Araştırma Makalesi
BibTex RIS Kaynak Göster

Solutions for nonhomogeneous degenerate quasilinear anisotropic problems

Yıl 2024, Cilt: 7 Sayı: 3, 134 - 149, 15.09.2024
https://doi.org/10.33205/cma.1504337

Öz

In this article, we consider a class of nonlinear elliptic problems, where anisotropic leading differential operator incorporates the unbounded coefficients and the nonlinear term is a convection term. We prove the solvability of degenerate Dirichlet problem with convection, i.e. the existence of at least one bounded weak solution via the theory of pseudomonotone operators, Nemytskii-type operator and a priori estimate in the degenerate anisotropic Sobolev spaces.

Kaynakça

  • Y. Ahakkoud, J. Bennouna and M. Elmassoudi: Existence of a renormalized solutions for parabolic-elliptic system in anisotropic Orlicz-Sobolev spaces, Rend. Circ. Mat. Palermo, II. Ser (2024).
  • M. Allalou, M. El Ouaarabi and A. Raji: On a class of nonhomogeneous anisotropic elliptic problem with variable exponents, Rend. Circ. Mat. Palermo, II. Ser (2024).
  • M. Bohner, G. Caristi, A. Ghobadi and S. Heidarkhani: Three solutions for discrete anisotropic Kirchhoff-type problems, Dem. Math., 56 (1) (2023), Article ID: 20220209.
  • B. Brandolini, F. C. Cîrstea: Singular anisotropic elliptic equations with gradient-dependent lower order terms, Nonlinear Differ. Equ. Appl. NoDEA, 30 (2023), Article ID:58.
  • B. Brandolini, F.C. Cîrstea: Anisotropic elliptic equations with gradient-dependent lower order terms in L1 data, Mathematics in Engineering, 5 (4) (2023), 1–33.
  • S. Carl, V. K. Le and D. Motreanu: Nonsmooth variational problems and their inequalities, in: Comparison Principles and Applications, Springer, New York (2007).
  • S. Ciani, V. Vespri: On Hölder continuity and equivalent formulation of intrinsic Harnack estimates for an anisotropic parabolic degenerate prototype equation, Constr. Math. Anal., 4 (1) (2021), 93–103.
  • G. di Blasio, F. Feo and G. Zecca: Regularity results for local solutions to some anisotropic elliptic equations, Isr. J. Math., 261 (2023), 1–35.
  • G. di Blasio, F. Feo and G. Zecca: Existence and uniqueness of solutions to some anisotropic elliptic equations with singular convection term, https://doi.org/10.48550/arXiv.2307.13564
  • P. Drabek, A. Kufner and F. Nicolosi: Quasilinear Eliptic Equations with Degenerations and Singularities, De Gruyter Series in Nonlinear Analysis and Applications, 5; Walter de Gruyter & Co.: Berlin, Germany (1997).
  • X. Fan: Anisotropic variable exponent Sobolev spaces and −→p (x)-Laplacian equations, Complex Var. Elliptic Equ., 56 (79) (2011), 623–642.
  • I. Fragala, F. Gazzola and B. Kawohl: Existence and nonexistence results for anisotropic quasilinear elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (5) (2004), 715–734.
  • V. Gutlyanskii, O. Nesmelova, V. Ryazanov and E. Yakubov: Toward the theory of semi-linear Beltrami equations, Constr. Math. Anal., 6 (3) (2023), 151–163.
  • M. Mih˘ailescu, G. Moro¸sanu: On an eigenvalue problem for an anisotropic elliptic equation involving variable exponents, Glasgow Math. J., 52 (2010), 517–527.
  • M. Mih˘ailescu, P. Pucci and V. D. R˘adulescu: Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl., 340 (2008), 687–698.
  • D. Motreanu: Degenerated and competing dirichlet problems with weights and convection, Axioms, 10 (4) (2021), Article ID: 271.
  • D. Motreanu, E. Tornatore: Quasilinear Dirichlet problems with degenerated p-Laplacian and convection term, Mathematics, 9 (2) (2021), Article ID: 139.
  • D. Motreanu, E. Tornatore: Nonhomogeneous degenerate quasilinear problems with convection, Nonlinear Anal. Real World Appl., 71 (2023), Article ID: 103800.
  • D. Motreanu, E. Tornatore: Dirichlet problems with anisotropic principal part involving unbounded coefficients, Electron. J. Differ. Equ., 2024 (11), 1–13.
  • V.A. Nghiem Thi, A.T. Vu, D.L. Le and V.N. Doan: On the source problem for the diffusion equations with conformable derivative, Modern Math. Methods, 2 (2) (2024), 55–64.
  • V. D. R˘adulescu: Isotropic and anisotropic double-phase problems: Old and new, Opuscula Math., 39 (2) (2019), 259–279.
  • J. Rákosník: Some remarks to anisotropic Sobolev spaces I, Beitr. Anal., 13 (1979), 55–68.
  • A. Razani: Nonstandard competing anisotropic (p, q)-Laplacians with convolution, Bound. Value Probl., 2022 (2022), Article ID:87.
  • A. Razani: Entire weak solutions for an anisotropic equation in the Heisenberg group, Proc. Amer. Math. Soc., 151 (11) (2023), 4771–4779.
  • A. Razani, G.S. Costa and G. M. Figueiredo: A positive solution for a weighted anisotropic p-Laplace equation involving vanishing potential, Mediterr. J. Math., 21 (2024), Article ID: 59.
  • A. Razani, G. M. Figueiredo: A positive solution for an anisotropic p&q-Laplacian, Discrete Contin. Dyn. Syst. Ser. S, 16 (6) (2023), 1629–1643.
  • A. Razani, G. M. Figueiredo: Existence of infinitely many solutions for an anisotropic equation using genus theory, Math. Methods Appl. Sci., 45 (12) (2022), 7591–7606.
  • A. Razani, G. M. Figueiredo: Degenerated and competing anisotropic (p, q)-Laplacians with weights, Appl. Anal., 102 (16) (2023), 4471–4488.
Yıl 2024, Cilt: 7 Sayı: 3, 134 - 149, 15.09.2024
https://doi.org/10.33205/cma.1504337

Öz

Kaynakça

  • Y. Ahakkoud, J. Bennouna and M. Elmassoudi: Existence of a renormalized solutions for parabolic-elliptic system in anisotropic Orlicz-Sobolev spaces, Rend. Circ. Mat. Palermo, II. Ser (2024).
  • M. Allalou, M. El Ouaarabi and A. Raji: On a class of nonhomogeneous anisotropic elliptic problem with variable exponents, Rend. Circ. Mat. Palermo, II. Ser (2024).
  • M. Bohner, G. Caristi, A. Ghobadi and S. Heidarkhani: Three solutions for discrete anisotropic Kirchhoff-type problems, Dem. Math., 56 (1) (2023), Article ID: 20220209.
  • B. Brandolini, F. C. Cîrstea: Singular anisotropic elliptic equations with gradient-dependent lower order terms, Nonlinear Differ. Equ. Appl. NoDEA, 30 (2023), Article ID:58.
  • B. Brandolini, F.C. Cîrstea: Anisotropic elliptic equations with gradient-dependent lower order terms in L1 data, Mathematics in Engineering, 5 (4) (2023), 1–33.
  • S. Carl, V. K. Le and D. Motreanu: Nonsmooth variational problems and their inequalities, in: Comparison Principles and Applications, Springer, New York (2007).
  • S. Ciani, V. Vespri: On Hölder continuity and equivalent formulation of intrinsic Harnack estimates for an anisotropic parabolic degenerate prototype equation, Constr. Math. Anal., 4 (1) (2021), 93–103.
  • G. di Blasio, F. Feo and G. Zecca: Regularity results for local solutions to some anisotropic elliptic equations, Isr. J. Math., 261 (2023), 1–35.
  • G. di Blasio, F. Feo and G. Zecca: Existence and uniqueness of solutions to some anisotropic elliptic equations with singular convection term, https://doi.org/10.48550/arXiv.2307.13564
  • P. Drabek, A. Kufner and F. Nicolosi: Quasilinear Eliptic Equations with Degenerations and Singularities, De Gruyter Series in Nonlinear Analysis and Applications, 5; Walter de Gruyter & Co.: Berlin, Germany (1997).
  • X. Fan: Anisotropic variable exponent Sobolev spaces and −→p (x)-Laplacian equations, Complex Var. Elliptic Equ., 56 (79) (2011), 623–642.
  • I. Fragala, F. Gazzola and B. Kawohl: Existence and nonexistence results for anisotropic quasilinear elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (5) (2004), 715–734.
  • V. Gutlyanskii, O. Nesmelova, V. Ryazanov and E. Yakubov: Toward the theory of semi-linear Beltrami equations, Constr. Math. Anal., 6 (3) (2023), 151–163.
  • M. Mih˘ailescu, G. Moro¸sanu: On an eigenvalue problem for an anisotropic elliptic equation involving variable exponents, Glasgow Math. J., 52 (2010), 517–527.
  • M. Mih˘ailescu, P. Pucci and V. D. R˘adulescu: Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl., 340 (2008), 687–698.
  • D. Motreanu: Degenerated and competing dirichlet problems with weights and convection, Axioms, 10 (4) (2021), Article ID: 271.
  • D. Motreanu, E. Tornatore: Quasilinear Dirichlet problems with degenerated p-Laplacian and convection term, Mathematics, 9 (2) (2021), Article ID: 139.
  • D. Motreanu, E. Tornatore: Nonhomogeneous degenerate quasilinear problems with convection, Nonlinear Anal. Real World Appl., 71 (2023), Article ID: 103800.
  • D. Motreanu, E. Tornatore: Dirichlet problems with anisotropic principal part involving unbounded coefficients, Electron. J. Differ. Equ., 2024 (11), 1–13.
  • V.A. Nghiem Thi, A.T. Vu, D.L. Le and V.N. Doan: On the source problem for the diffusion equations with conformable derivative, Modern Math. Methods, 2 (2) (2024), 55–64.
  • V. D. R˘adulescu: Isotropic and anisotropic double-phase problems: Old and new, Opuscula Math., 39 (2) (2019), 259–279.
  • J. Rákosník: Some remarks to anisotropic Sobolev spaces I, Beitr. Anal., 13 (1979), 55–68.
  • A. Razani: Nonstandard competing anisotropic (p, q)-Laplacians with convolution, Bound. Value Probl., 2022 (2022), Article ID:87.
  • A. Razani: Entire weak solutions for an anisotropic equation in the Heisenberg group, Proc. Amer. Math. Soc., 151 (11) (2023), 4771–4779.
  • A. Razani, G.S. Costa and G. M. Figueiredo: A positive solution for a weighted anisotropic p-Laplace equation involving vanishing potential, Mediterr. J. Math., 21 (2024), Article ID: 59.
  • A. Razani, G. M. Figueiredo: A positive solution for an anisotropic p&q-Laplacian, Discrete Contin. Dyn. Syst. Ser. S, 16 (6) (2023), 1629–1643.
  • A. Razani, G. M. Figueiredo: Existence of infinitely many solutions for an anisotropic equation using genus theory, Math. Methods Appl. Sci., 45 (12) (2022), 7591–7606.
  • A. Razani, G. M. Figueiredo: Degenerated and competing anisotropic (p, q)-Laplacians with weights, Appl. Anal., 102 (16) (2023), 4471–4488.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Lie Grupları, Harmonik ve Fourier Analizi
Bölüm Makaleler
Yazarlar

Abdolrahman Razani 0000-0002-3092-3530

Elisabetta Tornatore Bu kişi benim 0000-0003-1446-5530

Erken Görünüm Tarihi 11 Eylül 2024
Yayımlanma Tarihi 15 Eylül 2024
Gönderilme Tarihi 24 Haziran 2024
Kabul Tarihi 8 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 7 Sayı: 3

Kaynak Göster

APA Razani, A., & Tornatore, E. (2024). Solutions for nonhomogeneous degenerate quasilinear anisotropic problems. Constructive Mathematical Analysis, 7(3), 134-149. https://doi.org/10.33205/cma.1504337
AMA Razani A, Tornatore E. Solutions for nonhomogeneous degenerate quasilinear anisotropic problems. CMA. Eylül 2024;7(3):134-149. doi:10.33205/cma.1504337
Chicago Razani, Abdolrahman, ve Elisabetta Tornatore. “Solutions for Nonhomogeneous Degenerate Quasilinear Anisotropic Problems”. Constructive Mathematical Analysis 7, sy. 3 (Eylül 2024): 134-49. https://doi.org/10.33205/cma.1504337.
EndNote Razani A, Tornatore E (01 Eylül 2024) Solutions for nonhomogeneous degenerate quasilinear anisotropic problems. Constructive Mathematical Analysis 7 3 134–149.
IEEE A. Razani ve E. Tornatore, “Solutions for nonhomogeneous degenerate quasilinear anisotropic problems”, CMA, c. 7, sy. 3, ss. 134–149, 2024, doi: 10.33205/cma.1504337.
ISNAD Razani, Abdolrahman - Tornatore, Elisabetta. “Solutions for Nonhomogeneous Degenerate Quasilinear Anisotropic Problems”. Constructive Mathematical Analysis 7/3 (Eylül 2024), 134-149. https://doi.org/10.33205/cma.1504337.
JAMA Razani A, Tornatore E. Solutions for nonhomogeneous degenerate quasilinear anisotropic problems. CMA. 2024;7:134–149.
MLA Razani, Abdolrahman ve Elisabetta Tornatore. “Solutions for Nonhomogeneous Degenerate Quasilinear Anisotropic Problems”. Constructive Mathematical Analysis, c. 7, sy. 3, 2024, ss. 134-49, doi:10.33205/cma.1504337.
Vancouver Razani A, Tornatore E. Solutions for nonhomogeneous degenerate quasilinear anisotropic problems. CMA. 2024;7(3):134-49.