Research Article
BibTex RIS Cite

Genome-wide analysis of the cpp gene family in Musca domestica L. (Diptera: Muscidae)

Year 2025, Volume: 34 Issue: 2, 260 - 282, 26.12.2025
https://doi.org/10.53447/communc.1808441

Abstract

Musca domestica L. is a ubiquitous synanthropic insect species and a recognized mechanical vector of various pathogens. Despite its public health significance and ecological adaptability, the molecular mechanisms underlying its physiological resilience remain poorly understood. Cysteine-rich Polycomb-like Proteins (CPPs), a conserved family of transcription factors first identified in plants, are increasingly recognized for their roles in regulating cell cycle progression, developmental transitions, and responses to environmental stress across eukaryotic taxa. In this study, we conducted the first comprehensive genome-wide identification and analysis of the CPP gene family in M. domestica, alongside a comparative analysis across 16 additional dipteran species of medical, ecological, and model organism relevance. Using a combination of bioinformatics approaches, we identified 21 CPP genes and analyzed their structural organization, conserved motifs, biophysical properties, subcellular localization, and phylogenetic relationships. Our results reveal two major evolutionary clusters within the family, distinguished by the number of CXC domains, and suggest functional divergence among paralogous members. Most CPP proteins exhibited nuclear localization signals and hydrophilic properties, consistent with their presumed regulatory functions. In M. domestica, protein–protein interaction predictions further highlight the potential involvement of CPPs in gene regulatory networks associated with stress tolerance and developmental control. These findings establish a foundational reference for functional genomics studies on CPP genes in dipterans and open new avenues for exploring transcriptional regulation mechanisms in insect adaptation and vector biology.

References

  • Zhu, J., Qu, R., Wang, Y., Ni, R., Tian, K., Yang, C., Li, M., Kristensen, M., Qiu, X., Up-regulation of CYP6G4 mediated by a CncC/maf binding-site-containing insertion confers resistance to multiple classes of insecticides in the house fly Musca domestica. International Journal of Biological Macromolecules, 253 (2023), 127024. https://doi.org/10.1016/j.ijbiomac.2023.127024
  • Li, T., Yin, Y., Zhang, K., Li, Y., Kong, X., Liu, D., Luo, Y., Zhang, R., Zhang, Z., Ecotoxicity effect of aspirin on the larvae of Musca domestica through retinol metabolism. Ecotoxicology and Environmental Safety, 270 (2024), 115845. https://doi.org/10.1016/j.ecoenv.2023.115845
  • Khan, H.A.A., Maqsood, S., Mahmood, A., Toxicity, resistance and metabolic mechanism of resistance to permethrin in larvae of laboratory and field strains of Musca domestica L. Journal of Asia-Pacific Entomology, 26 (2023), 102095. https://doi.org/10.1016/j.aspen.2023.102095
  • Wilson, T.K., Zishiri, O.T., Zowalaty, M.E.E., Molecular detection of virulence genes in Staphylococcus aureus isolated from wild pigeons (Columba domestica livia) in KwaZulu-Natal in South Africa. One Health, 18 (2024), 100656. https://doi.org/10.1016/j.onehlt.2023.100656
  • Abbasi, E., Yazdani, Z., Daliri, S., Moemenbellah-Fard, M.D., Organochlorine knockdown-resistance (kdr) association in housefly (Musca domestica): A systematic review and meta-analysis. Parasite Epidemiology and Control, 22 (2023), e00310. https://doi.org/10.1016/j.parepi.2023.e00310
  • Soufiane, S.D.M., Serge, Y.R., Tinlé, B., Séverin, N., Firmin, K.N., Isidore, T., Jacques, Z., Inès, Y., Félicité, N., Aminata, F., Naomie, B., Jean-Bosco, O., Ibrahim, S., Mahamoudou, S., Detection and molecular characterization of multiresistant Enterobacteriaceae carried by houseflies in the city of Bobo-Dioulasso, Burkina Faso. International Journal of One Health, 10 (1) (2024), 12–19. https://doi.org/10.14202/IJOH.2024.12-19
  • Kökdener, M., Larvicidal and pupicidal effects of some essential oils against Musca domestica Linnaeus, 1758 (Diptera: Muscidae). International Journal of Agriculture, Environment and Food Sciences, 7 (1) (2023), 234-243. https://doi.org/10.31015/jaefs.2023.1.28
  • Moungthipmalai, T., Soonwera, M., Adulticidal activity against houseflies (Musca domestica L.; Muscidae: Diptera) of combinations of Cymbopogon citratus and Eucalyptus globulus essential oils and their major constituents. International Journal of Agricultural Technology, 19 (3) (2023), 1127-1134.
  • Valerio, B.P., Nunes, B.S., Alvarenga, T.M., Carvalho, C.F., Bernardi, L.F.O., Carvalho, S.M., Ataíde, L.M.S., An efficient method to sample Musca domestica Linnaeus, 1758 (Diptera: Muscidae) using colored pan-traps in cage poultry facilities. Entomological Communications, 5 (2023), ec05005. https://doi.org/10.37486/2675-1305.ec05005
  • Hammed, A.A.A., Shammari, H.I.A., Kathiar, S.A., Effect of nanocapsules and extract of Metarhizium anisopliae in inhibiting acetylcholine esterase enzyme in Musca domestica larvae. Baghdad Science Journal, 21 (1) (2024), 41-52. https://dx.doi.org/10.21123/bsj.2023.7900
  • Cetin, H., Yanikoglu, A., Akarsu, E., Civril, M., Odabas, E., Koc, S., Oz, E., Polat, B., Monitoring of thiamethoxam resistance in Turkish house fly strains, Musca domestica (Diptera: Muscidae). Journal of Arthropod-Borne Diseases, 17 (3) (2023). https://doi.org/10.18502/jad.v17i3.14982
  • Lu, T., Dou, Y., Zhang, C., Fuzzy clustering of CPP family in plants with evolution and interaction analyses. BMC Bioinformatics, 14 (Suppl 13) (2013), S10. https://doi.org/10.1186/1471-2105-14-S13-S10
  • Li, M., Wang, F., Ma, J., Liu, H., Ye, H., Zhao, P., Wang, J., Comprehensive evolutionary analysis of CPP genes in Brassica napus L. and its two diploid progenitors revealing the potential molecular basis of allopolyploid adaptive advantage under salt stress. Frontiers in Plant Science, 13 (2022), 873071. https://doi.org/10.3389/fpls.2022.873071
  • Zhang, L., Zhao, H.K., Wang, Y.M., Yuan, C.P., Zhang, Y.Y., Li, H.Y., Yan, X.F., Li, Q.Y., Dong, Y.S., Genome-wide identification and expression analysis of the CPP-like gene family in soybean. Genetics and Molecular Research, 14 (1) (2015), 1260-1268. https://doi.org/10.4238/2015.february.13.4
  • Rangel-Muñoz, E.J., Cruz-Vázquez, C., Medina-Esparza, L., Vitela-Mendoza, I., Valdivia-Flores, A.G., Presence of the toxigenic fungi Aspergillus spp. and Fusarium spp. in Musca domestica L. (Diptera: Muscidae) collected from dairy farms. Journal of Dairy Science, 106 (2023), 5468–5473. https://doi.org/10.3168/jds.2022-23053
  • El-Sayed, M.K.F., El-Shahawi, M.M., Ali, Y.M., Abdel-Haleem, D.R., El-Azm, F.S.M., Synthesis, larvicidal efficiency and molecular docking studies of novel annulated pyrano[2,3-c]pyrazoles against Culex pipiens L. and Musca domestica L. larvae. Bioorganic Chemistry, 130 (2023), 106258. https://doi.org/10.1016/j.bioorg.2022.106258
  • Norris, R.H., Baker, O.S., Burges, E.R., Tarone, A., Gerry, A., Fryxell, R.T.T., Hinkle, N.C., Olds, C., Boxler, D., Wise, K.L., Machtinger, E.T., Scoot, J.G., Selection for, and characterization of, fluralaner resistance in the house fly, Musca domestica. Pesticide Biochemistry and Physiology, 191 (2023), 105355. https://doi.org/10.1016/j.pestbp.2023.105355
  • Freeman, J.C., Scoot, J.G., Genetics, genomics and mechanisms responsible for high levels of pyrethroid resistance in Musca domestica. Pesticide Biochemistry and Physiology, 198 (2024), 105752. https://doi.org/10.1016/j.pestbp.2023.105752
  • You, C., Zhang, L., Song, J., Zhang, L., Zhen, C., Gao, X., The variation of a cytochrome P450 gene, CYP6G4, drives the evolution of Musca domestica L. (Diptera: Muscidae) resistance to insecticides in China. International Journal of Biological Macromolecules, 236 (2023), 123399. https://doi.org/10.1016/j.ijbiomac.2023.123399
  • You, C., Shan, C., Xin, J., Li, J., Ma, Z., Zhang, Y., Zeng, X., Gao, X., Propoxur resistance associated with insensitivity of acetylcholinesterase (AChE) in the housefly, Musca domestica (Diptera: Muscidae). Scientific Reports, 10 (2020), 8400. https://doi.org/10.1038/s41598-020-65242-3
  • You, C., Shan, J., Ma, Z., Zhang, Y., Zhao, R., Gao, X., The overexpression and variant of CYP6G4 associated with propoxur resistance in the housefly, Musca domestica L. Pest Management Science, 77 (2021), 4321–4330. https://doi.org/10.1002/ps.6461
  • Li, M., Wang, F., Ma, J., Liu, H., Ye, H., Zhao, P., Wang, J., Comprehensive evolutionary analysis of CPP genes in Brassica napus L. and its two diploid progenitors revealing the potential molecular basis of allopolyploid adaptive advantage under salt stress. Frontiers in Plant Science, 13 (2022), 873071. https://doi.org/10.3389/fpls.2022.873071
  • Ullah, U., Buttar, Z.A., Shalmani, A., Muhammad, I., Ud-Din, A., Ali, H., Genome-wide identification and expression analysis of CPP-like gene family in Triticum aestivum L. under different hormone and stress conditions. Open Life Sciences, 17 (2022), 544-562. https://doi.org/10.1515/biol-2022-0051
  • Gull, S., Arfan, M., Uddin, S., Qasim, M., Babar, S., Rajput, N., Ullah, H., Ain, Q. ul, Alharthi, B., Ahmad, S., Iqbal, R., Identification and characterization of cysteine-rich polycomb-like protein (CPP) gene family in rice (Oryza sativa L.) in response to phytohormones and Xanthomonas oryzae pv. oryzae stress. Plant Stress, (2024), 100677. https://doi.org/10.1016/j.stress.2024.100677
  • Liu, R., Feng, Y., Li, Q., Wu, H., Guo, S., Li, J., Liu, X., Zhang, Y., Tang, X., Cao, S., Genome-wide analysis of CPP transcription factor family in endangered plant Phoebe bournei and its response to adversity. Plants, 14 (5) (2025), 803. https://doi.org/10.3390/plants14050803
  • Yang, Z., Gu, S., Wang, X., Li, W., Tang, Z., Xu, C., Molecular evolution of the CPP-like gene family in plants: insights from comparative genomics of Arabidopsis and rice. Journal of Molecular Evolution, 67 (2008), 266-277. https://doi.org/10.1007/s00239-008-9143-z
  • Zhou, Y., Hu, L., Ye, S., Jiang, L., Liu, S., Genome-wide identification and characterization of cysteine-rich polycomb-like protein (CPP) family genes in cucumber (Cucumis sativus) and their roles in stress responses. Biologia, 73 (2018), 425-435. https://doi.org/10.2478/s11756-018-0049-y
  • Rakhimzhanova, A., Kasapoğlu, A.G., Sapakova, A., İlhan, E., Zharmukhametova, R., Turan, M., Zekenova, L., Muslu, S., Kazhygeldiyeva, L., Aydın, M., Çiltaş, A., Expression analysis and characterization of the CPP gene family of Melatonin-treated common bean cultivars under different abiotic stresses. South African Journal of Botany, 160 (2023), 282-294. https://doi.org/10.1016/j.sajb.2023.07.013
  • Davis, F.P., Rebay, I., Master regulators in development: A survey of conserved Cys-rich regulatory proteins in Metazoa. Developmental Biology, 421 (2017), 1–12.
  • Zhang, Q., Comparative genomics reveals conserved Cys-rich DNA-binding proteins across metazoans. BMC Genomics, 20 (2019), 597.
  • Ding, F., Fua, J., Jiang, D., Hao, M., Lina, G., Mapping the spatial distribution of Aedes aegypti and Aedes albopictus. Acta Tropica, 178 (2018), 155–162.
  • Blum, M., Andreeva, A., Florentino, L.C., Chuguransky, S.R., Grego, T., Hobbs, E., Pinto, B.L., Orr, A., Paysan-Lafosse, T., Ponamareva, I., et al., InterPro: the protein sequence classification resource in 2025. Nucleic Acids Research, 53 (D1) (2025), D444–D456. https://doi.org/10.1093/nar/gkae1082
  • Olafson, P.U., Aksoy, S., Attardo, G.M., Buckmeier, G., Chen, X., Coates, C.J., Davis, M., Dykema, J., Emrich, S.J., Freidrich, M., et al., The genome of the stable fly, Stomoxys calcitrans, reveals potential mechanisms underlying reproduction, host interactions, and novel targets for pest control. BMC Biology, 19 (1) (2021), 41. https://doi.org/10.1186/s12915-021-00975-9
  • Adams, M.D., Celniker, S.E., Holt, R.A., Evans, C.A., Gocayne, J.D., Amanatides, P.G., Scherer, S.E., Li, P.W., Hoskins, R.A., Galle, R.F., et al., The genome sequence of Drosophila melanogaster. Science, 287 (5461) (2000), 2185-2195. https://doi.org/10.1126/science.287.5461.2185
  • Dudchenko, O., Batra, S.S., Omer, A.D., Nyquist, S.K., Hoeger, M., Durand, N.C., Shamim, M.S., Machol, I., Lander, E.S., Aiden, A.P., Aiden, E.L., De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science, 356 (6333) (2017), 92-95. https://doi.org/10.1126/science.aal3327
  • Zamyatin, A., Avdeyev, P., Liang, J., Sharma, A., Chen, C., Lukyanchikova, V., Alexeev, N., Tu, Z., Alekseyev, M.A., Sharakhov, I.V., Chromosome-level genome assemblies of the malaria vectors Anopheles coluzzii and Anopheles arabiensis. Gigascience, 10 (3) (2021), giab017. https://doi.org/10.1093/gigascience/giab017
  • Ghurye, J., Koren, S., Small, S.T., Redmond, S., Howell, P., Phillippy, A.M., Besansky, N.J., A chromosome-scale assembly of the major African malaria vector Anopheles funestus. Gigascience, 8 (6) (2019), giz063. https://doi.org/10.1093/gigascience/giz063
  • Generalovic, T.N., McCarthy, S.A., Warren, I.A., Wood, J.M., Torrance, J., Sims, Y., Quail, M., Howe, K., Pipan, M., Durbin, R., Jiggins, C.D., A high-quality, chromosome-level genome assembly of the Black Soldier Fly (Hermetia illucens L.). G3, 11 (5) (2021), jkab085. https://doi.org/10.1093/g3journal/jkab085
  • Mérot, C., Berdan, E.L., Cayuela, H., Djambazian, H., Ferchaud, A.L., Laporte, M., Normandeau, E., Ragoussis, J., Wellenreuther, M., Bernatchez, L., Locally adaptive inversions modulate genetic variation at different geographic scales in a seaweed fly. Molecular Biology and Evolution, 38 (9) (2021), 3953-3971. https://doi.org/10.1093/molbev/msab143
  • Urban, J.M., Foulk, M.S., Bliss, J.E., Coleman, C.M., Lu, N., Mazloom, R., Brown, S.J., Spradling, A.C., Gerbi, S.A., High contiguity de novo genome assembly and DNA modification analyses for the fungus fly, Sciara coprophila, using single-molecule sequencing. BMC Genomics, 22 (1) (2021), 643. https://doi.org/10.1186/s12864-021-07926-2
  • Crowley, L.M., Ashworth, M., Wawman, D.C., The genome sequence of the Thick-legged Hoverfly, Syritta pipiens (Linnaeus, 1758). Wellcome Open Research, 8 (2023), 349. https://doi.org/10.12688/wellcomeopenres.19848.1
  • Durkin, S.M., Chakraborty, M., Abrieux, A., Lewald, K.M., Gadau, A., Svetec, N., Peng, J., Kopyto, M., Langer, C.B., Chiu, J.C., Emerson, J.J., Zhao, L., Behavioral and genomic sensory adaptations underlying the pest activity of Drosophila suzukii. Molecular Biology and Evolution, 38 (6) (2021), 2532-2546. https://doi.org/10.1093/molbev/msab048
  • Hill, T., Koseva, B.S., Unckless, R.L., The genome of Drosophila innubila reveals lineage-specific patterns of selection in immune genes. Molecular Biology and Evolution, 36 (7) (2019), 1405-1417. https://doi.org/10.1093/molbev/msz059
  • Yang, M., Dong, J., Tang, S., Chen, X., Chen, H., Duanmu, H., Cong, Y., Chen, M., Ye, X., Zhou, H., He, K., Li, F., InsectBase 2.0: a comprehensive gene resource for insects. Nucleic Acids Research, 50 (D1) (2022), D1040–D1045. https://doi.org/10.1093/nar/gkab1090
  • Letunic, I., Khedkar, S., Bork, P., SMART: recent updates, new developments and status in 2020. Nucleic Acids Research, 49 (2021), D458–D460. https://doi.org/10.1093/nar/gkaa937
  • Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25 (1997), 4876-4882. https://doi.org/10.1093/nar/25.24.4876
  • Letunic, I., Bork, P., Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Research, 52 (W1) (2024), W78–W82. https://doi.org/10.1093/nar/gkae268
  • Hall, T.A., BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41 (1999), 95-98.
  • Chen, C., Chen, H., Zhang, Y., Thomas, H.R., Frank, M.H., He, Y., Xia, R., TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 13 (8) (2020), 1194-1202. https://doi.org/10.1016/j.molp.2020.06.009
  • Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R. D., Bairoch, A. Protein Identification and Analysis Tools on the ExPASy Server. In: Walker, J.M. Editor. The Proteomics Protocols Handbook. Humana Press, (2005), 571–607. https://doi.org/10.1385/1592598900
  • Thumuluri, V., Armenteros, J.J.A., Johansen, A.R., Nielsen, H., Winther, O., DeepLoc 2.0: multi-label subcellular localization prediction using protein language models. Nucleic Acids Research, 50 (W1) (2022), W228– W234. https://doi.org/10.1093/nar/gkac278
  • Hu, B., Jin, J., Guo, A.Y., Zhang, H., Luo, J., Gao, G., GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics, 31 (2015), 1296 - 1297. https://doi.org/10.1093/bioinformatics/btu817
  • Turan, M., Genome-wide analysis and characterization of HSP gene families (HSP20, HSP40, HSP60, HSP70, HSP90) in the yellow fever mosquito (Aedes aegypti) (Diptera: Culicidae). Journal of Insect Science, 23 (6) (2023), 27. https://doi.org/10.1093/jisesa/iead114
  • Bailey, T.L., Williams, N., Misleh, C., Li, W.W., MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Research, 34 (2006), W369-W373. https://doi.org/10.1093/nar/gkl198
  • Szklarczyk, D., Gable, A.L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N.T., Morris, J.H., Bork, P., Jensen, L.J., Mering, C.V., STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47 (2019), D607–D613. https://doi.org/10.1093/nar/gky1131
  • Tan, J., Xuan, X., Su, S., Jiao, Y., Guo, H., Zhang, Z., Comprehensive analysis of the CPP gene family in Moso bamboo: insights into their role in rapid shoot growth. BMC Genomics, 25 (1) (2024), 1173. https://doi.org/10.1186/s12864-024-11084-6
  • Jiang, L., Zhu, M., Huang, Y., Zhang, Q., Genome-wide characterization and expression analysis of the Cysteine-rich Polycomb-like Protein gene family in response to hormone signaling in apple (Malus domestica). International Journal of Molecular Sciences, 26 (12) (2025), 5528. https://doi.org/10.3390/ijms26125528
  • Turan, M., Identification and characterization of the CPP gene family in the genome of Aedes aegypti L. (Yellow Fever Mosquito) (Diptera: Culicidae). Sakarya University Journal of Science, 27 (6) (2023), 1174-1184. https://doi.org/10.16984/saufenbilder.1338063
  • Gu, L., Kang, T., Zeng, T., Wang, H., Zhu, B., Du, X., Liu, Y., Comprehensive identification and expression analysis of the CPP gene family in maize (Zea mays L.). BMC Plant Biology, 25 (2025), 731. https://doi.org/10.1186/s12870-025-06783-5
  • Laherty, C.D., Yang, W.M., Sun, J.M., Davie, J.R., Seto, E., Eisenman, R.N., Histone deacetylases associated with the mSin3 corepressor mediate Mad-induced transcription repression. Cell, 89 (3) (1997), 349–356. https://doi.org/10.1016/s0092-8674(00)80215-9
  • Bentley, D.L., Coupling transcription with messenger RNA processing. Current Opinion in Cell Biology, 26 (2014), 10–16. https://doi.org/10.1016/j.ceb.2013.10.001
  • Rao, V.S., Srinivas, K., Sujini, G.N., Kumar, G.N.S., Protein-protein interaction detection: methods and analysis. International Journal of Proteomics, 2014 (2014), 147648. https://doi.org/10.1155/2014/147648

Year 2025, Volume: 34 Issue: 2, 260 - 282, 26.12.2025
https://doi.org/10.53447/communc.1808441

Abstract

References

  • Zhu, J., Qu, R., Wang, Y., Ni, R., Tian, K., Yang, C., Li, M., Kristensen, M., Qiu, X., Up-regulation of CYP6G4 mediated by a CncC/maf binding-site-containing insertion confers resistance to multiple classes of insecticides in the house fly Musca domestica. International Journal of Biological Macromolecules, 253 (2023), 127024. https://doi.org/10.1016/j.ijbiomac.2023.127024
  • Li, T., Yin, Y., Zhang, K., Li, Y., Kong, X., Liu, D., Luo, Y., Zhang, R., Zhang, Z., Ecotoxicity effect of aspirin on the larvae of Musca domestica through retinol metabolism. Ecotoxicology and Environmental Safety, 270 (2024), 115845. https://doi.org/10.1016/j.ecoenv.2023.115845
  • Khan, H.A.A., Maqsood, S., Mahmood, A., Toxicity, resistance and metabolic mechanism of resistance to permethrin in larvae of laboratory and field strains of Musca domestica L. Journal of Asia-Pacific Entomology, 26 (2023), 102095. https://doi.org/10.1016/j.aspen.2023.102095
  • Wilson, T.K., Zishiri, O.T., Zowalaty, M.E.E., Molecular detection of virulence genes in Staphylococcus aureus isolated from wild pigeons (Columba domestica livia) in KwaZulu-Natal in South Africa. One Health, 18 (2024), 100656. https://doi.org/10.1016/j.onehlt.2023.100656
  • Abbasi, E., Yazdani, Z., Daliri, S., Moemenbellah-Fard, M.D., Organochlorine knockdown-resistance (kdr) association in housefly (Musca domestica): A systematic review and meta-analysis. Parasite Epidemiology and Control, 22 (2023), e00310. https://doi.org/10.1016/j.parepi.2023.e00310
  • Soufiane, S.D.M., Serge, Y.R., Tinlé, B., Séverin, N., Firmin, K.N., Isidore, T., Jacques, Z., Inès, Y., Félicité, N., Aminata, F., Naomie, B., Jean-Bosco, O., Ibrahim, S., Mahamoudou, S., Detection and molecular characterization of multiresistant Enterobacteriaceae carried by houseflies in the city of Bobo-Dioulasso, Burkina Faso. International Journal of One Health, 10 (1) (2024), 12–19. https://doi.org/10.14202/IJOH.2024.12-19
  • Kökdener, M., Larvicidal and pupicidal effects of some essential oils against Musca domestica Linnaeus, 1758 (Diptera: Muscidae). International Journal of Agriculture, Environment and Food Sciences, 7 (1) (2023), 234-243. https://doi.org/10.31015/jaefs.2023.1.28
  • Moungthipmalai, T., Soonwera, M., Adulticidal activity against houseflies (Musca domestica L.; Muscidae: Diptera) of combinations of Cymbopogon citratus and Eucalyptus globulus essential oils and their major constituents. International Journal of Agricultural Technology, 19 (3) (2023), 1127-1134.
  • Valerio, B.P., Nunes, B.S., Alvarenga, T.M., Carvalho, C.F., Bernardi, L.F.O., Carvalho, S.M., Ataíde, L.M.S., An efficient method to sample Musca domestica Linnaeus, 1758 (Diptera: Muscidae) using colored pan-traps in cage poultry facilities. Entomological Communications, 5 (2023), ec05005. https://doi.org/10.37486/2675-1305.ec05005
  • Hammed, A.A.A., Shammari, H.I.A., Kathiar, S.A., Effect of nanocapsules and extract of Metarhizium anisopliae in inhibiting acetylcholine esterase enzyme in Musca domestica larvae. Baghdad Science Journal, 21 (1) (2024), 41-52. https://dx.doi.org/10.21123/bsj.2023.7900
  • Cetin, H., Yanikoglu, A., Akarsu, E., Civril, M., Odabas, E., Koc, S., Oz, E., Polat, B., Monitoring of thiamethoxam resistance in Turkish house fly strains, Musca domestica (Diptera: Muscidae). Journal of Arthropod-Borne Diseases, 17 (3) (2023). https://doi.org/10.18502/jad.v17i3.14982
  • Lu, T., Dou, Y., Zhang, C., Fuzzy clustering of CPP family in plants with evolution and interaction analyses. BMC Bioinformatics, 14 (Suppl 13) (2013), S10. https://doi.org/10.1186/1471-2105-14-S13-S10
  • Li, M., Wang, F., Ma, J., Liu, H., Ye, H., Zhao, P., Wang, J., Comprehensive evolutionary analysis of CPP genes in Brassica napus L. and its two diploid progenitors revealing the potential molecular basis of allopolyploid adaptive advantage under salt stress. Frontiers in Plant Science, 13 (2022), 873071. https://doi.org/10.3389/fpls.2022.873071
  • Zhang, L., Zhao, H.K., Wang, Y.M., Yuan, C.P., Zhang, Y.Y., Li, H.Y., Yan, X.F., Li, Q.Y., Dong, Y.S., Genome-wide identification and expression analysis of the CPP-like gene family in soybean. Genetics and Molecular Research, 14 (1) (2015), 1260-1268. https://doi.org/10.4238/2015.february.13.4
  • Rangel-Muñoz, E.J., Cruz-Vázquez, C., Medina-Esparza, L., Vitela-Mendoza, I., Valdivia-Flores, A.G., Presence of the toxigenic fungi Aspergillus spp. and Fusarium spp. in Musca domestica L. (Diptera: Muscidae) collected from dairy farms. Journal of Dairy Science, 106 (2023), 5468–5473. https://doi.org/10.3168/jds.2022-23053
  • El-Sayed, M.K.F., El-Shahawi, M.M., Ali, Y.M., Abdel-Haleem, D.R., El-Azm, F.S.M., Synthesis, larvicidal efficiency and molecular docking studies of novel annulated pyrano[2,3-c]pyrazoles against Culex pipiens L. and Musca domestica L. larvae. Bioorganic Chemistry, 130 (2023), 106258. https://doi.org/10.1016/j.bioorg.2022.106258
  • Norris, R.H., Baker, O.S., Burges, E.R., Tarone, A., Gerry, A., Fryxell, R.T.T., Hinkle, N.C., Olds, C., Boxler, D., Wise, K.L., Machtinger, E.T., Scoot, J.G., Selection for, and characterization of, fluralaner resistance in the house fly, Musca domestica. Pesticide Biochemistry and Physiology, 191 (2023), 105355. https://doi.org/10.1016/j.pestbp.2023.105355
  • Freeman, J.C., Scoot, J.G., Genetics, genomics and mechanisms responsible for high levels of pyrethroid resistance in Musca domestica. Pesticide Biochemistry and Physiology, 198 (2024), 105752. https://doi.org/10.1016/j.pestbp.2023.105752
  • You, C., Zhang, L., Song, J., Zhang, L., Zhen, C., Gao, X., The variation of a cytochrome P450 gene, CYP6G4, drives the evolution of Musca domestica L. (Diptera: Muscidae) resistance to insecticides in China. International Journal of Biological Macromolecules, 236 (2023), 123399. https://doi.org/10.1016/j.ijbiomac.2023.123399
  • You, C., Shan, C., Xin, J., Li, J., Ma, Z., Zhang, Y., Zeng, X., Gao, X., Propoxur resistance associated with insensitivity of acetylcholinesterase (AChE) in the housefly, Musca domestica (Diptera: Muscidae). Scientific Reports, 10 (2020), 8400. https://doi.org/10.1038/s41598-020-65242-3
  • You, C., Shan, J., Ma, Z., Zhang, Y., Zhao, R., Gao, X., The overexpression and variant of CYP6G4 associated with propoxur resistance in the housefly, Musca domestica L. Pest Management Science, 77 (2021), 4321–4330. https://doi.org/10.1002/ps.6461
  • Li, M., Wang, F., Ma, J., Liu, H., Ye, H., Zhao, P., Wang, J., Comprehensive evolutionary analysis of CPP genes in Brassica napus L. and its two diploid progenitors revealing the potential molecular basis of allopolyploid adaptive advantage under salt stress. Frontiers in Plant Science, 13 (2022), 873071. https://doi.org/10.3389/fpls.2022.873071
  • Ullah, U., Buttar, Z.A., Shalmani, A., Muhammad, I., Ud-Din, A., Ali, H., Genome-wide identification and expression analysis of CPP-like gene family in Triticum aestivum L. under different hormone and stress conditions. Open Life Sciences, 17 (2022), 544-562. https://doi.org/10.1515/biol-2022-0051
  • Gull, S., Arfan, M., Uddin, S., Qasim, M., Babar, S., Rajput, N., Ullah, H., Ain, Q. ul, Alharthi, B., Ahmad, S., Iqbal, R., Identification and characterization of cysteine-rich polycomb-like protein (CPP) gene family in rice (Oryza sativa L.) in response to phytohormones and Xanthomonas oryzae pv. oryzae stress. Plant Stress, (2024), 100677. https://doi.org/10.1016/j.stress.2024.100677
  • Liu, R., Feng, Y., Li, Q., Wu, H., Guo, S., Li, J., Liu, X., Zhang, Y., Tang, X., Cao, S., Genome-wide analysis of CPP transcription factor family in endangered plant Phoebe bournei and its response to adversity. Plants, 14 (5) (2025), 803. https://doi.org/10.3390/plants14050803
  • Yang, Z., Gu, S., Wang, X., Li, W., Tang, Z., Xu, C., Molecular evolution of the CPP-like gene family in plants: insights from comparative genomics of Arabidopsis and rice. Journal of Molecular Evolution, 67 (2008), 266-277. https://doi.org/10.1007/s00239-008-9143-z
  • Zhou, Y., Hu, L., Ye, S., Jiang, L., Liu, S., Genome-wide identification and characterization of cysteine-rich polycomb-like protein (CPP) family genes in cucumber (Cucumis sativus) and their roles in stress responses. Biologia, 73 (2018), 425-435. https://doi.org/10.2478/s11756-018-0049-y
  • Rakhimzhanova, A., Kasapoğlu, A.G., Sapakova, A., İlhan, E., Zharmukhametova, R., Turan, M., Zekenova, L., Muslu, S., Kazhygeldiyeva, L., Aydın, M., Çiltaş, A., Expression analysis and characterization of the CPP gene family of Melatonin-treated common bean cultivars under different abiotic stresses. South African Journal of Botany, 160 (2023), 282-294. https://doi.org/10.1016/j.sajb.2023.07.013
  • Davis, F.P., Rebay, I., Master regulators in development: A survey of conserved Cys-rich regulatory proteins in Metazoa. Developmental Biology, 421 (2017), 1–12.
  • Zhang, Q., Comparative genomics reveals conserved Cys-rich DNA-binding proteins across metazoans. BMC Genomics, 20 (2019), 597.
  • Ding, F., Fua, J., Jiang, D., Hao, M., Lina, G., Mapping the spatial distribution of Aedes aegypti and Aedes albopictus. Acta Tropica, 178 (2018), 155–162.
  • Blum, M., Andreeva, A., Florentino, L.C., Chuguransky, S.R., Grego, T., Hobbs, E., Pinto, B.L., Orr, A., Paysan-Lafosse, T., Ponamareva, I., et al., InterPro: the protein sequence classification resource in 2025. Nucleic Acids Research, 53 (D1) (2025), D444–D456. https://doi.org/10.1093/nar/gkae1082
  • Olafson, P.U., Aksoy, S., Attardo, G.M., Buckmeier, G., Chen, X., Coates, C.J., Davis, M., Dykema, J., Emrich, S.J., Freidrich, M., et al., The genome of the stable fly, Stomoxys calcitrans, reveals potential mechanisms underlying reproduction, host interactions, and novel targets for pest control. BMC Biology, 19 (1) (2021), 41. https://doi.org/10.1186/s12915-021-00975-9
  • Adams, M.D., Celniker, S.E., Holt, R.A., Evans, C.A., Gocayne, J.D., Amanatides, P.G., Scherer, S.E., Li, P.W., Hoskins, R.A., Galle, R.F., et al., The genome sequence of Drosophila melanogaster. Science, 287 (5461) (2000), 2185-2195. https://doi.org/10.1126/science.287.5461.2185
  • Dudchenko, O., Batra, S.S., Omer, A.D., Nyquist, S.K., Hoeger, M., Durand, N.C., Shamim, M.S., Machol, I., Lander, E.S., Aiden, A.P., Aiden, E.L., De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science, 356 (6333) (2017), 92-95. https://doi.org/10.1126/science.aal3327
  • Zamyatin, A., Avdeyev, P., Liang, J., Sharma, A., Chen, C., Lukyanchikova, V., Alexeev, N., Tu, Z., Alekseyev, M.A., Sharakhov, I.V., Chromosome-level genome assemblies of the malaria vectors Anopheles coluzzii and Anopheles arabiensis. Gigascience, 10 (3) (2021), giab017. https://doi.org/10.1093/gigascience/giab017
  • Ghurye, J., Koren, S., Small, S.T., Redmond, S., Howell, P., Phillippy, A.M., Besansky, N.J., A chromosome-scale assembly of the major African malaria vector Anopheles funestus. Gigascience, 8 (6) (2019), giz063. https://doi.org/10.1093/gigascience/giz063
  • Generalovic, T.N., McCarthy, S.A., Warren, I.A., Wood, J.M., Torrance, J., Sims, Y., Quail, M., Howe, K., Pipan, M., Durbin, R., Jiggins, C.D., A high-quality, chromosome-level genome assembly of the Black Soldier Fly (Hermetia illucens L.). G3, 11 (5) (2021), jkab085. https://doi.org/10.1093/g3journal/jkab085
  • Mérot, C., Berdan, E.L., Cayuela, H., Djambazian, H., Ferchaud, A.L., Laporte, M., Normandeau, E., Ragoussis, J., Wellenreuther, M., Bernatchez, L., Locally adaptive inversions modulate genetic variation at different geographic scales in a seaweed fly. Molecular Biology and Evolution, 38 (9) (2021), 3953-3971. https://doi.org/10.1093/molbev/msab143
  • Urban, J.M., Foulk, M.S., Bliss, J.E., Coleman, C.M., Lu, N., Mazloom, R., Brown, S.J., Spradling, A.C., Gerbi, S.A., High contiguity de novo genome assembly and DNA modification analyses for the fungus fly, Sciara coprophila, using single-molecule sequencing. BMC Genomics, 22 (1) (2021), 643. https://doi.org/10.1186/s12864-021-07926-2
  • Crowley, L.M., Ashworth, M., Wawman, D.C., The genome sequence of the Thick-legged Hoverfly, Syritta pipiens (Linnaeus, 1758). Wellcome Open Research, 8 (2023), 349. https://doi.org/10.12688/wellcomeopenres.19848.1
  • Durkin, S.M., Chakraborty, M., Abrieux, A., Lewald, K.M., Gadau, A., Svetec, N., Peng, J., Kopyto, M., Langer, C.B., Chiu, J.C., Emerson, J.J., Zhao, L., Behavioral and genomic sensory adaptations underlying the pest activity of Drosophila suzukii. Molecular Biology and Evolution, 38 (6) (2021), 2532-2546. https://doi.org/10.1093/molbev/msab048
  • Hill, T., Koseva, B.S., Unckless, R.L., The genome of Drosophila innubila reveals lineage-specific patterns of selection in immune genes. Molecular Biology and Evolution, 36 (7) (2019), 1405-1417. https://doi.org/10.1093/molbev/msz059
  • Yang, M., Dong, J., Tang, S., Chen, X., Chen, H., Duanmu, H., Cong, Y., Chen, M., Ye, X., Zhou, H., He, K., Li, F., InsectBase 2.0: a comprehensive gene resource for insects. Nucleic Acids Research, 50 (D1) (2022), D1040–D1045. https://doi.org/10.1093/nar/gkab1090
  • Letunic, I., Khedkar, S., Bork, P., SMART: recent updates, new developments and status in 2020. Nucleic Acids Research, 49 (2021), D458–D460. https://doi.org/10.1093/nar/gkaa937
  • Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25 (1997), 4876-4882. https://doi.org/10.1093/nar/25.24.4876
  • Letunic, I., Bork, P., Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Research, 52 (W1) (2024), W78–W82. https://doi.org/10.1093/nar/gkae268
  • Hall, T.A., BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41 (1999), 95-98.
  • Chen, C., Chen, H., Zhang, Y., Thomas, H.R., Frank, M.H., He, Y., Xia, R., TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 13 (8) (2020), 1194-1202. https://doi.org/10.1016/j.molp.2020.06.009
  • Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R. D., Bairoch, A. Protein Identification and Analysis Tools on the ExPASy Server. In: Walker, J.M. Editor. The Proteomics Protocols Handbook. Humana Press, (2005), 571–607. https://doi.org/10.1385/1592598900
  • Thumuluri, V., Armenteros, J.J.A., Johansen, A.R., Nielsen, H., Winther, O., DeepLoc 2.0: multi-label subcellular localization prediction using protein language models. Nucleic Acids Research, 50 (W1) (2022), W228– W234. https://doi.org/10.1093/nar/gkac278
  • Hu, B., Jin, J., Guo, A.Y., Zhang, H., Luo, J., Gao, G., GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics, 31 (2015), 1296 - 1297. https://doi.org/10.1093/bioinformatics/btu817
  • Turan, M., Genome-wide analysis and characterization of HSP gene families (HSP20, HSP40, HSP60, HSP70, HSP90) in the yellow fever mosquito (Aedes aegypti) (Diptera: Culicidae). Journal of Insect Science, 23 (6) (2023), 27. https://doi.org/10.1093/jisesa/iead114
  • Bailey, T.L., Williams, N., Misleh, C., Li, W.W., MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Research, 34 (2006), W369-W373. https://doi.org/10.1093/nar/gkl198
  • Szklarczyk, D., Gable, A.L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N.T., Morris, J.H., Bork, P., Jensen, L.J., Mering, C.V., STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47 (2019), D607–D613. https://doi.org/10.1093/nar/gky1131
  • Tan, J., Xuan, X., Su, S., Jiao, Y., Guo, H., Zhang, Z., Comprehensive analysis of the CPP gene family in Moso bamboo: insights into their role in rapid shoot growth. BMC Genomics, 25 (1) (2024), 1173. https://doi.org/10.1186/s12864-024-11084-6
  • Jiang, L., Zhu, M., Huang, Y., Zhang, Q., Genome-wide characterization and expression analysis of the Cysteine-rich Polycomb-like Protein gene family in response to hormone signaling in apple (Malus domestica). International Journal of Molecular Sciences, 26 (12) (2025), 5528. https://doi.org/10.3390/ijms26125528
  • Turan, M., Identification and characterization of the CPP gene family in the genome of Aedes aegypti L. (Yellow Fever Mosquito) (Diptera: Culicidae). Sakarya University Journal of Science, 27 (6) (2023), 1174-1184. https://doi.org/10.16984/saufenbilder.1338063
  • Gu, L., Kang, T., Zeng, T., Wang, H., Zhu, B., Du, X., Liu, Y., Comprehensive identification and expression analysis of the CPP gene family in maize (Zea mays L.). BMC Plant Biology, 25 (2025), 731. https://doi.org/10.1186/s12870-025-06783-5
  • Laherty, C.D., Yang, W.M., Sun, J.M., Davie, J.R., Seto, E., Eisenman, R.N., Histone deacetylases associated with the mSin3 corepressor mediate Mad-induced transcription repression. Cell, 89 (3) (1997), 349–356. https://doi.org/10.1016/s0092-8674(00)80215-9
  • Bentley, D.L., Coupling transcription with messenger RNA processing. Current Opinion in Cell Biology, 26 (2014), 10–16. https://doi.org/10.1016/j.ceb.2013.10.001
  • Rao, V.S., Srinivas, K., Sujini, G.N., Kumar, G.N.S., Protein-protein interaction detection: methods and analysis. International Journal of Proteomics, 2014 (2014), 147648. https://doi.org/10.1155/2014/147648
There are 62 citations in total.

Details

Primary Language English
Subjects Bioinformatic Methods Development, Computational Ecology and Phylogenetics
Journal Section Research Article
Authors

Seher Öztürk 0009-0001-3373-6175

Murat Turan 0000-0003-2900-1755

Submission Date October 21, 2025
Acceptance Date December 15, 2025
Publication Date December 26, 2025
Published in Issue Year 2025 Volume: 34 Issue: 2

Cite

Communications Faculty of Sciences University of Ankara Series C Biology licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License