Research Article
BibTex RIS Cite

Year 2025, Volume: 34 Issue: 2, 176 - 190, 26.12.2025
https://doi.org/10.53447/communc.1717315

Abstract

References

  • Stein, J. M., Padykula, H. A., Histochemical classification of individual skeletal muscle fibers of the rat. The American Journal of Anatomy, 110 (1962), 103–123. https://doi.org/10.1002/aja.1001100203
  • Gauthier, G. F., On the relationship of ultrastructural and cytochemical features of color in mammalian skeletal muscle. Zeitschrift für Zellforschung und mikroskopische Anatomie (Vienna, Austria: 1948), 95 (1969), 462–482. https://doi.org/10.1007/bf00995217
  • Peter, J. B., Barnard, R. J., Edgerton, V. R., Gillespie, C. A., Stempel, K. E,. Metabolic profiles of three fiber types of skeletal muscle in guinea pigs and rabbits. Biochemistry, (1972), 2627–2633. https://doi.org/10.1021/bi00764a013
  • Francis-West, P.H., Laurent, A., Kelly A., Regulation of myogenic differentiation in the developing limb bud. Journal of Anatomy, (2003), 69–81. https://doi.org/10.1046/j.1469-7580.2003.00136.x
  • Health Organization World. 1999. World Health Report 1999. World Health Organization.
  • Bulduk, E., Gönül, B., Ozer, C., Effects of vitamin C on muscle glycogen and oxidative events in experimental diabetes. Molecular and Cellular Biochemistry, (2006), 131–137. https://doi.org/10.1007/s11010-006-9226-3
  • Grossie, J., Contractile and electrical characteristics of extensor muscle from alloxan-diabetic rats. An in vitro study. Diabetes, (1982), 194–202. https://doi.org/10.2337/diab.31.3.194
  • Paulus, S. F., Grossie, J., Skeletal muscle in alloxan diabetes. A comparison of isometric contractions in fast and slow muscle. Diabetes, (1983), 1035–1039. https://doi.org/10.2337/diab.32.11.1035
  • Cotter, M., Cameron N. E., Lean, D. R., Robertson, S., Effects of long-term streptozotocin diabetes on the contractile and histochemical properties of rat muscles. Quarterly Journal of Experimental Physiology, (1989), 65–74. https://doi.org/10.1113/expphysiol.1989.sp003240
  • Bestetti, G., Zemp, C., Probst, D., Rossi, G. L., Neuropathy and myopathy in the diaphragm of rats after 12 months of streptozotocin-induced diabetes mellitus. Acta Neuropathologica, (1981), 11–20. https://doi.org/10.1007/bf00691524
  • Balogh, I., Koltai, M. Z., Pogátsa, G., Ultrastructural alterations in cardiac and skeletal muscles in experimental diabetes mellitus. Acta Physiologica Hungarica, 71 (1988), 219–225.
  • Cebesoy, S., Ozsoy, N., Gül, N., Ayvalı, C., Kutlu, I., Histochemical properties of skeletal muscle fibers in alloxan-diabetic rats. Gazi University Journal of Institute of Science, 13 (2000), 599–611.
  • Pain, V. M., Garlick, P. J., Effect of streptozotocin diabetes and insulin treatment on the rate of protein synthesis in tissues of the rat in vivo. The Journal of Biological Chemistry, 249 (1974), 4510–4514. https://doi.org/10.1016/s0021-9258(19)42448-4
  • Manchester, K. L., The control by insulin of amino acid accumulation in muscle. The Biochemical Journal, 117 (1970), 457–465. https://doi.org/10.1042/bj1170457
  • Moore, R. D., Munford, J. W., Pillsworth T. J. Jr., Effects of streptozotocin diabetes and fasting on intracellular sodium and adenosine triphosphate in rat soleus muscle. The Journal of Physiology, 338 (1983), 277–294. https://doi.org/10.1113/jphysiol.1983.sp014673
  • Kjeldsen, K., Braendgaard, H., Sidenius, P., Larsen, J. S., Nørgaard, A., Diabetes decreases Na+-K+ pump concentration in skeletal muscles, heart ventricular muscle, and peripheral nerves of rat. Diabetes, 36 (1987), 842–848. https://doi.org/10.2337/diab.36.7.842
  • Ganguly, P. K., Pierce, G. N., Dhalla, K. S., Dhalla, N. S., Defective sarcoplasmic reticular calcium transport in diabetic cardiomyopathy. The American Journal of Physiology, 244 (1983), 528-35. https://doi.org/10.1152/ajpendo.1983.244.6.E528
  • Eibschutz, B., Lopaschuk, G. D., McNeill, J. H., Katz, S., Ca2+-transport in skeletal muscle sarcoplasmic reticulum of the chronically diabetic rat. Research Communications in Chemical Pathology and Pharmacology, 45 (1984), 301–304.
  • Gürler, B., Vural H., Nevin, Y., Oğuz, H., Satici, A., Aksoy, N., The role of oxidative stress in diabetic retinopathy. Eye, 14 (2000), 730–735. https://doi.org/10.1038/eye.2000.193
  • Reed, M. J., Meszaros, K. L. Entes, J., Claypool, M. D., Pinkett, J. G., Gadbois, T. M., Reaven, G. M., A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism: Clinical and Experimental, 49 (2000), 1390–1394. https://doi.org/10.1053/meta.2000.17721
  • Heidarian, E., Soofiniya, Y., Hypolipidemic and hypoglycemic effects of aerial part of Cynara scolymus in streptozotocin-induced diabetic rats. Journal of Medical Plant Research, 5 (2011), 2717–2723.
  • Mythili, M. D., Vyas, R., Akila, G., Gunasekaran, S., Effect of streptozotocin on the ultrastructure of rat pancreatic islets. Microscopy Research and Technique, 63 (2004), 274–281. https://doi.org/10.1002/jemt.20039
  • Akbarzadeh, A., Noruzian, D., Mehrabi, M. R., Jamshidi, S., Farhangi, A., Allahverdi, A., Mofidian, S. M. A., Rad, B. L., Induction of diabetes by Streptozotocin in rats. Indian Journal of Clinical Biochemistry: IJCB, 22 (2007), 60–64. https://doi.org/10.1007/BF02913315
  • McLennan, S., Yue, D. K., Fisher, E., Capogreco, C., Heffernan, S., Ross, G. R., Turtle, J. R., Deficiency of ascorbic acid in experimental diabetes. Relationship with collagen and polyol pathway abnormalities. Diabetes, 37 (1988), 59–361. https://doi.org/10.2337/diab.37.3.359
  • Hayat, M.A., Fixation for Electron Microscopy. Elsevier: London, UK, 1981.
  • Lin, J., Zhang, X., Sun, Y., Xu, H., Li, N., Wang, Y., Tian, X., Zhao, C., Wang, B., Zhu, B., Zhao, R., Exercise ameliorates muscular excessive mitochondrial fission, insulin resistance and inflammation in diabetic rats via irisin/AMPK activation. Scientific Reports, 14 (2024), 10658. https://doi.org/10.1038/s41598-024-61415-6
  • Cea, L., Walter, V., Hernández-Salinas, R., Vielma, A. Z., Castillo-Ruiz, M., Velarde, V., Salgado, M., Sáez, J., Skeletal muscle atrophy induced by diabetes is mediated by non-selective channels and prevented by boldine. Biomolecules, 13 (2023), 708. https://doi.org/10.3390/biom13040708
  • Rodrigo, R., Prieto, J., Aguayo, R., Ramos, C., Puentes, Á., Gajardo, A., Panieri, E., Rojas-Solé, C., Lillo-Moya, J., Saso, L., Joint cardioprotective effect of vitamin C and other antioxidants against reperfusion injury in patients with acute myocardial infarction undergoing percutaneous coronary intervention. Molecules, 26 (2021), 5702. https://doi.org/10.3390/molecules26185702
  • Gül, N., Cebesoy, S., Özsoy, N., Eskizengin, H., Özer, C., The ultrastructure of skeletal muscle capillaries of streptozotocin diabetic rats and the therapeutic effect of benfluorex. Microscopy and Microanalysis, 28 (2022), 1–5. https://doi.org/10.1017/S143192762201251X

Effects of vitamin C on muscle ultrastructure in experimental diabetes

Year 2025, Volume: 34 Issue: 2, 176 - 190, 26.12.2025
https://doi.org/10.53447/communc.1717315

Abstract

This study investigated the effects of streptozotocin (STZ)-induced diabetes on the ultrastructure of the gastrocnemius muscle in rats. Thirty-eight adult male Wistar Albino rats (200 ± 20 g) were randomly assigned to four experimental groups: Control, Vitamin C, Diabetes, and Diabetes + Vitamin C. Vitamin C, a wellestablished antioxidant, was administered to evaluate its potential protective effects. Diabetes was induced via intravenous injection of STZ dissolved in sterile physiological saline. The ultrastructural morphology of type I, type IIa, and type IIb muscle fibers in the gastrocnemius was examined in all groups using transmission electron microscopy. In diabetic rats, type I and IIa fibers exhibited pronounced mitochondrial damage, characterized by the loss of cristae, an increased accumulation of lipid droplets, and irregular nuclear morphology. Additionally, type IIb fibers demonstrated disorganization of the T-tubular system. These findings suggest that STZ-induced diabetes leads to fiber-typespecific ultrastructural alterations in skeletal muscle. Notably, in diabetic rats receiving Vitamin C supplementation, type I and IIa fibers displayed only mild mitochondrial alterations, fewer lipid droplets, and a preserved T-tubular organization, indicating a potential protective role of Vitamin C against diabetes-induced muscle damage.

References

  • Stein, J. M., Padykula, H. A., Histochemical classification of individual skeletal muscle fibers of the rat. The American Journal of Anatomy, 110 (1962), 103–123. https://doi.org/10.1002/aja.1001100203
  • Gauthier, G. F., On the relationship of ultrastructural and cytochemical features of color in mammalian skeletal muscle. Zeitschrift für Zellforschung und mikroskopische Anatomie (Vienna, Austria: 1948), 95 (1969), 462–482. https://doi.org/10.1007/bf00995217
  • Peter, J. B., Barnard, R. J., Edgerton, V. R., Gillespie, C. A., Stempel, K. E,. Metabolic profiles of three fiber types of skeletal muscle in guinea pigs and rabbits. Biochemistry, (1972), 2627–2633. https://doi.org/10.1021/bi00764a013
  • Francis-West, P.H., Laurent, A., Kelly A., Regulation of myogenic differentiation in the developing limb bud. Journal of Anatomy, (2003), 69–81. https://doi.org/10.1046/j.1469-7580.2003.00136.x
  • Health Organization World. 1999. World Health Report 1999. World Health Organization.
  • Bulduk, E., Gönül, B., Ozer, C., Effects of vitamin C on muscle glycogen and oxidative events in experimental diabetes. Molecular and Cellular Biochemistry, (2006), 131–137. https://doi.org/10.1007/s11010-006-9226-3
  • Grossie, J., Contractile and electrical characteristics of extensor muscle from alloxan-diabetic rats. An in vitro study. Diabetes, (1982), 194–202. https://doi.org/10.2337/diab.31.3.194
  • Paulus, S. F., Grossie, J., Skeletal muscle in alloxan diabetes. A comparison of isometric contractions in fast and slow muscle. Diabetes, (1983), 1035–1039. https://doi.org/10.2337/diab.32.11.1035
  • Cotter, M., Cameron N. E., Lean, D. R., Robertson, S., Effects of long-term streptozotocin diabetes on the contractile and histochemical properties of rat muscles. Quarterly Journal of Experimental Physiology, (1989), 65–74. https://doi.org/10.1113/expphysiol.1989.sp003240
  • Bestetti, G., Zemp, C., Probst, D., Rossi, G. L., Neuropathy and myopathy in the diaphragm of rats after 12 months of streptozotocin-induced diabetes mellitus. Acta Neuropathologica, (1981), 11–20. https://doi.org/10.1007/bf00691524
  • Balogh, I., Koltai, M. Z., Pogátsa, G., Ultrastructural alterations in cardiac and skeletal muscles in experimental diabetes mellitus. Acta Physiologica Hungarica, 71 (1988), 219–225.
  • Cebesoy, S., Ozsoy, N., Gül, N., Ayvalı, C., Kutlu, I., Histochemical properties of skeletal muscle fibers in alloxan-diabetic rats. Gazi University Journal of Institute of Science, 13 (2000), 599–611.
  • Pain, V. M., Garlick, P. J., Effect of streptozotocin diabetes and insulin treatment on the rate of protein synthesis in tissues of the rat in vivo. The Journal of Biological Chemistry, 249 (1974), 4510–4514. https://doi.org/10.1016/s0021-9258(19)42448-4
  • Manchester, K. L., The control by insulin of amino acid accumulation in muscle. The Biochemical Journal, 117 (1970), 457–465. https://doi.org/10.1042/bj1170457
  • Moore, R. D., Munford, J. W., Pillsworth T. J. Jr., Effects of streptozotocin diabetes and fasting on intracellular sodium and adenosine triphosphate in rat soleus muscle. The Journal of Physiology, 338 (1983), 277–294. https://doi.org/10.1113/jphysiol.1983.sp014673
  • Kjeldsen, K., Braendgaard, H., Sidenius, P., Larsen, J. S., Nørgaard, A., Diabetes decreases Na+-K+ pump concentration in skeletal muscles, heart ventricular muscle, and peripheral nerves of rat. Diabetes, 36 (1987), 842–848. https://doi.org/10.2337/diab.36.7.842
  • Ganguly, P. K., Pierce, G. N., Dhalla, K. S., Dhalla, N. S., Defective sarcoplasmic reticular calcium transport in diabetic cardiomyopathy. The American Journal of Physiology, 244 (1983), 528-35. https://doi.org/10.1152/ajpendo.1983.244.6.E528
  • Eibschutz, B., Lopaschuk, G. D., McNeill, J. H., Katz, S., Ca2+-transport in skeletal muscle sarcoplasmic reticulum of the chronically diabetic rat. Research Communications in Chemical Pathology and Pharmacology, 45 (1984), 301–304.
  • Gürler, B., Vural H., Nevin, Y., Oğuz, H., Satici, A., Aksoy, N., The role of oxidative stress in diabetic retinopathy. Eye, 14 (2000), 730–735. https://doi.org/10.1038/eye.2000.193
  • Reed, M. J., Meszaros, K. L. Entes, J., Claypool, M. D., Pinkett, J. G., Gadbois, T. M., Reaven, G. M., A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism: Clinical and Experimental, 49 (2000), 1390–1394. https://doi.org/10.1053/meta.2000.17721
  • Heidarian, E., Soofiniya, Y., Hypolipidemic and hypoglycemic effects of aerial part of Cynara scolymus in streptozotocin-induced diabetic rats. Journal of Medical Plant Research, 5 (2011), 2717–2723.
  • Mythili, M. D., Vyas, R., Akila, G., Gunasekaran, S., Effect of streptozotocin on the ultrastructure of rat pancreatic islets. Microscopy Research and Technique, 63 (2004), 274–281. https://doi.org/10.1002/jemt.20039
  • Akbarzadeh, A., Noruzian, D., Mehrabi, M. R., Jamshidi, S., Farhangi, A., Allahverdi, A., Mofidian, S. M. A., Rad, B. L., Induction of diabetes by Streptozotocin in rats. Indian Journal of Clinical Biochemistry: IJCB, 22 (2007), 60–64. https://doi.org/10.1007/BF02913315
  • McLennan, S., Yue, D. K., Fisher, E., Capogreco, C., Heffernan, S., Ross, G. R., Turtle, J. R., Deficiency of ascorbic acid in experimental diabetes. Relationship with collagen and polyol pathway abnormalities. Diabetes, 37 (1988), 59–361. https://doi.org/10.2337/diab.37.3.359
  • Hayat, M.A., Fixation for Electron Microscopy. Elsevier: London, UK, 1981.
  • Lin, J., Zhang, X., Sun, Y., Xu, H., Li, N., Wang, Y., Tian, X., Zhao, C., Wang, B., Zhu, B., Zhao, R., Exercise ameliorates muscular excessive mitochondrial fission, insulin resistance and inflammation in diabetic rats via irisin/AMPK activation. Scientific Reports, 14 (2024), 10658. https://doi.org/10.1038/s41598-024-61415-6
  • Cea, L., Walter, V., Hernández-Salinas, R., Vielma, A. Z., Castillo-Ruiz, M., Velarde, V., Salgado, M., Sáez, J., Skeletal muscle atrophy induced by diabetes is mediated by non-selective channels and prevented by boldine. Biomolecules, 13 (2023), 708. https://doi.org/10.3390/biom13040708
  • Rodrigo, R., Prieto, J., Aguayo, R., Ramos, C., Puentes, Á., Gajardo, A., Panieri, E., Rojas-Solé, C., Lillo-Moya, J., Saso, L., Joint cardioprotective effect of vitamin C and other antioxidants against reperfusion injury in patients with acute myocardial infarction undergoing percutaneous coronary intervention. Molecules, 26 (2021), 5702. https://doi.org/10.3390/molecules26185702
  • Gül, N., Cebesoy, S., Özsoy, N., Eskizengin, H., Özer, C., The ultrastructure of skeletal muscle capillaries of streptozotocin diabetic rats and the therapeutic effect of benfluorex. Microscopy and Microanalysis, 28 (2022), 1–5. https://doi.org/10.1017/S143192762201251X
There are 29 citations in total.

Details

Primary Language English
Subjects Animal Diet and Nutrition, Animal Physiology - Cell, Animal Cell and Molecular Biology
Journal Section Research Article
Authors

Suna Cebesoy 0000-0001-7484-2882

Nesrin Özsoy Erdaş 0000-0002-0470-3745

Nursel Gül 0000-0003-2978-4163

Hatice Mutlu Eyison 0000-0002-4637-5268

Submission Date June 11, 2025
Acceptance Date September 30, 2025
Early Pub Date December 16, 2025
Publication Date December 26, 2025
Published in Issue Year 2025 Volume: 34 Issue: 2

Cite

Communications Faculty of Sciences University of Ankara Series C Biology licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License