Research Article
BibTex RIS Cite

Year 2025, Volume: 34 Issue: 2, 191 - 216, 26.12.2025
https://doi.org/10.53447/communc.1684471

Abstract

Project Number

TYL-2022-20000

References

  • Zumla, A.I., Gillespie, S.H., Hoelscher, M., Philips, P.P., Cole, S.T., Abubakar, I., McHugh, T.D., Schito, M., Maeurer, M., Nunn, A.J., New antituberculosis drugs, regimens, and adjunct therapies: needs, advances, and future prospects. Lancet Infections Diseases, 14 (2014), 327–340. https://doi.org/10.1016/S1473-3099(13)70328-1
  • Goletti, D., Meintjes, G., Andrade, B.B., Zumla, A., Shan Lee, S., Insights from the 2024 WHO Global Tuberculosis Report – More comprehensive action, innovation, and investments required for achieving WHO End TB goals. International Journal of Infections Diseases, 150 (2025), 107325. https://doi.org/10.1016/j.ijid.2024.107325
  • Soto, J.A., Gálvez, N.M.S., Andrade, C.A., Ramírez, M.A., Riedel, C.A., Kalergis, A.M., Bueno, S.M., BCG vaccination induces cross-protective immunity against pathogenic microorganisms. Trends in Immunology, 43 (2022), 322–335. https://doi.org/10.1016/j.it.2021.12.006
  • Dow, C.T., Kidess, L., BCG Vaccine – The Road Not Taken. Microorganisms, 10 (2022), 1919. https://doi.org/10.3390/microorganisms10101919
  • Liu, X., Li, H.R., Li, S.S., Yuan, J.F., Pang, Y., Maintenance and recall of memory T cell populations against tuberculosis: implications for vaccine design. Front Immunology, 14 (2023), 1100741. https://doi.org/10.3389/fimmu.2023.1100741
  • Bettencourt, P.J.G., Joosten, S.A., Arlehamn, C.S.L., Behr, M.A., Locht, C., Neyrolles, O., 100 years of the Bacillus Calmette–Guérin vaccine. Vaccine, 39 (2021), 7221–7222. https://doi.org/10.1016/j.vaccine.2021.11.038
  • Covián, C., Fernández-Fierro, A., Retamal-Díaz, A., Díaz, F.E., Vasquez, A.E., Lay, M.K., Riedel, C.A., González, P.A., Bueno, S.M., Kalergis, A.M., BCG-induced cross-protection and development of trained immunity: implications for vaccine design. Front Immunology, 10 (2019), 2806. https://doi.org/10.3389/fimmu.2019.02806
  • DiNardo, A.R., Netea, M.G., Musher, D.M., Postinfectious epigenetic immune modifications a double-edged sword. New England Journal of Medicine, 384 (2021), 261–270. https://doi.org/10.1056/NEJMra2028358
  • Meléndez-Fernández, O.H., Liu, J.A., Nelson, R.J., Circadian rhythms disrupted by light at night and mistimed food intake alter hormonal rhythms and metabolism. International Journal of Molecular Sciences, 24 (2023), 3392. https://doi.org/10.3390/ijms24043392
  • Ince, L.M., Weber, J., Scheiermann, C., Control of leukocyte trafficking by stress-associated hormones. Front Immunology, 9 (2019), 3143. https://doi.org/10.3389/fimmu.2018.03143
  • Nguyen, K.D., Fentress, S.J., Qiu, Y.F., Yun, K.R., Cox, J.S., Chawla, A., Circadian gene regulates diurnal oscillations of Ly6C inflammatory monocytes. Science, 341 (2013), 1483–1488. https://doi.org/10.1126/science.1240636
  • Gibbs, J.E., Blaikley, J., Beesley, S., Matthews, L., Simpson, K.D., Boyce, S.H., Farrow, S.N., Else, K.J., Singh, D., Ray, D.W., Loudon, A.S.I., The nuclear receptor REV-ERBα mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines. Proceedings of National Academy Science USA, 109 (2012), 582–587. https://doi.org/10.1073/pnas.1106750109
  • Netea, M.G., Joosten, L.A., Latz, E., Mills, K.H., Natoli, G., Stunnenberg, H.G., O’Neill, L.A., Xavier, R.J., Trained immunity: a program of innate immune memory in health and disease. Science, 352 (2016), aaf1098. https://doi.org/10.1126/science.aaf1098
  • de Bree, L.C.J., Mourits, V.P., Koeken, V.A., Moorlag, S.J., Janssen, R., Folkman, L., Barreca, D., Krausgruber, T., Fife-Gernedl, V., Novakovic, B., Arts, R.J., Dijkstra, H., Lemmers, H., Bock, C., Joosten, L.A., van Crevel, R., Benn, C.S., Netea, M.G., Circadian rhythm influences induction of trained immunity by BCG vaccination. Journal of Clinical Investigation, 130 (2020), 5603–5617. https://doi.org/10.1172/JCI133934
  • Bjarnason, G.A., Jordan, R., Circadian variation of cell proliferation and cell cycle protein expression in man: clinical implications. Progress in Cell Cycle Research, 4 (2000), 193–206. https://doi.org/10.1007/978-1-4615-4253-7_17
  • Mendell, J.T., Olson, E.N., MicroRNAs in stress signaling and human disease. Cell, 148 (2012), 1172–1187. https://doi.org/10.1016/j.cell.2012.02.005
  • Kaufmann, E., Sanz, J., Dunn, J.L., Khan, N., Mendonca, L.E., Pacis, A., Tzelepis, F., Pernet, E., Dumaine, A., Grenier, J.C., Mailhot-Leonard, F., Ahmed, E., Belle, J., Besla, R., Mazer, B., King, I.L., Nijnik, A., Robbins, C.S., Barreiro, L.B., Divangahi, M., BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis. Cell, 172 (2018), 176–190. https://doi.org/10.1016/j.cell.2017.12.031
  • Arts, R.J.W., Moorlag, S., Novakovic, B., Li, Y., Wang, S.Y., Oosting, M., Kumar, V., Xavier, R.J., Wijmenga, C., Joosten, L.A.B., Reusken, C., Benn, C.S., Aaby, P., Koopmans, M.P., Stunnenberg, H.G., van Crevel, R., Netea, M.G., BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity. Cell Host Microbe, 23 (2018), 89–100. https://doi.org/10.1016/j.chom.2017.12.010
  • Tamura, K., Stecher, G., Kumar, S., MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology Evolution, 38 (2021), 3022–3027. https://doi.org/10.1093/molbev/msab120
  • Bailey, T.L., Boden, M., Buske, F.A., Frith, M., Grant, C.E., Clementi, L., Ren, J.Y., Li, W.W., Noble, W.S., Meme Suıte: tools for motif discovery and searching. Nucleic Acids Research, 37 (2009), W202–W208. https://doi.org/10.1093/nar/gkp335
  • Chen, Y.H., Wang, X.W., miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Research, 48 (2020), D127–D131. https://doi.org/10.1093/nar/gkz757
  • Smoot, M.E., Ono, K., Ruscheinski, J., Wang, P.L., Ideker, T., Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics, 27 (2011), 431–432. https://doi.org/10.1093/bioinformatics/btq675
  • Chen, F., Zhang, G., Iwamoto, Y., See, W.A., BCG directly induces cell cycle arrest in human transitional carcinoma cell lines as a consequence of integrin cross-linking. BMC Urology, 5 (2005), 8. https://doi.org/10.1186/1471-2490-5-8
  • Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔCT) method. Methods, 25 (2001), 402–408. https://doi.org/10.1006/meth.2001.1262
  • Zhang, R., Lahens, N.F., Ballance, H.I., Hughes, M.E., Hogenesch, J.B., A circadian gene expression atlas in mammals: implications for biology and medicine. Proceedings National Academy of Sciences USA, 111 (2014), 16219–16224. https://doi.org/10.1073/pnas.1408886111
  • Silver, A.C., Arjona, A., Walker, W.E., Fikrig, E., The circadian clock controls toll-like receptor 9-mediated innate and adaptive immunity. Immunity, 36 (2012), 251–261. https://doi.org/10.1016/j.immuni.2011.12.017
  • Liu, F.J., Li, X.L., Liu, P.Y., Quan, X.W., Zheng, C., Zhou, B.S., Association between three polymorphisms in genes and risk of lung cancer in a northeast Chinese population. DNA Cell Biology, 38 (2019), 1437–1443. https://doi.org/10.1089/dna.2019.4853
  • Vipat, S., Moiseeva, T.N., The TIMELESS roles in genome stability and beyond. Journal of Molecular Biology, 436 (2024), 168206. https://doi.org/10.1016/j.jmb.2023.168206
  • Duan, X.J., Wang, L.H., Sun, G.B., Yan, W.Y., Yang, Y., Understanding the cross-talk between host and virus in poultry from the perspectives of microRNA. Poultry Science, 99 (2020), 1838–1846. https://doi.org/10.1016/j.psj.2019.11.053
  • Duecker, R.P., Messa, I.D., Jerkic, S.P., Kochems, A., Gottwald, G., Moreno-Galdó, A., Rosewich, M., Gronau, L., Zielen, S., Geburtig-Chiocchetti, A., Kreyenberg, H., Schubert, R., Epigenetic regulation of inflammation by microRNAs in post-infectious bronchiolitis obliterans. Clinical Translational Immunology, 11 (2022), e1376. https://doi.org/10.1002/cti2.1376
  • Jiao, G.M., Huang, Q., Hu, M.R., Liang, X.C., Li, F.C., Lan, C.L., Fu, W.C., An, Y., Xu, B., Zhou, J.Z., Xiao, J.J., Therapeutic suppression of miR-4261 attenuates colorectal cancer by targeting MCC. Molecular Therapy Nucleic Acids, 8 (2017), 121–132. https://doi.org/10.1016/j.omtn.2017.05.010
  • Zhou, X., Li, X., Wu, M., miRNAs reshape immunity and inflammatory responses in bacterial infection. Signal Transduct Target Therapy, 3 (2018), 14. https://doi.org/10.1038/s41392-018-0006-9
  • Lee, H.M., Kim, T.S., Jo, E.K., MiR-146 and miR-125 in the regulation of innate immunity and inflammation. BMB Reports, 49 (2016), 311–318. https://doi.org/10.5483/bmbrep.2016.49.6.056
  • Branger, J., Leemans, J.C., Florquin, S., Weijer, S., Speelman, P., van der Poll, T., Toll-like receptor 4 plays a protective role in pulmonary tuberculosis in mice. International Immunology, 16 (2004), 509–516. https://doi.org/10.1093/intimm/dxh052
  • Sun, Z., Yuan, W., Li, L.H., Cai, H.H., Mao, X., Zhang, L.L., Zang, G.Y., Wang, Z.Q., Macrophage CD36 and TLR4 cooperation promotes foam cell formation and VSMC migration and proliferation under circadian oscillations. Journal Cardiovascular Translations Research, 15 (2022), 985–997. https://doi.org/10.1007/s12265-022-10225-0
  • Hedges, J.F., Kimmel, E., Snyder, D.T., Jerome, M., Jutila, M.A., Solute carrier 11A1 is expressed by innate lymphocytes and augments their activation. Journal Immunology, 190 (2013), 4263–4273. https://doi.org/10.4049/jimmunol.1200732
  • Meng, C.Q., Chen, G.X., Wen, D., Dong, L., Cui, X.G., Jing, X.J., Cui, J., Gao, Y.T., Liu, Y., Bu, H.L., Wu, C.X., The expression of Nramp1 modulates the uptake of by macrophages through alternating inflammatory responses. Tuberculosis, 143 (2023), 102414. https://doi.org/10.1016/j.tube.2023.102414
  • Li, S., Wang, M., Ao, X., Chang, A.K., Yang, C., Zhao, F., Bi, H., Liu, Y., Xiao, L., Wu, H., CLOCK is a substrate of SUMO and sumoylation of CLOCK upregulates the transcriptional activity of estrogen receptor-α. Oncogene, 32 (2013), 4883–4891. https://doi.org/10.1038/onc.2012.518
  • Gray, K.J., Gibbs, J.E., Adaptive immunity, chronic inflammation and the clock. Semin Immunopathology, 44 (2022), 209–224. https://doi.org/10.1007/s00281-022-00919-7
  • Bekkering, G., Delvaux, N., Vankrunkelsven, P., Toelen, J., Aertgeerts, S., Crommen, S., Bruyckere, P., Devisch, I., Lernout, T., Masschalck, K., Milissen, N., Molenberghs, G., Pascal, A., Plomteux, O., Raes, M., Rans, L., Seghers, A., Sweldens, L., Vandenbussche, J., Vanham, G., Wollants, E., Aertgeerts, B., Closing schools for SARS-CoV-2: a pragmatic rapid recommendation. BMJ Paediatrics Open, 5 (2021), e000971. https://doi.org/10.1136/bmjpo-2020-000971
  • Fohse, K., Taks, E.J.M., Moorlag, S., Bonten, M.J.M., van Crevel, R., Ten Oever, J., van Werkhoven, C.H., Netea, M.G., van de Maat, J.S., Hoogerwerf, J.J., The impact of circadian rhythm on Bacillus Calmette–Guérin vaccination effects on SARS-CoV-2 infections. Front Immunology, 14 (2023), 980711. https://doi.org/10.3389/fimmu.2023.980711
  • Enriquez, A.B., Sia, J.K., Dkhar, H.K., Goh, S.L., Quezada, M., Stallings, K.L., Rengarajan, J., Impedes CD40-dependent notch signaling to restrict Th1 polarization during infection. iScience, 25 (2022), 104305. https://doi.org/10.1016/j.isci.2022.104305
  • Jia, Y.H., Wei, Y.Y., Modulators of microRNA function in the immune system. International Journal of Molecular Science, 21 (2020), 2357. https://doi.org/10.3390/ijms21072357
  • Gao, X.L., Tang, M.B., Tian, S.Y., Li, J.L., Wei, S.X., Hua, S.C., Liu, W., ncRNAs-mediated TIMELESS overexpression in lung adenocarcinoma correlates with reduced tumor immune cell infiltration and poor prognosis. PLoS One, 19 (2024), e0296829. https://doi.org/10.1371/journal.pone.0296829

Molecular interactions between circadian gene TIMELESS and BCG immunization

Year 2025, Volume: 34 Issue: 2, 191 - 216, 26.12.2025
https://doi.org/10.53447/communc.1684471

Abstract

Tuberculosis (TB) remains a major global health issue, causing 1.3 million deaths each year. Although BCG vaccination coverage is high, its effectiveness in preventing adult TB is limited, especially with the rise of drug-resistant strains. Circadian rhythms, regulated by clock proteins such as TIMELESS, influence immune responses and other biological functions. This study explores TIMELESS's role in shaping immune responses to BCG stimulation and considers whether aligning vaccination with circadian cycles might improve efficacy HEK293T cells were genetically edited using CRISPR/Cas9 to knock out the TIMELESS gene. These cells were then stimulated with BCG, and gene expression was assessed using the RT² Profiler™ PCR Array (Human Innate & Adaptive Immune Responses). Additionally, in silico tools were used to analyze TIMELESS's evolutionary relationships, structural features, and miRNA interactions.BCG stimulation led to a 90% increase in immune gene expression. Most immune genes were downregulated in TIMELESS knockout cells without BCG, except CD8A, which increased 1.97-fold. When knockout cells were stimulated with BCG, CD40, CD40LG, and SLC11A1 increased expression, indicating enhanced T-cell and macrophage activation. These findings suggest that TIMELESS is crucial for proper immune function during BCG stimulation. Its absence alters key immune pathways, particularly CD40-CD40LG and SLC11A1-related responses. Understanding TIMELESS's role may support the development of circadian-based vaccine strategies to improve TB control and vaccine effectiveness.

Supporting Institution

Hacettepe University Scientific Research Projects Management Coordinatorship Unit

Project Number

TYL-2022-20000

References

  • Zumla, A.I., Gillespie, S.H., Hoelscher, M., Philips, P.P., Cole, S.T., Abubakar, I., McHugh, T.D., Schito, M., Maeurer, M., Nunn, A.J., New antituberculosis drugs, regimens, and adjunct therapies: needs, advances, and future prospects. Lancet Infections Diseases, 14 (2014), 327–340. https://doi.org/10.1016/S1473-3099(13)70328-1
  • Goletti, D., Meintjes, G., Andrade, B.B., Zumla, A., Shan Lee, S., Insights from the 2024 WHO Global Tuberculosis Report – More comprehensive action, innovation, and investments required for achieving WHO End TB goals. International Journal of Infections Diseases, 150 (2025), 107325. https://doi.org/10.1016/j.ijid.2024.107325
  • Soto, J.A., Gálvez, N.M.S., Andrade, C.A., Ramírez, M.A., Riedel, C.A., Kalergis, A.M., Bueno, S.M., BCG vaccination induces cross-protective immunity against pathogenic microorganisms. Trends in Immunology, 43 (2022), 322–335. https://doi.org/10.1016/j.it.2021.12.006
  • Dow, C.T., Kidess, L., BCG Vaccine – The Road Not Taken. Microorganisms, 10 (2022), 1919. https://doi.org/10.3390/microorganisms10101919
  • Liu, X., Li, H.R., Li, S.S., Yuan, J.F., Pang, Y., Maintenance and recall of memory T cell populations against tuberculosis: implications for vaccine design. Front Immunology, 14 (2023), 1100741. https://doi.org/10.3389/fimmu.2023.1100741
  • Bettencourt, P.J.G., Joosten, S.A., Arlehamn, C.S.L., Behr, M.A., Locht, C., Neyrolles, O., 100 years of the Bacillus Calmette–Guérin vaccine. Vaccine, 39 (2021), 7221–7222. https://doi.org/10.1016/j.vaccine.2021.11.038
  • Covián, C., Fernández-Fierro, A., Retamal-Díaz, A., Díaz, F.E., Vasquez, A.E., Lay, M.K., Riedel, C.A., González, P.A., Bueno, S.M., Kalergis, A.M., BCG-induced cross-protection and development of trained immunity: implications for vaccine design. Front Immunology, 10 (2019), 2806. https://doi.org/10.3389/fimmu.2019.02806
  • DiNardo, A.R., Netea, M.G., Musher, D.M., Postinfectious epigenetic immune modifications a double-edged sword. New England Journal of Medicine, 384 (2021), 261–270. https://doi.org/10.1056/NEJMra2028358
  • Meléndez-Fernández, O.H., Liu, J.A., Nelson, R.J., Circadian rhythms disrupted by light at night and mistimed food intake alter hormonal rhythms and metabolism. International Journal of Molecular Sciences, 24 (2023), 3392. https://doi.org/10.3390/ijms24043392
  • Ince, L.M., Weber, J., Scheiermann, C., Control of leukocyte trafficking by stress-associated hormones. Front Immunology, 9 (2019), 3143. https://doi.org/10.3389/fimmu.2018.03143
  • Nguyen, K.D., Fentress, S.J., Qiu, Y.F., Yun, K.R., Cox, J.S., Chawla, A., Circadian gene regulates diurnal oscillations of Ly6C inflammatory monocytes. Science, 341 (2013), 1483–1488. https://doi.org/10.1126/science.1240636
  • Gibbs, J.E., Blaikley, J., Beesley, S., Matthews, L., Simpson, K.D., Boyce, S.H., Farrow, S.N., Else, K.J., Singh, D., Ray, D.W., Loudon, A.S.I., The nuclear receptor REV-ERBα mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines. Proceedings of National Academy Science USA, 109 (2012), 582–587. https://doi.org/10.1073/pnas.1106750109
  • Netea, M.G., Joosten, L.A., Latz, E., Mills, K.H., Natoli, G., Stunnenberg, H.G., O’Neill, L.A., Xavier, R.J., Trained immunity: a program of innate immune memory in health and disease. Science, 352 (2016), aaf1098. https://doi.org/10.1126/science.aaf1098
  • de Bree, L.C.J., Mourits, V.P., Koeken, V.A., Moorlag, S.J., Janssen, R., Folkman, L., Barreca, D., Krausgruber, T., Fife-Gernedl, V., Novakovic, B., Arts, R.J., Dijkstra, H., Lemmers, H., Bock, C., Joosten, L.A., van Crevel, R., Benn, C.S., Netea, M.G., Circadian rhythm influences induction of trained immunity by BCG vaccination. Journal of Clinical Investigation, 130 (2020), 5603–5617. https://doi.org/10.1172/JCI133934
  • Bjarnason, G.A., Jordan, R., Circadian variation of cell proliferation and cell cycle protein expression in man: clinical implications. Progress in Cell Cycle Research, 4 (2000), 193–206. https://doi.org/10.1007/978-1-4615-4253-7_17
  • Mendell, J.T., Olson, E.N., MicroRNAs in stress signaling and human disease. Cell, 148 (2012), 1172–1187. https://doi.org/10.1016/j.cell.2012.02.005
  • Kaufmann, E., Sanz, J., Dunn, J.L., Khan, N., Mendonca, L.E., Pacis, A., Tzelepis, F., Pernet, E., Dumaine, A., Grenier, J.C., Mailhot-Leonard, F., Ahmed, E., Belle, J., Besla, R., Mazer, B., King, I.L., Nijnik, A., Robbins, C.S., Barreiro, L.B., Divangahi, M., BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis. Cell, 172 (2018), 176–190. https://doi.org/10.1016/j.cell.2017.12.031
  • Arts, R.J.W., Moorlag, S., Novakovic, B., Li, Y., Wang, S.Y., Oosting, M., Kumar, V., Xavier, R.J., Wijmenga, C., Joosten, L.A.B., Reusken, C., Benn, C.S., Aaby, P., Koopmans, M.P., Stunnenberg, H.G., van Crevel, R., Netea, M.G., BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity. Cell Host Microbe, 23 (2018), 89–100. https://doi.org/10.1016/j.chom.2017.12.010
  • Tamura, K., Stecher, G., Kumar, S., MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology Evolution, 38 (2021), 3022–3027. https://doi.org/10.1093/molbev/msab120
  • Bailey, T.L., Boden, M., Buske, F.A., Frith, M., Grant, C.E., Clementi, L., Ren, J.Y., Li, W.W., Noble, W.S., Meme Suıte: tools for motif discovery and searching. Nucleic Acids Research, 37 (2009), W202–W208. https://doi.org/10.1093/nar/gkp335
  • Chen, Y.H., Wang, X.W., miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Research, 48 (2020), D127–D131. https://doi.org/10.1093/nar/gkz757
  • Smoot, M.E., Ono, K., Ruscheinski, J., Wang, P.L., Ideker, T., Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics, 27 (2011), 431–432. https://doi.org/10.1093/bioinformatics/btq675
  • Chen, F., Zhang, G., Iwamoto, Y., See, W.A., BCG directly induces cell cycle arrest in human transitional carcinoma cell lines as a consequence of integrin cross-linking. BMC Urology, 5 (2005), 8. https://doi.org/10.1186/1471-2490-5-8
  • Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔCT) method. Methods, 25 (2001), 402–408. https://doi.org/10.1006/meth.2001.1262
  • Zhang, R., Lahens, N.F., Ballance, H.I., Hughes, M.E., Hogenesch, J.B., A circadian gene expression atlas in mammals: implications for biology and medicine. Proceedings National Academy of Sciences USA, 111 (2014), 16219–16224. https://doi.org/10.1073/pnas.1408886111
  • Silver, A.C., Arjona, A., Walker, W.E., Fikrig, E., The circadian clock controls toll-like receptor 9-mediated innate and adaptive immunity. Immunity, 36 (2012), 251–261. https://doi.org/10.1016/j.immuni.2011.12.017
  • Liu, F.J., Li, X.L., Liu, P.Y., Quan, X.W., Zheng, C., Zhou, B.S., Association between three polymorphisms in genes and risk of lung cancer in a northeast Chinese population. DNA Cell Biology, 38 (2019), 1437–1443. https://doi.org/10.1089/dna.2019.4853
  • Vipat, S., Moiseeva, T.N., The TIMELESS roles in genome stability and beyond. Journal of Molecular Biology, 436 (2024), 168206. https://doi.org/10.1016/j.jmb.2023.168206
  • Duan, X.J., Wang, L.H., Sun, G.B., Yan, W.Y., Yang, Y., Understanding the cross-talk between host and virus in poultry from the perspectives of microRNA. Poultry Science, 99 (2020), 1838–1846. https://doi.org/10.1016/j.psj.2019.11.053
  • Duecker, R.P., Messa, I.D., Jerkic, S.P., Kochems, A., Gottwald, G., Moreno-Galdó, A., Rosewich, M., Gronau, L., Zielen, S., Geburtig-Chiocchetti, A., Kreyenberg, H., Schubert, R., Epigenetic regulation of inflammation by microRNAs in post-infectious bronchiolitis obliterans. Clinical Translational Immunology, 11 (2022), e1376. https://doi.org/10.1002/cti2.1376
  • Jiao, G.M., Huang, Q., Hu, M.R., Liang, X.C., Li, F.C., Lan, C.L., Fu, W.C., An, Y., Xu, B., Zhou, J.Z., Xiao, J.J., Therapeutic suppression of miR-4261 attenuates colorectal cancer by targeting MCC. Molecular Therapy Nucleic Acids, 8 (2017), 121–132. https://doi.org/10.1016/j.omtn.2017.05.010
  • Zhou, X., Li, X., Wu, M., miRNAs reshape immunity and inflammatory responses in bacterial infection. Signal Transduct Target Therapy, 3 (2018), 14. https://doi.org/10.1038/s41392-018-0006-9
  • Lee, H.M., Kim, T.S., Jo, E.K., MiR-146 and miR-125 in the regulation of innate immunity and inflammation. BMB Reports, 49 (2016), 311–318. https://doi.org/10.5483/bmbrep.2016.49.6.056
  • Branger, J., Leemans, J.C., Florquin, S., Weijer, S., Speelman, P., van der Poll, T., Toll-like receptor 4 plays a protective role in pulmonary tuberculosis in mice. International Immunology, 16 (2004), 509–516. https://doi.org/10.1093/intimm/dxh052
  • Sun, Z., Yuan, W., Li, L.H., Cai, H.H., Mao, X., Zhang, L.L., Zang, G.Y., Wang, Z.Q., Macrophage CD36 and TLR4 cooperation promotes foam cell formation and VSMC migration and proliferation under circadian oscillations. Journal Cardiovascular Translations Research, 15 (2022), 985–997. https://doi.org/10.1007/s12265-022-10225-0
  • Hedges, J.F., Kimmel, E., Snyder, D.T., Jerome, M., Jutila, M.A., Solute carrier 11A1 is expressed by innate lymphocytes and augments their activation. Journal Immunology, 190 (2013), 4263–4273. https://doi.org/10.4049/jimmunol.1200732
  • Meng, C.Q., Chen, G.X., Wen, D., Dong, L., Cui, X.G., Jing, X.J., Cui, J., Gao, Y.T., Liu, Y., Bu, H.L., Wu, C.X., The expression of Nramp1 modulates the uptake of by macrophages through alternating inflammatory responses. Tuberculosis, 143 (2023), 102414. https://doi.org/10.1016/j.tube.2023.102414
  • Li, S., Wang, M., Ao, X., Chang, A.K., Yang, C., Zhao, F., Bi, H., Liu, Y., Xiao, L., Wu, H., CLOCK is a substrate of SUMO and sumoylation of CLOCK upregulates the transcriptional activity of estrogen receptor-α. Oncogene, 32 (2013), 4883–4891. https://doi.org/10.1038/onc.2012.518
  • Gray, K.J., Gibbs, J.E., Adaptive immunity, chronic inflammation and the clock. Semin Immunopathology, 44 (2022), 209–224. https://doi.org/10.1007/s00281-022-00919-7
  • Bekkering, G., Delvaux, N., Vankrunkelsven, P., Toelen, J., Aertgeerts, S., Crommen, S., Bruyckere, P., Devisch, I., Lernout, T., Masschalck, K., Milissen, N., Molenberghs, G., Pascal, A., Plomteux, O., Raes, M., Rans, L., Seghers, A., Sweldens, L., Vandenbussche, J., Vanham, G., Wollants, E., Aertgeerts, B., Closing schools for SARS-CoV-2: a pragmatic rapid recommendation. BMJ Paediatrics Open, 5 (2021), e000971. https://doi.org/10.1136/bmjpo-2020-000971
  • Fohse, K., Taks, E.J.M., Moorlag, S., Bonten, M.J.M., van Crevel, R., Ten Oever, J., van Werkhoven, C.H., Netea, M.G., van de Maat, J.S., Hoogerwerf, J.J., The impact of circadian rhythm on Bacillus Calmette–Guérin vaccination effects on SARS-CoV-2 infections. Front Immunology, 14 (2023), 980711. https://doi.org/10.3389/fimmu.2023.980711
  • Enriquez, A.B., Sia, J.K., Dkhar, H.K., Goh, S.L., Quezada, M., Stallings, K.L., Rengarajan, J., Impedes CD40-dependent notch signaling to restrict Th1 polarization during infection. iScience, 25 (2022), 104305. https://doi.org/10.1016/j.isci.2022.104305
  • Jia, Y.H., Wei, Y.Y., Modulators of microRNA function in the immune system. International Journal of Molecular Science, 21 (2020), 2357. https://doi.org/10.3390/ijms21072357
  • Gao, X.L., Tang, M.B., Tian, S.Y., Li, J.L., Wei, S.X., Hua, S.C., Liu, W., ncRNAs-mediated TIMELESS overexpression in lung adenocarcinoma correlates with reduced tumor immune cell infiltration and poor prognosis. PLoS One, 19 (2024), e0296829. https://doi.org/10.1371/journal.pone.0296829
There are 44 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Research Article
Authors

Aybüke Okay 0000-0002-6772-4316

Buse Türegün Atasoy 0000-0002-8328-7291

Semra Soydam 0009-0007-4394-7009

Project Number TYL-2022-20000
Submission Date April 26, 2025
Acceptance Date August 29, 2025
Publication Date December 26, 2025
Published in Issue Year 2025 Volume: 34 Issue: 2

Cite

Communications Faculty of Sciences University of Ankara Series C Biology licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License