Year 2025,
Volume: 34 Issue: 2, 217 - 233, 26.12.2025
Sumeyra Altıntas
,
Nurevsan Gundogdu
,
Hüseyin Türker
,
Bengü Türkyılmaz Ünal
References
-
Tuberosa, R., Phenotyping for drought tolerance of crops in the genomics era. Frontiers in Physiology, 3 (2012), 347. https://doi.org/10.3389/fphys.2012.00347
-
Turner, N.C., Blum, A., Cakir, M., Steduto, P., Tuberosa, R., Young, N., Strategies to increase the yield and yield stability of crops under drought–are we making progress?. Functional Plant Biology, 41 (2014), 1199-1206. https://doi.org/10.1071/FP14057
-
Rennenberg, H., Simon, J. Synthesis of Section I: Growth and Defense in Plants: the Players. In: Matyssek, R., Lüttge, U., Rennenberg, H. Editors. The Alternatives Growth and Defense: Resource Allocation at Multiple Scales in Plants. Stuttgart: Wissenschaftliche Verlagsgesellschaft, (2013), 93-98.
-
Gebrechorkos, S.H., Sheffield, J., Vicente-Serrano, S.M., Funk, C., Miralles, D.G., Peng, J., Dyer, E., Talib, J., Beck, H.E., Singer, M.B., Warming accelerates global drought severity. Nature, (2025), 1-8. https://doi.org/10.1038/s41586-025-09047-2
-
Begna, T., Impact of drought stress on crop production and its management options. International Journal of Research Studies in Agricultural Sciences, 8 (2022), 1-13. http://dx.doi.org/10.20431/2454-6224.0812001
-
Feller, U., Vaseva, I.I., Extreme climatic events: impacts of drought and high temperature on physiological processes in agronomically important plants. Frontiers in Environmental Science, 2 (2014), 39. https://doi.org/10.3389/fenvs.2014.00039
-
Yavaş, İ., Nail, H., Ünay, A., Practices aimed at increasing the drought resistance of plants. Turkish Journal of Agriculture-Food Science and Technology, 4 (2016), 48-57. https://doi.org/10.17557/tjfc.1258301
-
Mavrič Čermelj, A., Golob, A., Vogel-Mikuš, K., Germ, M., Silicon mitigates negative impacts of drought and UV-b radiation in plants. Plants, 11 (1) (2021), 91. https://doi.org/10.3390/plants11010091
-
Santos, I., Fidalgo, F., Almeida, J.M., Salema, R., Biochemical and ultrastructural changes in leaves of potato plants grown under supplementary UV-B radiation. Plant Science, 167 (4) (2004), 925–935. https://doi.org/10.1016/j.plantsci.2004.05.035
-
Frohnmeyer, H., Staiger, D., Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiology, 133 (2003), 1420–1428. https://doi.org/10.1104/pp.103.030049
-
Zlatev, Z.S., Lidon, F. J., Kaimakanova, M., Plant physiological responses to UV-B radiation. Emirates Journal of Food & Agriculture (EJFA), 24 (2012), 6. doi:10.9755/ejfa.v24i6.14669
-
Forges, M., Vàsquez, H., Charles, F., Sari, D.C., Urban, L., Lizzi, Y., Bardin, M., Aarrouf, J., Impact of UV-C radiation on the sensitivity of three strawberry plant cultivars (Fragaria x ananassa) against Botrytis cinerea. Scientia Horticulturae, 240 (2018), 603-613. https://doi.org/10.1016/j.scienta.2018.06.063
-
Thomas, D.T., Puthur, J.T., UV radiation priming: A means of amplifying the inherent potential for abiotic stress tolerance in crop plants. Environmental and Experimental Botany, 138 (2017), 57-66. https://doi.org/10.1016/j.envexpbot.2017.03.003
-
Kaur, C., Kapoor, H.C., Antioxidants in fruits and vegetables–the millennium’s health. International Journal of Food Science and Technology, 36 (2001), 703-725. https://doi.org/10.1111/j.1365-2621.2001.00513.x
-
Doorenbos, J., Plusje, J., Kassam, A., Branscheid, V., Bentvelsen, C., Yield Response to Water. FAO Irrigation and Drainage Paper: Rome, Italy, 1986.
-
Jaimez, R., Vielma, O., Rada, F., García‐Núñez, C., Effects of water deficit on the dynamics of flowering and fruit production in Capsicum chinense Jacq in a tropical semiarid region of Venezuela. Journal of Agronomy and Crop Science, 185 (2000), 113-119. https://doi.org/10.1046/j.1439-037x.2000.00414.x
-
Katterji, N., Mastrorili, M., Hamdy, A., Effect of stress at different growth stage on pepper yield. Acta Horticulturae, 335 (1993), 16-171.
-
Peet, M.M., Wolfe, D.W., Crop ecosystem responses to climatic change: vegetable crops. Climate Change and Global Crop Productivity, (2000), 213-243. https://doi.org/10.1079/9780851994390.0213
-
Maynard, D. N., Hochmuth, G. J., Handbook for Vegetable Growers. John Willey & Sons: New York, 2007.
-
Gyúrós, J., Étkezési paprika. Zöldségtermesztés szabadföldön. Mezőgazda Kiadó, Budapest, (2004), 140-149.
-
Zatykó, L., Pepper (Capsicum annuum L.) breeding methods at the turn of the century. Acta Agronomica Hungarica, 54 (2006), 179-202. https://doi.org/10.1556/AAgr.54.2006.2.7
-
Mardani, S., Tabatabaei, S.H., Pessarakli, M., Zareabyaneh, H., Physiological responses of pepper plant (Capsicum annuum L.) to drought stress. Journal of Plant Nutrition, 40 (2017), 1453-1464. https://doi.org/10.1080/01904167.2016.1269342
-
Kuşvuran, Ş., Kıran, S.U., Altuntaş, Ö., The morphological, physiological and biochemical effects of drought in different pepper genotypes. Turkish Journal of Agriculture-Food Science and Technology, 8 (2020), 1359-1368. https://doi.org/10.24925/turjaf.v8i6.1359-1368.3375
-
Yaban, İ., Kabay, T., The Effect of Drought on Plant Development in Urfa Pepper Genotypes. Ejons International Journal on Mathematic, Engineering and Natural Sciences, 2 (2018), 76-83.
-
Kiegle, E., Moore, C.A., Haseloff, J., Tester, M.A., Knight, M.R., Cell‐type‐specific calcium responses to drought, salt and cold in the Arabidopsis root. The Plant Journal, 23 (2000), 267-278. https://doi.org/10.1046/j.1365-313x.2000.00786.x
-
Upreti, K., Sharma, M., Role of plant growth regulators in abiotic stress tolerance. In Abiotic Stress Physiology of Horticultural Crops; Springer, (2016), 19-46. https://doi.org/10.1007/978-81-322-2725-0_2
-
Nawaz, J., Hussain, M., Jabbar, A., Nadeem, G.A., Sajid, M., Subtain, M.U., Shabbir, I., Seed priming a technique. International Journal of Agriculture and Crop Sciences, 6 (2013), 1373.
-
Ozbay, N., Studies on seed priming in pepper (Capsicum annuum L.). In: Rakshit, A., Singh, H. Editors. Advances in Seed Priming, Springer, (2018), 209-239. https://doi.org/10.1007/978-981-13-0032-5_12
-
Marthandan, V., Geetha, R., Kumutha, K., Renganathan, V.G., Karthikeyan, A., Ramalingam, J., Seed priming: a feasible strategy to enhance drought tolerance in crop plants. International Journal of Molecular Sciences, 21 (2020), 8258. https://doi.org/10.3390/ijms21218258
-
Jisha, K., Vijayakumari, K., Puthur, J.T., Seed priming for abiotic stress tolerance: an overview. Acta Physiologiae Plantarum, 35 (2013), 1381-1396. https://doi.org/10.1007/s11738-012-1186-5
-
Paparella, S., Araújo, S.D.S., Rossi, G., Wijayasinghe, M., Carbonera, D., Balestrazzi, A., Seed priming: state of the art and new perspectives. Plant Cell Reports,34 (2015), 1281-1293. https://doi.org/10.1007/s00299-015-1784-y
-
Ali, Q., Daud, M., Haider, M.Z., Ali, S., Rizwan, M., Aslam, N., Noman, A., Iqbal, N., Shahzad, F., Deeba, F., Seed priming by sodium nitroprusside improves salt tolerance in wheat (Triticum aestivum L.) by enhancing physiological and biochemical parameters. Plant Physiology and Biochemistry, 119 (2017), 50-58. https://doi.org/10.1016/j.plaphy.2017.08.010
-
Hossain, M.A., Bhattacharjee, S., Armin, S.M., Qian, P., Xin, W., Li, H.Y., Burritt, D.J., Fujita, M., Tran, L.S.P., Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. Frontiers in plant science, 6 (2015), 420. https://doi.org/10.3389/fpls.2015.00420
-
Escobar-Hernández, D.I., González-García, Y., Olivares-Sáenz, E., Juárez-Maldonado, A., Seedling priming with UV-A radiation induces positive responses in tomato and bell pepper plants under water stress. Scientia Horticulturae, 332 (2024), 113235. https://doi.org/10.1016/j.scienta.2024.113235
-
Sosnin, E.A., Cherneta, V.S., Victorova, I.A., Skakun, V.S., Panarin, V.A., Butenkova, A.N., A new data on priming of plant seeds by UVB radiation. In XV International Conference on Pulsed Lasers and Laser Applications, Vol. 12086 (2021), pp. 316-320 SPIE.
-
Akalp, E., Pirinç, V., Morphological changes of pepper varieties (Capsicum annuum L.) resulted from uv-c lights and gamma-ray radiation sources. Applied Ecology and Environmental Research, 23 (2025), 6193-6203. http://dx.doi.org/10.15666/aeer/2304_61936203
-
Rodríguez-Calzada, T., Qian, M., Strid, Å., Neugart, S., Schreiner, M., Torres-Pacheco, I., Guevara-González, R.G., Effect of UV-B radiation on morphology, phenolic compound production, gene expression, and subsequent drought stress responses in chili pepper (Capsicum annuum L.). Plant Physiology and Biochemistry, 134 (2019), 94-102. https://doi.org/10.1016/j.plaphy.2018.06.025
-
Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72 (1976), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
-
Brand-Williams, W., Cuvelier, M.E., Berset, C., Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28 (1995), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
-
Bergmeyer, H., Standardization of methods for estimation of enzyme activity in biological fluids. Zeitschrift fur Klinische Chemie und Klinische Biochemie, 8 (1970), 658-660.
-
Singleton, V.L., Rossi, J.A., Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture,16 (1965), 144-158. https://doi.org/10.5344/ajev.1965.16.3.144
-
Tukey, J.W., Causation, Regression, and Path Analysis. Statistics and mathematics in biology, (1954), 35-66.
-
Roy‐Macauley, H., Zuily‐Fodil, Y., Kidric, M., Thi, A.P., de Silva, J.V., Effect of drought stress on proteolytic activities in Phaseolus and Vigna leaves from sensitive and resistant plants. Physiologia Plantarum, 85 (1992), 90-96. https://doi.org/10.1111/j.1399-3054.1992.tb05268.x
-
Sen, A., Challabathula, D., Puthur, J.T., UV-B priming of Oryza sativa seeds augments the innate tolerance potential in a tolerant variety more effectively toward NaCl and PEG stressors. Journal of Plant Growth Regulation, 40 (2021), 1166-1180. https://doi.org/10.1007/s00344-020-10177-2
-
Ravindran, K., Indrajith, A., Pratheesh, P., Sanjiviraja, K., Balakrishnan, V., Effect of ultraviolet-B radiation on biochemical and antioxidant defence system in Indigofera tinctoria L. seedlings. International journal of engineering, science and technology, 2 (2010), 226-232. https://doi.org/10.4314/ijest.v2i5.60154
-
Sen, A., Puthur, J.T., Halo-and UV-B priming-mediated drought tolerance and recovery in rice seedlings. Plant Stress, 2 (2021), 100011. https://doi.org/10.1016/j.stress.2021.100011
-
Thomas, D.T., Puthur, J.T., Amplification of abiotic stress tolerance potential in rice seedlings with a low dose of UV-B seed priming. Functional Plant Biology, 46 (2019), 455-466. https://doi.org/10.1071/FP18258
-
Wang, M., Leng, C., Zhu, Y., Wang, P., Gu, Z., Yang, R. UV-B treatment enhances phenolic acids accumulation and antioxidant capacity of barley seedlings. Lwt,153 (2022), 112445. https://doi.org/10.1016/j.lwt.2021.112445
-
Rezayian, M., Niknam, V., Ebrahimzadeh, H., Penconazole and calcium improves drought stress tolerance and oil quality in canola. Soil Science and Plant Nutrition, 64 (2018), 606-615. https://doi.org/10.1080/00380768.2018.1507602
-
Hao, J., Lou, P., Han, Y., Zheng, L., Lu, J., Chen, Z., Ni, J., Yang, Y., Xu, M., Ultraviolet-B irradiation increases antioxidant capacity of pakchoi (Brassica rapa L.) by inducing flavonoid biosynthesis. Plants, 11 (2022), 766. https://doi.org/10.3390/plants11060766
-
Mahmood, T., Rana, R.M., Ahmar, S., Saeed, S., Gulzar, A., Khan, M.A., Wattoo, F.M., Wang, X., Branca, F., Mora-Poblete, F., Mafra, G.S., Du, X., Effect of drought stress on capsaicin and antioxidant contents in pepper genotypes at reproductive stage. Plants, 10 (7) (2021), 1286. https://doi.org/10.3390/plants10071286
-
Gundogdu, N., The effect of exogenous calcium application on reducing drought stress damage in peppers grown under in vitro conditions, Master Thesis, Niğde Ömer Halisdemir University, Nigde, Türkiye, 2023.
-
Chen, Y., Zhang, X., Guo, Q., Liu, L., Li, C., Cao, L., Qin, Q., Zhao, M., Wang, W., Effects of UV-B radiation on the content of bioactive components and the antioxidant activity of Prunella vulgaris L. Spica during development. Molecules, 23 (2018), 989. https://doi.org/10.3390/molecules23050989
-
Sáenz‐de la O, D., Morales, L.O., Strid, Å., Torres‐Pacheco, I., Guevara‐González, R.G., Ultraviolet‐B exposure and exogenous hydrogen peroxide application lead to cross‐tolerance toward drought in Nicotiana tabacum L. Physiologia Plantarum, 173 (2021), 666-679. https://doi.org/10.1111/ppl.13448
-
Turker, H., Unal, B.T., Ozturk, M., Approaches in modulating amino acid metabolism in plants for drought stress. In: Hafeez, M.B., Wahid, A., Farooq, M., Zahra, N. Editors. Amino Acids in Plant Protection. Academic Press, (2025), 111-122. https://doi.org/10.1016/B978-0-443-26793-2.00014-7
UV-B treatments in alleviating drought stress in pepper
Year 2025,
Volume: 34 Issue: 2, 217 - 233, 26.12.2025
Sumeyra Altıntas
,
Nurevsan Gundogdu
,
Hüseyin Türker
,
Bengü Türkyılmaz Ünal
Abstract
Due to climate change and anthropogenic effects, the amount of usable water is decreasing, and many agricultural lands are exposed to drought. To cope with drought and ensure food security, easy-to-apply, cheap, and effective strategies are needed. This study examined the changes caused by drought in pepper plants and the potential effects of UV-B priming on alleviating this stress. Seeds that were subjected to UV-B priming (15' and 30') and/or drought (0.5 M and 1 M Polyethylene glycol 6000) were planted in peat-filled pots and left to develop seedlings in the growth room at 24±2 °C temperature, 16-hour light/8-hour dark photoperiod, and 45% humidity. Seedlings were harvested according to a randomized trial design on the 120th day, and physiological-biochemical analyses (soluble total protein and total phenolic substance amounts, DPPH and CAT activities) were performed. The results of physiological-biochemical analyses indicate that UV-B priming mitigates the adverse effects of drought. UV-B priming techniques are considered an alternative method for growing plants under drought stress and increasing yield and quality.
References
-
Tuberosa, R., Phenotyping for drought tolerance of crops in the genomics era. Frontiers in Physiology, 3 (2012), 347. https://doi.org/10.3389/fphys.2012.00347
-
Turner, N.C., Blum, A., Cakir, M., Steduto, P., Tuberosa, R., Young, N., Strategies to increase the yield and yield stability of crops under drought–are we making progress?. Functional Plant Biology, 41 (2014), 1199-1206. https://doi.org/10.1071/FP14057
-
Rennenberg, H., Simon, J. Synthesis of Section I: Growth and Defense in Plants: the Players. In: Matyssek, R., Lüttge, U., Rennenberg, H. Editors. The Alternatives Growth and Defense: Resource Allocation at Multiple Scales in Plants. Stuttgart: Wissenschaftliche Verlagsgesellschaft, (2013), 93-98.
-
Gebrechorkos, S.H., Sheffield, J., Vicente-Serrano, S.M., Funk, C., Miralles, D.G., Peng, J., Dyer, E., Talib, J., Beck, H.E., Singer, M.B., Warming accelerates global drought severity. Nature, (2025), 1-8. https://doi.org/10.1038/s41586-025-09047-2
-
Begna, T., Impact of drought stress on crop production and its management options. International Journal of Research Studies in Agricultural Sciences, 8 (2022), 1-13. http://dx.doi.org/10.20431/2454-6224.0812001
-
Feller, U., Vaseva, I.I., Extreme climatic events: impacts of drought and high temperature on physiological processes in agronomically important plants. Frontiers in Environmental Science, 2 (2014), 39. https://doi.org/10.3389/fenvs.2014.00039
-
Yavaş, İ., Nail, H., Ünay, A., Practices aimed at increasing the drought resistance of plants. Turkish Journal of Agriculture-Food Science and Technology, 4 (2016), 48-57. https://doi.org/10.17557/tjfc.1258301
-
Mavrič Čermelj, A., Golob, A., Vogel-Mikuš, K., Germ, M., Silicon mitigates negative impacts of drought and UV-b radiation in plants. Plants, 11 (1) (2021), 91. https://doi.org/10.3390/plants11010091
-
Santos, I., Fidalgo, F., Almeida, J.M., Salema, R., Biochemical and ultrastructural changes in leaves of potato plants grown under supplementary UV-B radiation. Plant Science, 167 (4) (2004), 925–935. https://doi.org/10.1016/j.plantsci.2004.05.035
-
Frohnmeyer, H., Staiger, D., Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiology, 133 (2003), 1420–1428. https://doi.org/10.1104/pp.103.030049
-
Zlatev, Z.S., Lidon, F. J., Kaimakanova, M., Plant physiological responses to UV-B radiation. Emirates Journal of Food & Agriculture (EJFA), 24 (2012), 6. doi:10.9755/ejfa.v24i6.14669
-
Forges, M., Vàsquez, H., Charles, F., Sari, D.C., Urban, L., Lizzi, Y., Bardin, M., Aarrouf, J., Impact of UV-C radiation on the sensitivity of three strawberry plant cultivars (Fragaria x ananassa) against Botrytis cinerea. Scientia Horticulturae, 240 (2018), 603-613. https://doi.org/10.1016/j.scienta.2018.06.063
-
Thomas, D.T., Puthur, J.T., UV radiation priming: A means of amplifying the inherent potential for abiotic stress tolerance in crop plants. Environmental and Experimental Botany, 138 (2017), 57-66. https://doi.org/10.1016/j.envexpbot.2017.03.003
-
Kaur, C., Kapoor, H.C., Antioxidants in fruits and vegetables–the millennium’s health. International Journal of Food Science and Technology, 36 (2001), 703-725. https://doi.org/10.1111/j.1365-2621.2001.00513.x
-
Doorenbos, J., Plusje, J., Kassam, A., Branscheid, V., Bentvelsen, C., Yield Response to Water. FAO Irrigation and Drainage Paper: Rome, Italy, 1986.
-
Jaimez, R., Vielma, O., Rada, F., García‐Núñez, C., Effects of water deficit on the dynamics of flowering and fruit production in Capsicum chinense Jacq in a tropical semiarid region of Venezuela. Journal of Agronomy and Crop Science, 185 (2000), 113-119. https://doi.org/10.1046/j.1439-037x.2000.00414.x
-
Katterji, N., Mastrorili, M., Hamdy, A., Effect of stress at different growth stage on pepper yield. Acta Horticulturae, 335 (1993), 16-171.
-
Peet, M.M., Wolfe, D.W., Crop ecosystem responses to climatic change: vegetable crops. Climate Change and Global Crop Productivity, (2000), 213-243. https://doi.org/10.1079/9780851994390.0213
-
Maynard, D. N., Hochmuth, G. J., Handbook for Vegetable Growers. John Willey & Sons: New York, 2007.
-
Gyúrós, J., Étkezési paprika. Zöldségtermesztés szabadföldön. Mezőgazda Kiadó, Budapest, (2004), 140-149.
-
Zatykó, L., Pepper (Capsicum annuum L.) breeding methods at the turn of the century. Acta Agronomica Hungarica, 54 (2006), 179-202. https://doi.org/10.1556/AAgr.54.2006.2.7
-
Mardani, S., Tabatabaei, S.H., Pessarakli, M., Zareabyaneh, H., Physiological responses of pepper plant (Capsicum annuum L.) to drought stress. Journal of Plant Nutrition, 40 (2017), 1453-1464. https://doi.org/10.1080/01904167.2016.1269342
-
Kuşvuran, Ş., Kıran, S.U., Altuntaş, Ö., The morphological, physiological and biochemical effects of drought in different pepper genotypes. Turkish Journal of Agriculture-Food Science and Technology, 8 (2020), 1359-1368. https://doi.org/10.24925/turjaf.v8i6.1359-1368.3375
-
Yaban, İ., Kabay, T., The Effect of Drought on Plant Development in Urfa Pepper Genotypes. Ejons International Journal on Mathematic, Engineering and Natural Sciences, 2 (2018), 76-83.
-
Kiegle, E., Moore, C.A., Haseloff, J., Tester, M.A., Knight, M.R., Cell‐type‐specific calcium responses to drought, salt and cold in the Arabidopsis root. The Plant Journal, 23 (2000), 267-278. https://doi.org/10.1046/j.1365-313x.2000.00786.x
-
Upreti, K., Sharma, M., Role of plant growth regulators in abiotic stress tolerance. In Abiotic Stress Physiology of Horticultural Crops; Springer, (2016), 19-46. https://doi.org/10.1007/978-81-322-2725-0_2
-
Nawaz, J., Hussain, M., Jabbar, A., Nadeem, G.A., Sajid, M., Subtain, M.U., Shabbir, I., Seed priming a technique. International Journal of Agriculture and Crop Sciences, 6 (2013), 1373.
-
Ozbay, N., Studies on seed priming in pepper (Capsicum annuum L.). In: Rakshit, A., Singh, H. Editors. Advances in Seed Priming, Springer, (2018), 209-239. https://doi.org/10.1007/978-981-13-0032-5_12
-
Marthandan, V., Geetha, R., Kumutha, K., Renganathan, V.G., Karthikeyan, A., Ramalingam, J., Seed priming: a feasible strategy to enhance drought tolerance in crop plants. International Journal of Molecular Sciences, 21 (2020), 8258. https://doi.org/10.3390/ijms21218258
-
Jisha, K., Vijayakumari, K., Puthur, J.T., Seed priming for abiotic stress tolerance: an overview. Acta Physiologiae Plantarum, 35 (2013), 1381-1396. https://doi.org/10.1007/s11738-012-1186-5
-
Paparella, S., Araújo, S.D.S., Rossi, G., Wijayasinghe, M., Carbonera, D., Balestrazzi, A., Seed priming: state of the art and new perspectives. Plant Cell Reports,34 (2015), 1281-1293. https://doi.org/10.1007/s00299-015-1784-y
-
Ali, Q., Daud, M., Haider, M.Z., Ali, S., Rizwan, M., Aslam, N., Noman, A., Iqbal, N., Shahzad, F., Deeba, F., Seed priming by sodium nitroprusside improves salt tolerance in wheat (Triticum aestivum L.) by enhancing physiological and biochemical parameters. Plant Physiology and Biochemistry, 119 (2017), 50-58. https://doi.org/10.1016/j.plaphy.2017.08.010
-
Hossain, M.A., Bhattacharjee, S., Armin, S.M., Qian, P., Xin, W., Li, H.Y., Burritt, D.J., Fujita, M., Tran, L.S.P., Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. Frontiers in plant science, 6 (2015), 420. https://doi.org/10.3389/fpls.2015.00420
-
Escobar-Hernández, D.I., González-García, Y., Olivares-Sáenz, E., Juárez-Maldonado, A., Seedling priming with UV-A radiation induces positive responses in tomato and bell pepper plants under water stress. Scientia Horticulturae, 332 (2024), 113235. https://doi.org/10.1016/j.scienta.2024.113235
-
Sosnin, E.A., Cherneta, V.S., Victorova, I.A., Skakun, V.S., Panarin, V.A., Butenkova, A.N., A new data on priming of plant seeds by UVB radiation. In XV International Conference on Pulsed Lasers and Laser Applications, Vol. 12086 (2021), pp. 316-320 SPIE.
-
Akalp, E., Pirinç, V., Morphological changes of pepper varieties (Capsicum annuum L.) resulted from uv-c lights and gamma-ray radiation sources. Applied Ecology and Environmental Research, 23 (2025), 6193-6203. http://dx.doi.org/10.15666/aeer/2304_61936203
-
Rodríguez-Calzada, T., Qian, M., Strid, Å., Neugart, S., Schreiner, M., Torres-Pacheco, I., Guevara-González, R.G., Effect of UV-B radiation on morphology, phenolic compound production, gene expression, and subsequent drought stress responses in chili pepper (Capsicum annuum L.). Plant Physiology and Biochemistry, 134 (2019), 94-102. https://doi.org/10.1016/j.plaphy.2018.06.025
-
Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72 (1976), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
-
Brand-Williams, W., Cuvelier, M.E., Berset, C., Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28 (1995), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
-
Bergmeyer, H., Standardization of methods for estimation of enzyme activity in biological fluids. Zeitschrift fur Klinische Chemie und Klinische Biochemie, 8 (1970), 658-660.
-
Singleton, V.L., Rossi, J.A., Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture,16 (1965), 144-158. https://doi.org/10.5344/ajev.1965.16.3.144
-
Tukey, J.W., Causation, Regression, and Path Analysis. Statistics and mathematics in biology, (1954), 35-66.
-
Roy‐Macauley, H., Zuily‐Fodil, Y., Kidric, M., Thi, A.P., de Silva, J.V., Effect of drought stress on proteolytic activities in Phaseolus and Vigna leaves from sensitive and resistant plants. Physiologia Plantarum, 85 (1992), 90-96. https://doi.org/10.1111/j.1399-3054.1992.tb05268.x
-
Sen, A., Challabathula, D., Puthur, J.T., UV-B priming of Oryza sativa seeds augments the innate tolerance potential in a tolerant variety more effectively toward NaCl and PEG stressors. Journal of Plant Growth Regulation, 40 (2021), 1166-1180. https://doi.org/10.1007/s00344-020-10177-2
-
Ravindran, K., Indrajith, A., Pratheesh, P., Sanjiviraja, K., Balakrishnan, V., Effect of ultraviolet-B radiation on biochemical and antioxidant defence system in Indigofera tinctoria L. seedlings. International journal of engineering, science and technology, 2 (2010), 226-232. https://doi.org/10.4314/ijest.v2i5.60154
-
Sen, A., Puthur, J.T., Halo-and UV-B priming-mediated drought tolerance and recovery in rice seedlings. Plant Stress, 2 (2021), 100011. https://doi.org/10.1016/j.stress.2021.100011
-
Thomas, D.T., Puthur, J.T., Amplification of abiotic stress tolerance potential in rice seedlings with a low dose of UV-B seed priming. Functional Plant Biology, 46 (2019), 455-466. https://doi.org/10.1071/FP18258
-
Wang, M., Leng, C., Zhu, Y., Wang, P., Gu, Z., Yang, R. UV-B treatment enhances phenolic acids accumulation and antioxidant capacity of barley seedlings. Lwt,153 (2022), 112445. https://doi.org/10.1016/j.lwt.2021.112445
-
Rezayian, M., Niknam, V., Ebrahimzadeh, H., Penconazole and calcium improves drought stress tolerance and oil quality in canola. Soil Science and Plant Nutrition, 64 (2018), 606-615. https://doi.org/10.1080/00380768.2018.1507602
-
Hao, J., Lou, P., Han, Y., Zheng, L., Lu, J., Chen, Z., Ni, J., Yang, Y., Xu, M., Ultraviolet-B irradiation increases antioxidant capacity of pakchoi (Brassica rapa L.) by inducing flavonoid biosynthesis. Plants, 11 (2022), 766. https://doi.org/10.3390/plants11060766
-
Mahmood, T., Rana, R.M., Ahmar, S., Saeed, S., Gulzar, A., Khan, M.A., Wattoo, F.M., Wang, X., Branca, F., Mora-Poblete, F., Mafra, G.S., Du, X., Effect of drought stress on capsaicin and antioxidant contents in pepper genotypes at reproductive stage. Plants, 10 (7) (2021), 1286. https://doi.org/10.3390/plants10071286
-
Gundogdu, N., The effect of exogenous calcium application on reducing drought stress damage in peppers grown under in vitro conditions, Master Thesis, Niğde Ömer Halisdemir University, Nigde, Türkiye, 2023.
-
Chen, Y., Zhang, X., Guo, Q., Liu, L., Li, C., Cao, L., Qin, Q., Zhao, M., Wang, W., Effects of UV-B radiation on the content of bioactive components and the antioxidant activity of Prunella vulgaris L. Spica during development. Molecules, 23 (2018), 989. https://doi.org/10.3390/molecules23050989
-
Sáenz‐de la O, D., Morales, L.O., Strid, Å., Torres‐Pacheco, I., Guevara‐González, R.G., Ultraviolet‐B exposure and exogenous hydrogen peroxide application lead to cross‐tolerance toward drought in Nicotiana tabacum L. Physiologia Plantarum, 173 (2021), 666-679. https://doi.org/10.1111/ppl.13448
-
Turker, H., Unal, B.T., Ozturk, M., Approaches in modulating amino acid metabolism in plants for drought stress. In: Hafeez, M.B., Wahid, A., Farooq, M., Zahra, N. Editors. Amino Acids in Plant Protection. Academic Press, (2025), 111-122. https://doi.org/10.1016/B978-0-443-26793-2.00014-7