynomials on the real line, In: Walter Gautschi: Selected Works with Commentaries, Volume 2 (C. Brezinski, A. Sameh, eds.), pp. 3--16, Birkhauser, Basel, 2014.
  • G. V. Milovanovic: Chapter 23: Computer algorithms and software packages, In: Walter Gautschi: Selected Works with Commentaries, Volume 3 (C. Brezinski, A. Sameh, eds.), pp. 9-10, Birkhauser, Basel, 2014.
  • G. V. Milovanovic: Construction and applications of Gaussian quadratures with nonclassical and exotic weight functions. Stud. Univ. Babes-Bolyai Math. 60 (2015), 211-233.
  • G. V. Milovanovic and A. S. Cvetkovic: Special classes of orthogonal polynomials and corresponding quadratures of Gaussian type. Math. Balkanica 26 (2012), 169-184.
  • A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev: Integrals and Series. Vol. 1. Elementary functions. Gordon & Breach Science Publishers, New York, 1986.
  • T. J. Stieltjes: Sur quelques integrals definies et leur developpement en fractions continues. Quart. J. Math. 24 (1890), 370-382 [Oeuvres. Vol. 2. Noordhoff, Groningen, 1918, pp. 378-394].
  • J. Touchard: Nombres exponentiels et nombres de Bernoulli. Canad. J. Math. 8 (1956), 305-320.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Gradimir Mılovanovıc 0000-0002-3255-8127

Proje Numarası Φ−96.
Yayımlanma Tarihi 1 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 2 Sayı: 4

Kaynak Göster

APA Mılovanovıc, G. (2019). Quadrature Formulas of Gaussian Type for Fast Summation of Trigonometric Series. Constructive Mathematical Analysis, 2(4), 168-182. https://doi.org/10.33205/cma.613948
AMA Mılovanovıc G. Quadrature Formulas of Gaussian Type for Fast Summation of Trigonometric Series. CMA. Aralık 2019;2(4):168-182. doi:10.33205/cma.613948
Chicago Mılovanovıc, Gradimir. “Quadrature Formulas of Gaussian Type for Fast Summation of Trigonometric Series”. Constructive Mathematical Analysis 2, sy. 4 (Aralık 2019): 168-82. https://doi.org/10.33205/cma.613948.
EndNote Mılovanovıc G (01 Aralık 2019) Quadrature Formulas of Gaussian Type for Fast Summation of Trigonometric Series. Constructive Mathematical Analysis 2 4 168–182.
IEEE G. Mılovanovıc, “Quadrature Formulas of Gaussian Type for Fast Summation of Trigonometric Series”, CMA, c. 2, sy. 4, ss. 168–182, 2019, doi: 10.33205/cma.613948.
ISNAD Mılovanovıc, Gradimir. “Quadrature Formulas of Gaussian Type for Fast Summation of Trigonometric Series”. Constructive Mathematical Analysis 2/4 (Aralık 2019), 168-182. https://doi.org/10.33205/cma.613948.
JAMA Mılovanovıc G. Quadrature Formulas of Gaussian Type for Fast Summation of Trigonometric Series. CMA. 2019;2:168–182.
MLA Mılovanovıc, Gradimir. “Quadrature Formulas of Gaussian Type for Fast Summation of Trigonometric Series”. Constructive Mathematical Analysis, c. 2, sy. 4, 2019, ss. 168-82, doi:10.33205/cma.613948.
Vancouver Mılovanovıc G. Quadrature Formulas of Gaussian Type for Fast Summation of Trigonometric Series. CMA. 2019;2(4):168-82.