Review Article
BibTex RIS Cite
Year 2024, Volume: 33 Issue: 2, 145 - 161, 25.12.2024
https://doi.org/10.53447/communc.1490843

Abstract

References

  • Fortier, L.A., Stem cells: Classifications, controversies, and clinical applications. Veterinary Surgery, 34 (2015), 415-423. https://doi.org/10.1111/j.1532-950X.2005.00063.x
  • Ratajczak M.Z., Zuba-Surma E.K., Wysoczynski M., Wan W., Ratajczak J., Wojakowski W., Hunt for pluripotent stem cell - regenerative medicine search for almighty cell. Journal of Autoimmunology, 30 (2008), 151-162. https://doi.org/ 10.1016/j.jaut.2007.12.003
  • Zeitlin, B.D., Banking on teeth - Stem cells and the dental office. Biomedical Journal, 43 (2) (2020), 124-133. https://doi.org/10.1016/j.bj.2020.02.003
  • Yamanaka, S., Induced pluripotent stem cells: Past, present, and future. Cell Stem Cell, 10 (2012), 678-684. https://doi.org/10.1016/j.stem.2012.05.005
  • Gurdon, J.B., The egg and the nucleus: A battle for supremacy. Development, 140 (12) (2013), 2449-2456. https://doi.org/10.1242/dev.097170
  • Bojic, S., Volarevic, V., Ljujic, B., Stojkovic, M., Dental stem cells - characteristics and potential. Histology and Histopathology, 29 (2014), 699-706. https://doi.org/10.14670/HH-29.699
  • Li, Y., Duan, X., Chen, Y., Dental stem cell-derived extracellular vesicles as promising therapeutic agents in the treatment of diseases. International Journal of Oral Science, 14 (2) (2022). https://doi.org/10.1038/s41368-021-00152-2
  • Dhot, P.S., Nair, V., Swarup, D., Sirohi, D., Ganguli, P., Cord blood stem cell banking and transplantation. Indian Journal of Pediatrics, 70 (12) (2003), 989-992. https://doi.org/10.1007/BF02723826.
  • Lymperi, S., Taraslia, V., Tsatsoulis, I.N., Samara, A., Velentzas, A.D., Agrafioti, A., Anastasiadou, E., Kontakiotis, E., Dental stem cell migration on pulp ceiling cavities filled with MTA, dentin chips, or bio-oss. Biomed Research International, (2015), 189872. https://doi.org/10.1155/2015/189872
  • Sunil, P.M., Manikandan, R., Yoithapprabhunath, M.T.R., Sivakumar, M., Harvesting dental stem cells – Overview. Journal of Pharmacy and Bioallied Sciences, 7 (2) (2015), 384-386. https://doi.org/10.4103/0975-7406.16346
  • Gronthos, S., Mankani, M., Brahim, J., Robey, P. G., Shi, S., Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences, 97 (2000), 136213630. https://doi.org/10.1073/pnas.240309797
  • Gronthos, S., Brahim, J., Li, W., Fisher, L. W., Cherman, N., Boyde, A., Stem cell properties of human dental pulp stem cells. Journal of Dental Research, 81 (2002), 531-535. https://doi.org/10.1177/154405910208100806
  • Ulmer, F.L., Winkel, A., Kohorst, P., Stiesch, M., Stem cells-prospects in dentistry. Schweiz Monatsschr Zahnmed, 120 (10) (2010), 860-883.
  • Miura, M., Gronthos, S., Zhao, M., Lu, B., Fisher, L.W., Robey, P.G., Shi, S., SHED: stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences USA, 100 (10) (2003), 5807-5812. https://doi.org/ 10.1073/pnas.0937635100
  • Huang, Y.H., Yang, J.C., Wang, C.W., Lee, S.Y., Dental Stem Cells and Tooth Banking for Regenerative Medicine. Journal of Experimental and Clinical Medicine, 2 (3) (2010), 111-117. https://doi.org/10.1016/s1878-3317(10)60018-6
  • Seo, B.M., Miura, M., Gronthos, S., Bartold, P.M., Batouli, S., Brahim, J., Young, M., Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet, 364 (2004), 149-155. https://doi.org/10.1016/S0140-6736(04)16627-0
  • Sowmya, S., Chennazhi, K.P., Arzate, H., Jayachandran, P., Nair, S.V., Jayakumar, R., Periodontal specific differentiation of dental follicle stem cells into osteoblast, fibroblast, and cementoblast. Tissue Engineering Part C Methods, 21 (10) (2015), 1044-1058. https://doi.org/10.1089/ten.TEC.2014.0603
  • Matsubara, T., Suardita, K., Ishii, M., Sugiyama, M., Igarashi, A., Alveolar bone marrow as a cell source for regenerative medicine: differences between alveolar and iliac bone marrow stromal cells. Journal of Bone and Mineral Research, 20 (3) (2005), 399-409. https://doi.org/10.1359/JBMR.041117
  • Sonoyama, W., Liu, Y., Fang, D., Yamaza, T., Seo, B.M., Zhang, C., Liu, H., Gronthos, S., Wang, C.Y., Wang, S., Shi, S., Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One, 20 (1) (2006), e79. https://doi.org/ 10.1371/journal.pone.0000079
  • Zhang, Q., Shi, S., Liu, Y., Uyanne, J., Shi, Y., Shi, S., Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. Journal of Immunology, 183 (12) (2009), 7787-7798. https://doi.org/10.4049/jimmunol.0902318
  • Kim, D., Lee, A.E., Xu, Q., Zhang, Q., Le, A.D., Gingiva-derived mesenchymal stem cells: Potential application in tissue engineering and regenerative medicine - A Comprehensive review. Frontiers in Immunology, 16 (12) (2021), 667221. https://doi.org/10.3389/fimmu.2021.667221
  • Sampogna, G., Guraya, S.Y., Forgione, A., Regenerative medicine: Historical roots and potential strategies in modern medicine. Journal of Microscopy and Ultrastructure, 3 (3) (2015), 101-107. https://doi.org/10.1016/j.jmau.2015.05.002
  • Zhang, W., Yelick, P.C., Tooth repair and regeneration: Potential of dental stem cells. Trends in Molecular Medicine, 27 (5) (2021), 501-511. https://doi.org/ 10.1016/j.molmed.2021.02.005
  • Soudi, A., Yazdanian, M., Ranjbar, R., Tebyanian, H., Yazdanian, A., Tahmasebi, E., Keshvad, A., Seifalian, A., Role and application of stem cells in dental regeneration: A comprehensive overview. EXCLI Journal, 20 (2021), 454-489. https://doi: 10.17179/excli2021-3335
  • Feng, F., Akiyama, K., Liu, Y., Yamaza, T., Wang, T.M., Chen, J.H., Utility of PDL progenitors for in vivo tissue regeneration: A report of 3 cases. Oral Diseases, 16 (1) (2010), 20-28. https://doi: 10.1111/j.1601-0825.2009.01593.x
  • Iwata, T., Yamato, M., Washio, K., Yoshida, T., Tsumanuma, Y., Yamada, A., Periodontal regeneration with autologous periodontal ligament-derived cell sheets - a safety and efficacy study in ten patients. Regenerative Therapies, 9 (2018), 38-44. https://doi: 10.1016/j.reth.2018.07.002
  • Zhao, J., Zhou, YH., Zhao, Y.Q., Oral cavity-derived stem cells and preclinical models of jaw-bone defects for bone tissue engineering. Stem Cell Research and Theraphy, 14 (1) (2023), 39-59. https://doi.org/10.1186/s13287-023-03265-z
  • Nakashima, M., Iohara, K., Murakami M., Pulp regeneration by transplantation of dental pulp stem cells in pulpitis: a pilot clinical study. Stem Cell Research and Theraphy, 8 (2017), 61-74. https://doi.org/10.1186/s13287-017-0506-5
  • Xuan, K., Li, B., Guo, H., Sun, W., Kou, X., He, X., Zhang, Y., Sun, J., Liu, A., Liao, L., Liu, S., Liu, W., Hu, C., Shi, S., Jin, Y., Deciduous autologous tooth stem cells regenerate dental pulp after implantation into injured teeth. Science Translational Medicine, 10 (455) (2018), eaaf3227. https://doi.org/10.1126/scitranslmed.aaf3227
  • Song, W.P., Jin, L.Y., Zhu, M.D., Wang, H., Xia, D.S., Clinical trials using dental stem cells: 2022 update. World Journal of Stem Cells, 15 (3) (2023) 31-51. https://doi.org/10.4252/wjsc.v15.i3.31
  • Shi, X., Mao, J., Liu, Y., Pulp stem cells derived from human permanent and deciduous teeth: Biological characteristics and therapeutic applications. Stem Cells Translational Medicine, 9 (4) 2020, 445-464. https://doi.org/10.1002/sctm.19-0398.
  • Sramkó, B., Földes, A., Kádár, K., Varga, G., Zsembery, Á., Pircs, K., The wisdom in teeth: Neuronal differentiation of dental pulp cells. Cell Reprogram, 25 (1) (2023), 32-44. https://doi.org/10.1089/cell.2022.0102
  • Liu, P., Zhang, Y., Ma, Y., Tan, S., Ren, B., Liu, S., Application of dental pulp stem cells in oral maxillofacial tissue engineering. International Journal of Medical Science, 19 (2) (2022), 310-320. https://doi.org/10.7150/ijms.68494
  • Awais, S., Balouch, S.S., Riaz, N., Choudhery, M.S., Human dental pulp stem cells exhibit osteogenic differentiation potential. Open Life Science, 15 (2020), 229-236. https://doi.org/10.1515/biol-2020-0023
  • Armiñán, A., Gandía, C., Bartual, M., García-Verdugo, .M., Lledó, E., Mirabet, V., Cardiac differentiation is driven by NKX2.5 and GATA4 nuclear translocation in tissue-specific mesenchymal stem cells. Stem Cells and Development, 8 (6) (2009), 907-918. https://doi.org/10.1089/scd.2008.0292
  • Bosch, B.M., Salero, E., Núñez-Toldrà, R., Sabater, A.L., Gil, F.J., Perez, R.A., Discovering the potential of dental pulp stem cells for corneal endothelial cell production: A proof of concept. Frontiers in Bioengineering and Biotechnology, 9 (2021), 617724. https://doi.org/10.3389/fbioe.2021.617724
  • Hirata, M., Ishigami, M., Matsushita, Y., Ito, T., Hattori, H., Hibi, H., Multifaceted therapeutic benefits of factors derived from dental pulp stem cells for mouse liver fibrosis. Stem Cells Translational Medicine, 5 (10) (2016), 1416-1424. https://doi.org/10.5966%2Fsctm.2015-0353
  • Király, M., Porcsalmy, B., Pataki, A., Kádár, K., Jelitai, M., Molnár, B., Hermann, P., Gera, I., Grimm, W.D., Ganss, B., Zsembery, A., Varga, G., Simultaneous PKC and cAMP activation induces differentiation of human dental pulp stem cells into functionally active neurons. Neurochemistry International, 55 (2009), 323-332. https://doi.org/10.1016/ j.neuint.2009.03.017
  • Young, F., Sloan, A., Song, B., Dental pulp stem cells and their potential roles in central nervous system regeneration and repair. Journal of Neuroscience Research, 91 (2013), 1383-1393. https://doi.org/10.1002/jnr.23250
  • Martínez-Sarrà, E., Montori, S., Gil-Recio, C., Núñez-Toldrà, R., Costamagna, D., Rotini, A., Atari, M., Luttun, A., Sampaolesi, M., Human dental pulp pluripotent-like stem cells promote wound healing and muscle regeneration. Stem Cell Research and Therapies, 278 (1) (2017), 175-195. https://doi:10.1186/s13287-017-0621-3
  • Gandia, C., Armiñan, A., García-Verdugo, J.M., Lledó, E., Ruiz, A., Miñana, M.D., Sanchez-Torrijos, J., Payá, R., Mirabet, V., Carbonell-Uberos, F., Llop, M., Montero, J.A., Sepúlveda, P., Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction. Stem Cells, 26 (3) (2008), 638-645. https://doi:10.1634/stemcells.2007-0484.
  • Bluteau, G., Luder, H.U., De Bari, C., Mitsiadis, T.A., Stem cells for tooth engineering. European Cells and Materials, 6 (2008), 1-9. https://doi: 10.22203/ecm.v016a01
  • Ishkitiev, N., Yaegaki, K., Imai, T., Tanaka, T., Fushimi, N., Mitev, V., Okada, M., Tominaga, N., Ono, S., Ishikawa, H., Novel management of acute or secondary biliary liver conditions using hepatically differentiated human dental pulp cells. Tissue Engineering Part A, 21 (3-4) (2015), 586-593. https://doi: 10.1089/ten.TEA.2014.0162
  • Nikkhah, E., Kalalinia, F., Asgharian Rezaee, M., Tayarani-Najaran, Z., Suppressive effects of dental pulp stem cells and its conditioned medium on development and migration of colorectal cancer cells through MAPKinase pathways. Iran Journal of Basic Medicinal Science, 24 (9) (2021), 1292-1300. https://doi.org/ 10.22038/ijbms.2021.58273.12946
  • Kanafi, M.M., Rajeshwari, Y.B., Gupta, S., Dadheech, N., Nair, P.D., Gupta, P.K., Transplantation of islet-like cell clusters derived from human dental pulp stem cells restores normoglycemia in diabetic mice. Cytotherapy, 15 (10) (2013), 1228-1236. https://doi.org/10.1016/j.jcyt.2013.05.008
  • Tonsekar, P., Tonsekar, V., Jiang, S., Yue, G., Dental stem cell-based therapy for glycemic control and the scope of clinical rtanslation: A systematic review and meta-analysis. International Journal of Translational Medicine, 4 (2024), 87-125. https://doi.org/10.3390/ijtm4010005
  • Xu, Y., Chen, J., Zhou, H., Wang, J., Song, J., Xie, J., Effects and mechanism of stem cells from human exfoliated deciduous teeth combined with hyperbaric oxygen therapy in type 2 diabetic rats. Clinics, 75 (2020), e1656. https://doi.org/10.6061/clinics/2020/e1656
  • Huntington Study Group, Unified Huntington's disease rating scale: Reliability and consistency. Movement Disorders, 11 (1996), 136-142. https://doi.org/10.1002/mds.870110204
  • Chen, K., Xiong, H., Xu, N., Shen, Y., Huang, Y., and Liu, C., Chondrogenic potential of stem cells from human exfoliated deciduous teeth in vitro and in vivo. Acta Odontologica Scandinavica, 72 (8) (2014), 664-672. https://doi:10.3109/00016357.2014.888756
  • Nishino, Y., Yamada Y., Ebisawa, K., Nakamura, S., Okabe, K., Umemura, E., Hara, K., Ueda, M., Stem cells from human exfoliated deciduous teeth (SHED) enhance wound healing and the possibility of novel cell therapy. Cytotherapy, 13 (5) (2011), 598-605. https://doi: 10.3109/14653249.2010.542462
  • Gomes, J.Á.P., Monteiro, B.G., Melo, G.B., Smith, R.L., da Silva, M.C.P., Lizier, N.F., Corneal reconstruction with tissue-engineered cell sheets composed of human immature dental pulp stem cells. Investigative Ophthalmology and Visual Science, 51 (3) (2010), 1408-1414. https://doi: 10.1167/iovs.09-4029
  • Kushnerev, E., Shawcross, S.G., Sothirachagan, S., Carley, F., Brahma, A., Yates, J.M., Regeneration of corneal epithelium with dental pulp stem cells using a contact lens delivery system. Investigative Ophthalmology and Visual Science, 57 (13) (2016), 5192-5199. https://doi: 10.1167/iovs.15-17953
  • Gao, X., Shen, Z., Guan, M., Huang, Q., Chen, L., Qin, W., Immunomodulatory role of stem cells from human exfoliated deciduous teeth on periodontal regeneration. Tissue Engineering Part A, 24 (17-18) (2018), 1341-1353. https://doi:10.1089/ten.tea.2018.0016
  • Djouad, F., Plence, P., Bony, C., Tropel, P., Apparailly, F., Sany, J., Noël, D., Jorgensen, C., Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood, 102 (2003), 3837-3844. https://doi.org/10.1182/blood-2003-04-1193
  • Tolouei, A.E., Oruji, F., Tehrani, S., Gingival mesenchymal stem cell therapy, immune cells, and immunoinflammatory application. Molecular Biology Reports, 50 (2023), 10461-10469. https://doi.org/10.1007/s11033-023-08826-2
  • Hewitt, R., Watson, P. Defining biobank. Biopreservation and Biobanking, 11 (5) (2013), 309-315. https://doi.org/10.1089/bio.2013.0042
  • Collart-Dutilleul, P., Chaubron, F., de Vos, J., Cuisinier, F., Allogenic banking of dental pulp stem cells for innovative therapeutics. World Journal of Stem Cells, 7 (7) (2015), 1010-1021. https://doi.org/10.4252/wjsc.v7.i7.1010.hal-03147103
  • Kaku, M., Kamada, H., Kawata, T., Koseki, H., Abedini, S., Kojima, S., Cryopreservation of periodontal ligament cells with magnetic field for tooth banking. Cryobiology, 61 (2010), 73-78. https://doi.org/10.1016/j.cryobiol.2010.05.003
  • Sirchia, G., Rebulla, P., Lecchi, L., Mozzi, F., Crepaldi, R., Parravicini, A., Implementation of a quality system (ISO 9000 series) for placental blood banking. Journal of Hematotherapy, 7 (1) (1998), 19-35. https://doi.org/10.1089/scd.1.1998.7.19
  • Liikanen, E., Laying down the principles and guidelines of good manufacturing practice in respect of medicinal products for human use and investigational medicinal products for human use. Official Journal of the European Union, (2003).
  • Khaseb, S., Orooji, M., Pour, M. G., Safavi, S. M., Eghbal, M. J., Rezai Rad, M., Dental stem cell banking: Techniques and protocols. Cell Biology International, 45 (9) (2021), 1851-1865. https://doi.org/10.1002/cbin.11626
  • Cobo, F., Stacey, G.N., Hunt, C., Cabrera, C., Nieto, A., Montes, R., Cortés, J.L., Catalina, P., Barnie, A., Concha, A., Microbiological control in stem cell banks: approaches to standardization. Applied Microbiology and Biotechnology, 68 (4) (2005), 456-466. https://doi.org/10.1007/s00253-005-0062-2
  • Pakzad, M., Hassani, S.N., Abbasi, F., A Roadmap for the production of a GMP-compatible cell bank of allogeneic bone marrow-derived clonal mesenchymal stromal cells for cell therapy applications. Stem Cell Reviews and Reports, 18 (2022), 2279-2295. https://doi.org/10.1007/s12015-022-10351-x
  • World Health Organization, Recommendations for the evaluation of animal cell cultures as substrates for the manufacture of biological medicinal products and for the characterization of cell banks (Report No. 878), (2010).
  • European Medicines Agency, ICH Topic Q5D quality of biotechnological products: Derivation and characterisation of cell substrates used for production of biotechnological/biological products, (2007), 1-3.
  • Raik, S., Kumar, A., Rattan, V., Seth, S., Kaur, A., Bhatta Charyya, S., Assessment of post-thaw quality of dental mesenchymal stromal cells after long-term cryopreservation by uncontrolled freezing. Applied Biochemistry and Biotechnology, 191 (2) (2020), 728-743. https://doi.org/10.1007/s12010-019-03216-6
  • Xie, J., Ekpo, M.D., Xiao, J., Zhao, H., Bai, X., Liang, Y., Zhao, G., Liu, D., Tan, S., Principles and protocols for post-cryopreservation quality evaluation of stem cells in novel biomedicine. Frontiers in Pharmacology, 13 (2022), 907943. https://doi.org/10.3389/fphar.2022.907943
  • Çevik, Z.M., Erkmen, E., Kahraman, Ş., Significance of dental stem cells in dentistry and stem cell banking. Journal of Clinical Sciences, 13 (2) (2024), 402-408. https://doi.org/10.54617/adoklinikbilimler.1431309
  • Narayanan, D., Phadke, S.R., Concepts, utility and limitations of cord blood banking: What clinicians need to know. Indian Journal of Pediatrics, 86 (2019), 44-48. https://doi.org/10.1007/s12098-018-2651-y
  • Alomar, R.K., Aladhyani, S.M., Aldossary, M.N., Almohaimel, S.A., Salam, M., Almutairi, A.F., A prospective Saudi dental stem-cell bank from the perspective of the public and dental practitioners: A cross sectional survey. Journal of Family Medicine and Primary Care, 9 (2) (2020), 864-870. https://doi.org/10.4103/jfmpc.jfmpc_978_19
  • Olayanju, A.O., Nkanga, A.E., Olayanju, A.J., Oluwatayo, B.O., Adesina, O., Enitan, S.S., Oladele, A.A. A Cord blood banking: the prospects and challenges of implementation in Nigeria. Hematology and Transfusion International Journal, 5 (4) (2017), 273-278. https:// doi.org/10.15406/htij.2017.05.00126

Dental stem cell banking: a promising future for regenerative medicine applications

Year 2024, Volume: 33 Issue: 2, 145 - 161, 25.12.2024
https://doi.org/10.53447/communc.1490843

Abstract

Dental stem cells originating from different oral tissues in and around dental structures have recently gained attention as a potential alternative for regenerative medicine applications. To date, many dental stem cells are identified specific to the tissue from which they originate. They exhibit many valuable advantages including high proliferation ability, self-renewal capacity, and multiple differentiation potentials that make them an important candidate for clinical applications, especially in treating degenerative and inflammatory diseases. The fact that they can be easily obtained from an individual’s waste tooth without any ethical concern provides them an excellent opportunity for autologous treatment with a low risk of immune rejection. Nowadays, the storage of autologous dental stem cells isolated from wisdom teeth or healthy extracted teeth in biobanks without ethical concerns has become a very important approach for the regeneration of damaged and diseased tissue and for the treatment of life-threatening diseases that may be encountered in the future life of the donor. This study provides a comprehensive overview of dental stem cells, recent advances in their clinical use, long-term preservation processes, and the latest advances in Dental Stem Cell Banking.

References

  • Fortier, L.A., Stem cells: Classifications, controversies, and clinical applications. Veterinary Surgery, 34 (2015), 415-423. https://doi.org/10.1111/j.1532-950X.2005.00063.x
  • Ratajczak M.Z., Zuba-Surma E.K., Wysoczynski M., Wan W., Ratajczak J., Wojakowski W., Hunt for pluripotent stem cell - regenerative medicine search for almighty cell. Journal of Autoimmunology, 30 (2008), 151-162. https://doi.org/ 10.1016/j.jaut.2007.12.003
  • Zeitlin, B.D., Banking on teeth - Stem cells and the dental office. Biomedical Journal, 43 (2) (2020), 124-133. https://doi.org/10.1016/j.bj.2020.02.003
  • Yamanaka, S., Induced pluripotent stem cells: Past, present, and future. Cell Stem Cell, 10 (2012), 678-684. https://doi.org/10.1016/j.stem.2012.05.005
  • Gurdon, J.B., The egg and the nucleus: A battle for supremacy. Development, 140 (12) (2013), 2449-2456. https://doi.org/10.1242/dev.097170
  • Bojic, S., Volarevic, V., Ljujic, B., Stojkovic, M., Dental stem cells - characteristics and potential. Histology and Histopathology, 29 (2014), 699-706. https://doi.org/10.14670/HH-29.699
  • Li, Y., Duan, X., Chen, Y., Dental stem cell-derived extracellular vesicles as promising therapeutic agents in the treatment of diseases. International Journal of Oral Science, 14 (2) (2022). https://doi.org/10.1038/s41368-021-00152-2
  • Dhot, P.S., Nair, V., Swarup, D., Sirohi, D., Ganguli, P., Cord blood stem cell banking and transplantation. Indian Journal of Pediatrics, 70 (12) (2003), 989-992. https://doi.org/10.1007/BF02723826.
  • Lymperi, S., Taraslia, V., Tsatsoulis, I.N., Samara, A., Velentzas, A.D., Agrafioti, A., Anastasiadou, E., Kontakiotis, E., Dental stem cell migration on pulp ceiling cavities filled with MTA, dentin chips, or bio-oss. Biomed Research International, (2015), 189872. https://doi.org/10.1155/2015/189872
  • Sunil, P.M., Manikandan, R., Yoithapprabhunath, M.T.R., Sivakumar, M., Harvesting dental stem cells – Overview. Journal of Pharmacy and Bioallied Sciences, 7 (2) (2015), 384-386. https://doi.org/10.4103/0975-7406.16346
  • Gronthos, S., Mankani, M., Brahim, J., Robey, P. G., Shi, S., Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences, 97 (2000), 136213630. https://doi.org/10.1073/pnas.240309797
  • Gronthos, S., Brahim, J., Li, W., Fisher, L. W., Cherman, N., Boyde, A., Stem cell properties of human dental pulp stem cells. Journal of Dental Research, 81 (2002), 531-535. https://doi.org/10.1177/154405910208100806
  • Ulmer, F.L., Winkel, A., Kohorst, P., Stiesch, M., Stem cells-prospects in dentistry. Schweiz Monatsschr Zahnmed, 120 (10) (2010), 860-883.
  • Miura, M., Gronthos, S., Zhao, M., Lu, B., Fisher, L.W., Robey, P.G., Shi, S., SHED: stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences USA, 100 (10) (2003), 5807-5812. https://doi.org/ 10.1073/pnas.0937635100
  • Huang, Y.H., Yang, J.C., Wang, C.W., Lee, S.Y., Dental Stem Cells and Tooth Banking for Regenerative Medicine. Journal of Experimental and Clinical Medicine, 2 (3) (2010), 111-117. https://doi.org/10.1016/s1878-3317(10)60018-6
  • Seo, B.M., Miura, M., Gronthos, S., Bartold, P.M., Batouli, S., Brahim, J., Young, M., Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet, 364 (2004), 149-155. https://doi.org/10.1016/S0140-6736(04)16627-0
  • Sowmya, S., Chennazhi, K.P., Arzate, H., Jayachandran, P., Nair, S.V., Jayakumar, R., Periodontal specific differentiation of dental follicle stem cells into osteoblast, fibroblast, and cementoblast. Tissue Engineering Part C Methods, 21 (10) (2015), 1044-1058. https://doi.org/10.1089/ten.TEC.2014.0603
  • Matsubara, T., Suardita, K., Ishii, M., Sugiyama, M., Igarashi, A., Alveolar bone marrow as a cell source for regenerative medicine: differences between alveolar and iliac bone marrow stromal cells. Journal of Bone and Mineral Research, 20 (3) (2005), 399-409. https://doi.org/10.1359/JBMR.041117
  • Sonoyama, W., Liu, Y., Fang, D., Yamaza, T., Seo, B.M., Zhang, C., Liu, H., Gronthos, S., Wang, C.Y., Wang, S., Shi, S., Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One, 20 (1) (2006), e79. https://doi.org/ 10.1371/journal.pone.0000079
  • Zhang, Q., Shi, S., Liu, Y., Uyanne, J., Shi, Y., Shi, S., Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. Journal of Immunology, 183 (12) (2009), 7787-7798. https://doi.org/10.4049/jimmunol.0902318
  • Kim, D., Lee, A.E., Xu, Q., Zhang, Q., Le, A.D., Gingiva-derived mesenchymal stem cells: Potential application in tissue engineering and regenerative medicine - A Comprehensive review. Frontiers in Immunology, 16 (12) (2021), 667221. https://doi.org/10.3389/fimmu.2021.667221
  • Sampogna, G., Guraya, S.Y., Forgione, A., Regenerative medicine: Historical roots and potential strategies in modern medicine. Journal of Microscopy and Ultrastructure, 3 (3) (2015), 101-107. https://doi.org/10.1016/j.jmau.2015.05.002
  • Zhang, W., Yelick, P.C., Tooth repair and regeneration: Potential of dental stem cells. Trends in Molecular Medicine, 27 (5) (2021), 501-511. https://doi.org/ 10.1016/j.molmed.2021.02.005
  • Soudi, A., Yazdanian, M., Ranjbar, R., Tebyanian, H., Yazdanian, A., Tahmasebi, E., Keshvad, A., Seifalian, A., Role and application of stem cells in dental regeneration: A comprehensive overview. EXCLI Journal, 20 (2021), 454-489. https://doi: 10.17179/excli2021-3335
  • Feng, F., Akiyama, K., Liu, Y., Yamaza, T., Wang, T.M., Chen, J.H., Utility of PDL progenitors for in vivo tissue regeneration: A report of 3 cases. Oral Diseases, 16 (1) (2010), 20-28. https://doi: 10.1111/j.1601-0825.2009.01593.x
  • Iwata, T., Yamato, M., Washio, K., Yoshida, T., Tsumanuma, Y., Yamada, A., Periodontal regeneration with autologous periodontal ligament-derived cell sheets - a safety and efficacy study in ten patients. Regenerative Therapies, 9 (2018), 38-44. https://doi: 10.1016/j.reth.2018.07.002
  • Zhao, J., Zhou, YH., Zhao, Y.Q., Oral cavity-derived stem cells and preclinical models of jaw-bone defects for bone tissue engineering. Stem Cell Research and Theraphy, 14 (1) (2023), 39-59. https://doi.org/10.1186/s13287-023-03265-z
  • Nakashima, M., Iohara, K., Murakami M., Pulp regeneration by transplantation of dental pulp stem cells in pulpitis: a pilot clinical study. Stem Cell Research and Theraphy, 8 (2017), 61-74. https://doi.org/10.1186/s13287-017-0506-5
  • Xuan, K., Li, B., Guo, H., Sun, W., Kou, X., He, X., Zhang, Y., Sun, J., Liu, A., Liao, L., Liu, S., Liu, W., Hu, C., Shi, S., Jin, Y., Deciduous autologous tooth stem cells regenerate dental pulp after implantation into injured teeth. Science Translational Medicine, 10 (455) (2018), eaaf3227. https://doi.org/10.1126/scitranslmed.aaf3227
  • Song, W.P., Jin, L.Y., Zhu, M.D., Wang, H., Xia, D.S., Clinical trials using dental stem cells: 2022 update. World Journal of Stem Cells, 15 (3) (2023) 31-51. https://doi.org/10.4252/wjsc.v15.i3.31
  • Shi, X., Mao, J., Liu, Y., Pulp stem cells derived from human permanent and deciduous teeth: Biological characteristics and therapeutic applications. Stem Cells Translational Medicine, 9 (4) 2020, 445-464. https://doi.org/10.1002/sctm.19-0398.
  • Sramkó, B., Földes, A., Kádár, K., Varga, G., Zsembery, Á., Pircs, K., The wisdom in teeth: Neuronal differentiation of dental pulp cells. Cell Reprogram, 25 (1) (2023), 32-44. https://doi.org/10.1089/cell.2022.0102
  • Liu, P., Zhang, Y., Ma, Y., Tan, S., Ren, B., Liu, S., Application of dental pulp stem cells in oral maxillofacial tissue engineering. International Journal of Medical Science, 19 (2) (2022), 310-320. https://doi.org/10.7150/ijms.68494
  • Awais, S., Balouch, S.S., Riaz, N., Choudhery, M.S., Human dental pulp stem cells exhibit osteogenic differentiation potential. Open Life Science, 15 (2020), 229-236. https://doi.org/10.1515/biol-2020-0023
  • Armiñán, A., Gandía, C., Bartual, M., García-Verdugo, .M., Lledó, E., Mirabet, V., Cardiac differentiation is driven by NKX2.5 and GATA4 nuclear translocation in tissue-specific mesenchymal stem cells. Stem Cells and Development, 8 (6) (2009), 907-918. https://doi.org/10.1089/scd.2008.0292
  • Bosch, B.M., Salero, E., Núñez-Toldrà, R., Sabater, A.L., Gil, F.J., Perez, R.A., Discovering the potential of dental pulp stem cells for corneal endothelial cell production: A proof of concept. Frontiers in Bioengineering and Biotechnology, 9 (2021), 617724. https://doi.org/10.3389/fbioe.2021.617724
  • Hirata, M., Ishigami, M., Matsushita, Y., Ito, T., Hattori, H., Hibi, H., Multifaceted therapeutic benefits of factors derived from dental pulp stem cells for mouse liver fibrosis. Stem Cells Translational Medicine, 5 (10) (2016), 1416-1424. https://doi.org/10.5966%2Fsctm.2015-0353
  • Király, M., Porcsalmy, B., Pataki, A., Kádár, K., Jelitai, M., Molnár, B., Hermann, P., Gera, I., Grimm, W.D., Ganss, B., Zsembery, A., Varga, G., Simultaneous PKC and cAMP activation induces differentiation of human dental pulp stem cells into functionally active neurons. Neurochemistry International, 55 (2009), 323-332. https://doi.org/10.1016/ j.neuint.2009.03.017
  • Young, F., Sloan, A., Song, B., Dental pulp stem cells and their potential roles in central nervous system regeneration and repair. Journal of Neuroscience Research, 91 (2013), 1383-1393. https://doi.org/10.1002/jnr.23250
  • Martínez-Sarrà, E., Montori, S., Gil-Recio, C., Núñez-Toldrà, R., Costamagna, D., Rotini, A., Atari, M., Luttun, A., Sampaolesi, M., Human dental pulp pluripotent-like stem cells promote wound healing and muscle regeneration. Stem Cell Research and Therapies, 278 (1) (2017), 175-195. https://doi:10.1186/s13287-017-0621-3
  • Gandia, C., Armiñan, A., García-Verdugo, J.M., Lledó, E., Ruiz, A., Miñana, M.D., Sanchez-Torrijos, J., Payá, R., Mirabet, V., Carbonell-Uberos, F., Llop, M., Montero, J.A., Sepúlveda, P., Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction. Stem Cells, 26 (3) (2008), 638-645. https://doi:10.1634/stemcells.2007-0484.
  • Bluteau, G., Luder, H.U., De Bari, C., Mitsiadis, T.A., Stem cells for tooth engineering. European Cells and Materials, 6 (2008), 1-9. https://doi: 10.22203/ecm.v016a01
  • Ishkitiev, N., Yaegaki, K., Imai, T., Tanaka, T., Fushimi, N., Mitev, V., Okada, M., Tominaga, N., Ono, S., Ishikawa, H., Novel management of acute or secondary biliary liver conditions using hepatically differentiated human dental pulp cells. Tissue Engineering Part A, 21 (3-4) (2015), 586-593. https://doi: 10.1089/ten.TEA.2014.0162
  • Nikkhah, E., Kalalinia, F., Asgharian Rezaee, M., Tayarani-Najaran, Z., Suppressive effects of dental pulp stem cells and its conditioned medium on development and migration of colorectal cancer cells through MAPKinase pathways. Iran Journal of Basic Medicinal Science, 24 (9) (2021), 1292-1300. https://doi.org/ 10.22038/ijbms.2021.58273.12946
  • Kanafi, M.M., Rajeshwari, Y.B., Gupta, S., Dadheech, N., Nair, P.D., Gupta, P.K., Transplantation of islet-like cell clusters derived from human dental pulp stem cells restores normoglycemia in diabetic mice. Cytotherapy, 15 (10) (2013), 1228-1236. https://doi.org/10.1016/j.jcyt.2013.05.008
  • Tonsekar, P., Tonsekar, V., Jiang, S., Yue, G., Dental stem cell-based therapy for glycemic control and the scope of clinical rtanslation: A systematic review and meta-analysis. International Journal of Translational Medicine, 4 (2024), 87-125. https://doi.org/10.3390/ijtm4010005
  • Xu, Y., Chen, J., Zhou, H., Wang, J., Song, J., Xie, J., Effects and mechanism of stem cells from human exfoliated deciduous teeth combined with hyperbaric oxygen therapy in type 2 diabetic rats. Clinics, 75 (2020), e1656. https://doi.org/10.6061/clinics/2020/e1656
  • Huntington Study Group, Unified Huntington's disease rating scale: Reliability and consistency. Movement Disorders, 11 (1996), 136-142. https://doi.org/10.1002/mds.870110204
  • Chen, K., Xiong, H., Xu, N., Shen, Y., Huang, Y., and Liu, C., Chondrogenic potential of stem cells from human exfoliated deciduous teeth in vitro and in vivo. Acta Odontologica Scandinavica, 72 (8) (2014), 664-672. https://doi:10.3109/00016357.2014.888756
  • Nishino, Y., Yamada Y., Ebisawa, K., Nakamura, S., Okabe, K., Umemura, E., Hara, K., Ueda, M., Stem cells from human exfoliated deciduous teeth (SHED) enhance wound healing and the possibility of novel cell therapy. Cytotherapy, 13 (5) (2011), 598-605. https://doi: 10.3109/14653249.2010.542462
  • Gomes, J.Á.P., Monteiro, B.G., Melo, G.B., Smith, R.L., da Silva, M.C.P., Lizier, N.F., Corneal reconstruction with tissue-engineered cell sheets composed of human immature dental pulp stem cells. Investigative Ophthalmology and Visual Science, 51 (3) (2010), 1408-1414. https://doi: 10.1167/iovs.09-4029
  • Kushnerev, E., Shawcross, S.G., Sothirachagan, S., Carley, F., Brahma, A., Yates, J.M., Regeneration of corneal epithelium with dental pulp stem cells using a contact lens delivery system. Investigative Ophthalmology and Visual Science, 57 (13) (2016), 5192-5199. https://doi: 10.1167/iovs.15-17953
  • Gao, X., Shen, Z., Guan, M., Huang, Q., Chen, L., Qin, W., Immunomodulatory role of stem cells from human exfoliated deciduous teeth on periodontal regeneration. Tissue Engineering Part A, 24 (17-18) (2018), 1341-1353. https://doi:10.1089/ten.tea.2018.0016
  • Djouad, F., Plence, P., Bony, C., Tropel, P., Apparailly, F., Sany, J., Noël, D., Jorgensen, C., Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood, 102 (2003), 3837-3844. https://doi.org/10.1182/blood-2003-04-1193
  • Tolouei, A.E., Oruji, F., Tehrani, S., Gingival mesenchymal stem cell therapy, immune cells, and immunoinflammatory application. Molecular Biology Reports, 50 (2023), 10461-10469. https://doi.org/10.1007/s11033-023-08826-2
  • Hewitt, R., Watson, P. Defining biobank. Biopreservation and Biobanking, 11 (5) (2013), 309-315. https://doi.org/10.1089/bio.2013.0042
  • Collart-Dutilleul, P., Chaubron, F., de Vos, J., Cuisinier, F., Allogenic banking of dental pulp stem cells for innovative therapeutics. World Journal of Stem Cells, 7 (7) (2015), 1010-1021. https://doi.org/10.4252/wjsc.v7.i7.1010.hal-03147103
  • Kaku, M., Kamada, H., Kawata, T., Koseki, H., Abedini, S., Kojima, S., Cryopreservation of periodontal ligament cells with magnetic field for tooth banking. Cryobiology, 61 (2010), 73-78. https://doi.org/10.1016/j.cryobiol.2010.05.003
  • Sirchia, G., Rebulla, P., Lecchi, L., Mozzi, F., Crepaldi, R., Parravicini, A., Implementation of a quality system (ISO 9000 series) for placental blood banking. Journal of Hematotherapy, 7 (1) (1998), 19-35. https://doi.org/10.1089/scd.1.1998.7.19
  • Liikanen, E., Laying down the principles and guidelines of good manufacturing practice in respect of medicinal products for human use and investigational medicinal products for human use. Official Journal of the European Union, (2003).
  • Khaseb, S., Orooji, M., Pour, M. G., Safavi, S. M., Eghbal, M. J., Rezai Rad, M., Dental stem cell banking: Techniques and protocols. Cell Biology International, 45 (9) (2021), 1851-1865. https://doi.org/10.1002/cbin.11626
  • Cobo, F., Stacey, G.N., Hunt, C., Cabrera, C., Nieto, A., Montes, R., Cortés, J.L., Catalina, P., Barnie, A., Concha, A., Microbiological control in stem cell banks: approaches to standardization. Applied Microbiology and Biotechnology, 68 (4) (2005), 456-466. https://doi.org/10.1007/s00253-005-0062-2
  • Pakzad, M., Hassani, S.N., Abbasi, F., A Roadmap for the production of a GMP-compatible cell bank of allogeneic bone marrow-derived clonal mesenchymal stromal cells for cell therapy applications. Stem Cell Reviews and Reports, 18 (2022), 2279-2295. https://doi.org/10.1007/s12015-022-10351-x
  • World Health Organization, Recommendations for the evaluation of animal cell cultures as substrates for the manufacture of biological medicinal products and for the characterization of cell banks (Report No. 878), (2010).
  • European Medicines Agency, ICH Topic Q5D quality of biotechnological products: Derivation and characterisation of cell substrates used for production of biotechnological/biological products, (2007), 1-3.
  • Raik, S., Kumar, A., Rattan, V., Seth, S., Kaur, A., Bhatta Charyya, S., Assessment of post-thaw quality of dental mesenchymal stromal cells after long-term cryopreservation by uncontrolled freezing. Applied Biochemistry and Biotechnology, 191 (2) (2020), 728-743. https://doi.org/10.1007/s12010-019-03216-6
  • Xie, J., Ekpo, M.D., Xiao, J., Zhao, H., Bai, X., Liang, Y., Zhao, G., Liu, D., Tan, S., Principles and protocols for post-cryopreservation quality evaluation of stem cells in novel biomedicine. Frontiers in Pharmacology, 13 (2022), 907943. https://doi.org/10.3389/fphar.2022.907943
  • Çevik, Z.M., Erkmen, E., Kahraman, Ş., Significance of dental stem cells in dentistry and stem cell banking. Journal of Clinical Sciences, 13 (2) (2024), 402-408. https://doi.org/10.54617/adoklinikbilimler.1431309
  • Narayanan, D., Phadke, S.R., Concepts, utility and limitations of cord blood banking: What clinicians need to know. Indian Journal of Pediatrics, 86 (2019), 44-48. https://doi.org/10.1007/s12098-018-2651-y
  • Alomar, R.K., Aladhyani, S.M., Aldossary, M.N., Almohaimel, S.A., Salam, M., Almutairi, A.F., A prospective Saudi dental stem-cell bank from the perspective of the public and dental practitioners: A cross sectional survey. Journal of Family Medicine and Primary Care, 9 (2) (2020), 864-870. https://doi.org/10.4103/jfmpc.jfmpc_978_19
  • Olayanju, A.O., Nkanga, A.E., Olayanju, A.J., Oluwatayo, B.O., Adesina, O., Enitan, S.S., Oladele, A.A. A Cord blood banking: the prospects and challenges of implementation in Nigeria. Hematology and Transfusion International Journal, 5 (4) (2017), 273-278. https:// doi.org/10.15406/htij.2017.05.00126
There are 71 citations in total.

Details

Primary Language English
Subjects Industrial Biotechnology (Other)
Journal Section Review Articles
Authors

Hatice Büşra Esen 0000-0001-8011-0020

Fadime Kıran 0000-0002-4536-2959

Publication Date December 25, 2024
Submission Date May 27, 2024
Acceptance Date October 12, 2024
Published in Issue Year 2024 Volume: 33 Issue: 2

Cite

Communications Faculty of Sciences University of Ankara Series C-Biology.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.