Araştırma Makalesi
BibTex RIS Kaynak Göster

Finding minimal Ferrers-esque graphs on path graphs ans cycle graphs via set cover

Yıl 2016, Cilt: 1 Sayı: 2, 42 - 49, 01.06.2016

Öz

This paper presents minimal construction techniques of a new graph class called Ferrer-esque [10] comes from Ferrers
relation [9] on path and cycle graphs by using set cover method. The minimal constructions provide to obtain a Ferrer-esque graph by
adding minimum number of edges to paths and cycles. We also state some open problems about Ferrer-Esque graphs to the readers.

Kaynakça

  • Andrews, G. E., The Theory of Partitions, Cambridge, England: Cambridge University Press, pp. 6-7, 1998.
Yıl 2016, Cilt: 1 Sayı: 2, 42 - 49, 01.06.2016

Öz

Kaynakça

  • Andrews, G. E., The Theory of Partitions, Cambridge, England: Cambridge University Press, pp. 6-7, 1998.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Konular Matematik
Bölüm Mathematics, Engineering and statistics
Yazarlar

Selcuk Topal

Yayımlanma Tarihi 1 Haziran 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 1 Sayı: 2

Kaynak Göster

APA Topal, S. (2016). Finding minimal Ferrers-esque graphs on path graphs ans cycle graphs via set cover. Communication in Mathematical Modeling and Applications, 1(2), 42-49.
AMA Topal S. Finding minimal Ferrers-esque graphs on path graphs ans cycle graphs via set cover. CMMA. Haziran 2016;1(2):42-49.
Chicago Topal, Selcuk. “Finding Minimal Ferrers-Esque Graphs on Path Graphs Ans Cycle Graphs via Set Cover”. Communication in Mathematical Modeling and Applications 1, sy. 2 (Haziran 2016): 42-49.
EndNote Topal S (01 Haziran 2016) Finding minimal Ferrers-esque graphs on path graphs ans cycle graphs via set cover. Communication in Mathematical Modeling and Applications 1 2 42–49.
IEEE S. Topal, “Finding minimal Ferrers-esque graphs on path graphs ans cycle graphs via set cover”, CMMA, c. 1, sy. 2, ss. 42–49, 2016.
ISNAD Topal, Selcuk. “Finding Minimal Ferrers-Esque Graphs on Path Graphs Ans Cycle Graphs via Set Cover”. Communication in Mathematical Modeling and Applications 1/2 (Haziran 2016), 42-49.
JAMA Topal S. Finding minimal Ferrers-esque graphs on path graphs ans cycle graphs via set cover. CMMA. 2016;1:42–49.
MLA Topal, Selcuk. “Finding Minimal Ferrers-Esque Graphs on Path Graphs Ans Cycle Graphs via Set Cover”. Communication in Mathematical Modeling and Applications, c. 1, sy. 2, 2016, ss. 42-49.
Vancouver Topal S. Finding minimal Ferrers-esque graphs on path graphs ans cycle graphs via set cover. CMMA. 2016;1(2):42-9.