Araştırma Makalesi
BibTex RIS Kaynak Göster

Approximation properties related to the Bell polynomials

Yıl 2021, Cilt: 4 Sayı: 2, 253 - 259, 01.06.2021
https://doi.org/10.33205/cma.861342

Öz

The authors provide a complete asymptotic expansion for a class of functions in terms of the complete
Bell polynomials. In particular, they obtain known asymptotic expansions of some Keller type sequences.

Kaynakça

  • E. Maor: e: the story of a number, Princeton University Press, Princeton, NJ (2009).
  • J. Sandor: On certain limits related to the number e, Libertas Math., 20 (2000) 155–159, dedicated to Emeritus Professor Corneliu Constantinescu on the occasion of his 70th birthday.
  • S. R. Finch: Mathematical constants, Vol. 94 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge (2003).
  • H. J. Brothers, J. A. Knox: New closed-form approximations to the logarithmic constant e, Math. Intelligencer, 20 (4) (1998), 25–29.
  • H. Alzer, C. Berg: Some classes of completely monotonic functions, Ann. Acad. Sci. Fenn. Math., 27 (2) (2002), 445–460.
  • C. Mortici, Y. Hu: On an infinite series for (1 + 1=x)x (Jun 2014). http://arxiv.org/abs/1406.7814v1
  • Y. Hu, C. Mortici: On the Keller limit and generalization, J. Inequal. Appl., 2016 (2016), 97.
  • J. Riordan: An introduction to combinatorial analysis, Wiley Publications in Mathematical Statistics, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London (1958).
  • L. Comtet: Advanced combinatorics, enlarged Edition, D. Reidel Publishing Co., Dordrecht (1974).
  • J. A. Knox, H. J. Brothers: Novel series-based approximations to e, College Math. J., 30 (4) (1999), 269–275.
  • C. Mortici, X.-J. Jang: Estimates of (1+x)1=x involved in Carleman’s inequality and Keller’s limit, Filomat, 29 (7) (2015), 1535–1539.
  • X. Yang: Approximations for constant e and their applications, J. Math. Anal. Appl., 262 (2) (2001), 651–659.
Yıl 2021, Cilt: 4 Sayı: 2, 253 - 259, 01.06.2021
https://doi.org/10.33205/cma.861342

Öz

Kaynakça

  • E. Maor: e: the story of a number, Princeton University Press, Princeton, NJ (2009).
  • J. Sandor: On certain limits related to the number e, Libertas Math., 20 (2000) 155–159, dedicated to Emeritus Professor Corneliu Constantinescu on the occasion of his 70th birthday.
  • S. R. Finch: Mathematical constants, Vol. 94 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge (2003).
  • H. J. Brothers, J. A. Knox: New closed-form approximations to the logarithmic constant e, Math. Intelligencer, 20 (4) (1998), 25–29.
  • H. Alzer, C. Berg: Some classes of completely monotonic functions, Ann. Acad. Sci. Fenn. Math., 27 (2) (2002), 445–460.
  • C. Mortici, Y. Hu: On an infinite series for (1 + 1=x)x (Jun 2014). http://arxiv.org/abs/1406.7814v1
  • Y. Hu, C. Mortici: On the Keller limit and generalization, J. Inequal. Appl., 2016 (2016), 97.
  • J. Riordan: An introduction to combinatorial analysis, Wiley Publications in Mathematical Statistics, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London (1958).
  • L. Comtet: Advanced combinatorics, enlarged Edition, D. Reidel Publishing Co., Dordrecht (1974).
  • J. A. Knox, H. J. Brothers: Novel series-based approximations to e, College Math. J., 30 (4) (1999), 269–275.
  • C. Mortici, X.-J. Jang: Estimates of (1+x)1=x involved in Carleman’s inequality and Keller’s limit, Filomat, 29 (7) (2015), 1535–1539.
  • X. Yang: Approximations for constant e and their applications, J. Math. Anal. Appl., 262 (2) (2001), 651–659.
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Ioan Gavrea Bu kişi benim

Mircea Ivan 0000-0001-6047-2470

Yayımlanma Tarihi 1 Haziran 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 4 Sayı: 2

Kaynak Göster

APA Gavrea, I., & Ivan, M. (2021). Approximation properties related to the Bell polynomials. Constructive Mathematical Analysis, 4(2), 253-259. https://doi.org/10.33205/cma.861342
AMA Gavrea I, Ivan M. Approximation properties related to the Bell polynomials. CMA. Haziran 2021;4(2):253-259. doi:10.33205/cma.861342
Chicago Gavrea, Ioan, ve Mircea Ivan. “Approximation Properties Related to the Bell Polynomials”. Constructive Mathematical Analysis 4, sy. 2 (Haziran 2021): 253-59. https://doi.org/10.33205/cma.861342.
EndNote Gavrea I, Ivan M (01 Haziran 2021) Approximation properties related to the Bell polynomials. Constructive Mathematical Analysis 4 2 253–259.
IEEE I. Gavrea ve M. Ivan, “Approximation properties related to the Bell polynomials”, CMA, c. 4, sy. 2, ss. 253–259, 2021, doi: 10.33205/cma.861342.
ISNAD Gavrea, Ioan - Ivan, Mircea. “Approximation Properties Related to the Bell Polynomials”. Constructive Mathematical Analysis 4/2 (Haziran 2021), 253-259. https://doi.org/10.33205/cma.861342.
JAMA Gavrea I, Ivan M. Approximation properties related to the Bell polynomials. CMA. 2021;4:253–259.
MLA Gavrea, Ioan ve Mircea Ivan. “Approximation Properties Related to the Bell Polynomials”. Constructive Mathematical Analysis, c. 4, sy. 2, 2021, ss. 253-9, doi:10.33205/cma.861342.
Vancouver Gavrea I, Ivan M. Approximation properties related to the Bell polynomials. CMA. 2021;4(2):253-9.