Review Article
BibTex RIS Cite

Year 2025, Volume: 34 Issue: 1, 104 - 153, 20.06.2025
https://doi.org/10.53447/communc.1491834

Abstract

References

  • Naderi, H., Matin, M.M., Bahrami, A.R., Critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems. Journal of Biomaterials Applications, 26 (4) (2011), 383–417. https://doi.org/10.1177/0885328211408946
  • Campoccia, D., Montanaro, L., Arciola, C.R.A., Review of the biomaterials technologies for infection-resistant surfaces. Biomaterials, 34 (2013), 8533–8554. https://doi.org/10.1016/j.biomaterials.2013.07.089
  • Pradhan, D., Sukla, L.B., Thin film of yttria stabilized zirconia on NiO using vacuum cold spraying process for solid oxide fuel cell. IJNBM, 7 (1) (2017), 38–47. https://doi.org/10.1504/IJNBM.2017.089322 Biswal, T., BadJena, S.K., Pradhan, D., Sustainable biomaterials and their applications: A short review. Materials Today Proceedings, 30 (2020), 274–282. https://doi.org/10.1016/j.matpr.2020.01.437
  • Kulinets, I., Biomaterials and their applications in medicine, In: Amato, S.F., Ezzell Jr, R.M. (Eds.). Regulatory Affairs for Biomaterials and Medical Devices. Woodhead Publishing Series in Biomaterials, (2015), 1–10. https://doi.org/10.1533/9780857099204.1
  • Stoddart, A., Cleave, V., The evolution of biomaterials. Nature Materials, 8 (2009), 444–445. https://doi.org/10.1038/nmat2447
  • Jebakumar, A.Z., Idrees, M., Nondo, H.S., A review on application of biomaterial in medical sciences. Journal of Science, 4 (2014), 390–393.
  • Jovic, T.H., Kungwengwe, G., Mills, A.C., Whitaker, I.S., Plant-derived biomaterials: A review of 3D bioprinting and biomedical applications. Frontiers in Mechanical Engineering, 5 (2019), 19. https://doi.org/10.3389/fmech.2019.00019
  • Shogren, R., Wood, D., Orts, W., Glenn, G., Plant-based materials and transitioning to a circular economy. Sustainable Production and Consumption, 19 (25) (2019), 194-215. https://doi.org/10.1016/j.spc.2019.04.007
  • Hudecki, A., Kiryczynski, G., Los, M.J. Biomaterials, Definition, Overview. In: Los, M.J., Hudecki, A., Wiechec E. Stem Cells and Biomaterials for Regenerative Medicine. Academic Press, (2018), 85–98. https://doi.org/10.1016/B978-0-12-812258-7.00007-1
  • Wang, L., Wang, K., Lou, Z., Jiang, K., Shen, G., Plant-based modular building blocks for “green” electronic skins. Advanced Functional Materials, 28 (51) (2018), 1804510 (1-16). https://doi.org/10.1002/adfm.201804510
  • Walker, B.W., Lara, R.P., Mogadam, E., Yu, C.H., Kimball, W., Annabi, N., Rational design of microfabricated electroconductive hydrogels for biomedical applications. Progress in Polymer Science, 92 (2019), 135–157. https://doi.org/10.1016/j.progpolymsci.2019.02.007
  • Karunamoorthi, K., Jegajeevanram, K., Vijayalakshmi, J., Mengistie, E., Traditional medicinal plants: a source of phytotherapeutic modality in resource-constrained health care settings. Journal of Evidence-Based Integrative Medicine, 18 (1) (2013), 67-74. https://doi.org/10.1177/2156587212460241
  • Sen, R., Chatterjee, M., Plant derived therapeutics for the treatment of Leishmaniasis. Phytomedicine, 18 (12) (2011), 1056–1069. https://doi.org/10.1016/j.phymed.2011.03.004
  • Modulevsky, D., Plant derived cellulose scaffolds as a novel biomaterial for 3d cell culture and tissue regeneration. PhD Thesis, University of Ottawa, Ottawa, Canada, 2021. http://dx.doi.org/10.20381/ruor-26406
  • Heness, G., Ben-Nissan, B. Innovative bioceramics. Materials Forum, 27 (2004), 104 –114.
  • Moore, D.B., Harris, A., Siesky, B., The world through a lens: The vision of Sir Harold Ridley. British Journal of Ophthalmology, 94 (2010), 1277–1280. https://doi.org/10.1136/bjo.2009.163956
  • Sarwar, H., Modi, N., Sir Harold Ridley: Innovator of cataract surgery. The Journal of Perioperative Practice, 24 (9) (2014), 210–212. https://doi.org/10.1177/1750458914024009
  • Patel, A.S., Intraocular Lens Implants: A Scientific Perspective. In: Ratner, B.D., Hoffman, A.S., Schoen, F.J., Lemons, J.E. Biomaterials Science: An Introduction to Materials in Medicine. Academic Press, (2013), 917-930. https://doi.org/10.1016/B978-0-08-087780-8.00078-4
  • Hench, L.L., Thompson, I., Twenty-first century challenges for biomaterials Subject collections Twenty-first century challenges for biomaterials. ournal of the Royal Society Interface, 7 (2010), 379–391. https://doi.org/10.1098/rsif.2010.0151.focus
  • Kattula, S., Brynes, J.R., Wolberg, A.S., Fibrinogen and fibrin in hemostasis and thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 37 (2017), e13–e21. https://doi.org/10.1161/ATVBAHA.117.308564
  • Chen, H., Xie, F., Chen, L., Zheng, B., Effect of rheological properties of potato, rice and corn starches on their hot-extrusion 3D printing behaviors. Journal of Food Engineering, 244 (2019), 150–158. https://doi.org/10.1016/j.jfoodeng.2018.09.011
  • Liu, H., Slamovich, E., Webster, T.J., Less harmful acidic degradation of poly (lactic- co-glycolic acid) bone tissue engineering scaffolds through titania nanoparticle addition. International Journal of Nanomedicine, 1 (4) (2006), 541–545. https://doi.org/10.2147/nano.2006.1.4.541
  • Saini, M., Singh, Y., Arora, P., Arora, V., Jain, K., Implant biomaterials: A comprehensive review. World Journal of Clinical Cases, 3 (1) (2015), 52-57. https://dx.doi.org/10.12998/wjcc.v3.i1.52
  • Heath, D.E., Cooper, S.L., Polyurethanes. In: Ratner, B.D., Hoffman, A.S., Schoen, F.J., Lemons, J.E. Biomaterials Science: An Introduction to Materials in Medicine. Academic Press, (2013), 79–82. https://doi.org/10.1016/B978-0-08-087780-8.00009-7
  • Wells, C.M., Harris, M., Choi, L., Murali, V.P., Guerra, F.D., Jennings, J.A. Stimuli-responsive drug release from smart polymers. Journal of Functional Biomaterials, 10(3) (2019), 34. https://doi.org/10.3390/jfb10030034
  • Sultana, M.J., Ahmed, F.R.S., Porous biomaterials: classification, fabrication and its applications in advanced medical science. American Journal of Nano Research, 4(2) (2018), 16-20. https://doi.org/10.11648/j.ajn.20180402.11
  • Zybutz, M.D., Laurell, L., Rapoport, D. A., Persson, G.R., Treatment of intrabony defects with resorbable materials, non-resorbable materials and flap debridement. Journal of Clinical Periodontology, 27 (2000), 169–178. https://doi.org/10.1034/j.1600-051x.2000.027003169.x
  • D Sheikh, Z., Najeeb, S., Khurshid, Z., Verma, V., Rashid, H., Glogauer, M., Biodegradable materials for bone repair and tissue engineering applications. Materials, 8(9) (2015), 5744–5794. https://doi.org/10.3390/ma8095273
  • Varma, R.S., Biomass-derived renewable carbonaceous materials forsustainable chemical and environmental applications. ACS Sustainable Chemistry & Engineering, 7 (7) (2019), 6458–6470. https://doi.org/10.1021/acssuschemeng.8b06550
  • Yang, H., Ye, S., Zhou, J., Liang, T., Biomass-derived porous carbon materials for supercapacitor. Frontiers in Chemistry, 7 (274) (2019), 1–17. https://doi.org/10.3389/fchem.2019.00274
  • Andrades, J.A., Regenerative Medicine and Tissue Engineering. InTechOpen: Houston, TX, USA, 2013. https://doi.org/10.5772/55668
  • Indurkar, A., Pandit, A., Jain, R., Dandekar, P., Plant-based biomaterials in tissue engineering. Bioprinting, 21 (2021), e00127. https://doi.org/10.1016/j.bprint.2020.e00127
  • Zarrintaj, P., Manouchehri, S., Ahmadi, Z., Saeb, M.R., Urbanska, A.M., Kaplan, D.L., Mozafari, M., Agarose-based biomaterials for tissue engineering. Carbohydrate Polymers, 187 (2018), 66–84. https://doi.org/10.1016/j.carbpol.2018.01.060
  • Campos, F., Bonhome-Espinosa, A.B., Vizcaino, G., Rodriguez, I.A., Duran-Herrera, D., Lopez-Lopez, M.T., Sanchez-Montesinos, I., Alaminos, M., Sanchez-Quevedo, M.C., Carriel, V., Generation of genipin cross-linked fibrin-agarose hydrogel tissue-like models for tissue engineering applications. Biomedical Materials, 13 (2) (2018), 025021. https://doi.org/10.1088/1748-605X/aa9ad2
  • Annamalai, R.T., Mertz, D.R., Daley, E.L.H., Stegemann, J.P., Collagen Type II enhances chondrogenic differentiation in agarose-based modular microtissues. Cytotherapy, 18 (2016), 263–277. https://doi.org/10.1016/j.jcyt.2015.10.015
  • Lee, K.Y., Mooney, D.J., Alginate: properties and biomedical applications. Progress in Polymer Science, 37 (2012), 106–126. https://doi.org/10.1016/j.progpolymsci.2011.06.003
  • Axpe, E., Oyen, M.L., Applications of alginate-based bioinks in 3D bioprinting. International Journal of Molecular Sciences, 17 (12) (2016), 1976. https://doi.org/10.3390/ijms17121976
  • Cardoso, M.J., Costa, R.R., Mano, J.F., Marine origin polysaccharides in drug delivery systems. Marine Drugs, 14 (2) (2016), 34. https://doi.org/10.3390/md14020034
  • Maleki, S., Almaas, E., Zotchev, S., Valla, S., Ertesvag, H., Alginate biosynthesis factories in pseudomonas fluorescens: localization and correlation with alginate production level. Applied and Environmental Microbiology, 82 (2016), 1227–1236. https://doi.org/10.1128/AEM.03114-15
  • Mishra, R.K., Sabu, A., Tiwari, S.K., Materials chemistry and the futurist ecofriendly applications of nanocellulose: status and prospect. Journal of Saudi Chemical Society, 22 (2018), 949–978. https://doi.org/10.1016/j.jscs.2018.02.005
  • Lu, D.R., Xiao, C.M., Xu, S.J., Starch-based completely biodegradable polymer materials. Express Polymer Letters, 3 (2009), 366-375. https://doi.org/10.3144/expresspolymlett.2009.46
  • Vengal, J.C., Srikumar, M., Processing and study of novel lignin-starch and lignin-gelatin biodegradable polymeric films. Trends in Biomaterials and Artificial Organs, 18 (2005), 2.
  • Dong, D., Li, J., Cui, M.,Wang, J., Zhou, Y., Luo, L., Wei, Y., Ye, L., Sun, H., Yao, Y., In situ “Clickable” zwitterionic starch-based hydrogel for 3D cell encapsulation. ACS Applied Materials & Interfaces, 8 (2016), 4442–4455. https://doi.org/10.1021/acsami.5b12141
  • Dumanli, A.G., Nanocellulose and its composites for biomedical applications. Current Medicinal Chemistry, 24 (2017), 512–528. http://dx.doi.org/10.2174/0929867323666161014124008
  • Lin, N., Dufresne, A., Nanocellulose in biomedicine: current status and future prospect. European Polymer Journal, 59 (2014), 302–325. https://doi.org/10.1016/j.eurpolymj.2014.07.025
  • Jin, G., Kim, G.H. Rapid-prototyped PCL/fucoidan composite scaffolds for bone tissue regeneration: design, fabrication, and physical/biological properties. ournal of Materials Chemistry, 21 (2011), 17710–17718. https://doi.org/10.1039/C1JM12915E
  • Silva, S.S., Fernandes, E.M., Pina, S., Silva-Correia,J., Vieira, S., Oliveira, J.M., Reis, R.L., Polymers of biological origin. Comprehensive Biomaterials, 2 (2017), 228–252. https://doi.org/10.1016/B978-0-12-803581-8.10134-1
  • Tako, M., Rheological characteristics of fucoidan isolated from commercially cultured Cladosiphon okamuranus. Botanica Marina, 46 (2003), 461–465. https://doi.org/10.1515/BOT.2003.047
  • Collins, K. G., Fitzgerald, G. F., Stanton, C., Ross, R. P. Looking beyond the terrestrial: the potential of seaweed derived bioactives to treat non-communicable diseases. Marine Drugs, 14 (3) (2016), 60. https://doi.org/10.3390/md14030060
  • Kim, B.S., Yang, S.S., You, H.K., Shin, H.I., Lee, J., Fucoidan-induced osteogenic differentiation promotes angiogenesis by inducing vascular endothelial growth factor secretion and accelerates bone repair. Journal of Tissue Engineering and Regenerative Medicine, 12 (2018), e1311–e1324. https://doi.org/10.1002/term.2509
  • Lowe, B., Venkatesan, J., Anil, S., Shim, M.S., Kim, S.K., Preparation and characterization of chitosan-natural nano hydroxyapatite-fucoidan nanocomposites for bone tissue engineering. International Journal of Biological Macromolecules, 93 (2016), 1479–1487. https://doi.org/10.1016/j.ijbiomac.2016.02.054
  • Puvaneswary, S., Talebian, S., Raghavendran, H.B., Murali, M.R., Mehrali, M., Afifi, A.M., Kasim, N.H.B.A., Kamarul, T., Fabrication and in vitro biological activity of βTCP-Chitosan-Fucoidan composite for bone tissue engineering. Carbohydrate Polymers, 134 (2015), 799–807. https://doi.org/10.1016/j.carbpol.2015.07.098
  • Chimene, D., Peak, C.W., Gentry, J.L., Carrow, J.K., Cross, L.M., Mondragon, E., Cardoso, G.B., Kaunas R., Akhilesh, K., Gaharwar. A.K., Nanoengineered Ionic–Covalent Entanglement (NICE) bioinks for 3D bioprinting. ACS Applied Materials & Interfaces, 10 (2018), 9957–9968. https://doi.org/10.1021/acsami.7b19808
  • Li, J., Yang, B., Qian, Y., Wang, Q., Han, R., Hao, T., Shu, Y., Zhang, Y., Yao, F., Wang, C., Iota-carrageenan/chitosan/gelatin scaffold for the osteogenic differentiation of adipose-derived MSCs in vitro. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 103 (2015), 1498–1510. https://doi.org/10.1002/jbm.b.33339
  • Feng, W., Qi, Y., Wang, S., Effects of short-range order on the magnetic and mechanical properties of FeCoNi(AlSi)x high entropy alloys. Metals, 7 (11) (2017), 482. https://doi.org/10.3390/met7110482
  • Bhattacharyya, S., Liu, H., Zhang, Z., Jam, M., Dudeja, P.K., Michel, G., Linhardt, R.J., Tobacman, J.K., Carrageenan-induced innate immune response is modified by enzymes that hydrolyze distinct galactosidic bonds. Journal of Nutritional Biochemistry, 21 (2010), 906–913. https://doi.org/10.1016/j.jnutbio.2009.07.002
  • Popa, E.G., Caridade, S.G., Mano, J.F., Reis, R.L., Gomes, M.E., Chondrogenic potential of injectable K-carrageenan hydrogel with encapsulated adipose stem cells for cartilage tissue-engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 9 (5) (2015), 550–563. https://doi.org/10.1002/term.1683
  • Pereira, R.F., Barrias, C.C., Bartolo, P.J., Granja, P.L., Cell-instructive pectin hydrogels crosslinked via thiol-norbornene photoclick chemistry for skin tissue engineering. Acta Biomaterialia, 66 (15) (2018), 282–293. https://doi.org/10.1016/j.actbio.2017.11.016
  • Cui, S., Yao, B., Gao, M., Sun, X., Gou, D., Hu, J., Zhou Y., Liu, Y., Effects of pectin structure and crosslinking method on the properties of crosslinked pectin nanofibers. Carbohydrate Polymers, 157 (2017), 766–774. https://doi.org/10.1016/j.carbpol.2016.10.052
  • Jayani, R.S., Saxena, S., Gupta, R., Microbial pectinolytic enzymes: a review. Process Biochemistry, 40 (2005), 2931–2944. https://doi.org/10.1016/j.procbio.2005.03.026
  • Munarin, F., Tanzi, M.C., Petrini, P., Advances in biomedical applications of pectin gels. International Journal of Biological Macromolecules, 51 (4) (2012), 681–689. https://doi.org/10.1016/j.ijbiomac.2012.07.002
  • Fang, Y., Al-Assaf, S., Phillips, G.O., Nishinari, K., Funami, T., Williams, P.A., Binding behavior of calciumto polyuronates: comparison of pectin with alginate. Carbohydrate Polymers, 72 (2008), 334–341. https://doi.org/10.1016/j.carbpol.2007.08.021
  • Coimbra, P., Ferreira, P., de Sousa, H.C., Batista, P., Rodrigues, M.A., Correia, I. J., Gil, M.H., Preparation and chemical and biological characterization of a pectin/chitosan polyelectrolyte complex scaffold for possible bone tissue engineering applications. International Journal of Biological Macromolecules, 48 (2011), 112–118. https://doi.org/10.1016/j.ijbiomac.2010.10.006
  • Kokkonen, H.E., Ilvesaro, J.M., Morra, M., Schols, H.A., Tuukkanen, J. Effect of modified pectin molecules on the growth of bone cells. Biomacromolecules, 8 (2) (2006), 509–515. https://doi.org/10.1021/bm060614h Yao, N., Huang, C., Jin, D., Evaluation of biocompatibility of a pectin/polyvinyl alcohol composite hydrogel as a new nucleus material. Orthopaedic Surgery, 1 (3) (2009), 231–237. https://doi.org/10.1111/j.1757-7861.2009.00036.x
  • Robic, A., Gaillard, C., Sassi, J.F., Lerat, Y., Lahaye, M., Ultrastructure of Ulvan: a polysaccharide from green seaweeds. Biopolymers, 91 (8) (2009), 652–664. https://doi.org/10.1002/bip.21195
  • Chiellini, F., Morelli, A., Ulvan: A versatile platform of biomaterials from renewable resources. In: Pignatello, R. Biomaterials-Physics and Chemistry. InTechOpen, (2011), 1-26. https://doi.org/10.5772/24901
  • Morelli, A., Puppi, D., Chiellini, F., Perspectives on biomedical applications of ulvan. Seaweed Polysaccharides: Isolation, Biological and Biomedical Applications, 16 (2017), 305–330. https://doi.org/10.1016/B978-0-12-809816-5.00016-5
  • Reddy, N., Yang, Y., Potential and properties of plant proteins for tissue engineering applications. In: Proceedings of the 13th International Conference on Biomedical Engineering, Singapore, 2008. https://doi.org/10.1007/978-3-540-92841-6_315
  • Jahangirian, H., Azizi, S., Rafiee-Moghaddam, R., Baratvand, B., Webster, T.J., Status of plant protein-based green scaffolds for regenerative medicine applications. Biomolecules, 9 (10) (2019), 619. https://doi.org/10.3390/biom9100619
  • Saha, D., Bhattacharya, S., Hydrocolloids as thickening and gelling agents in food: a critical review. Journal of Food Science and Technology, 47 (2010), 587–597. https://doi.org/10.1007/s13197-010-0162-6
  • Indurkar, A., Bangde, P., Gore, M., Reddy, P., Jain, R., Dandekar, P., Optimization of guar gum-gelatin bioink for 3D printing of mammalian cells. Bioprinting, 20 (2020), e00101. https://doi.org/10.1016/j.bprint.2020.e00101
  • Ehlers, M.R., Todd, R.M., Genesis and maintenance of attentional biases: the role of the locus coeruleus-noradrenaline system. Neural Plasticity, 2017 (2017), 6817349. https://doi.org/10.1155/2017/6817349
  • Gushiken, L.F.S., Rozza, A.L.A., Vieira, A.J., Fernando, P., Essential oils and their use in skin wound healing. Natural Products Research Reviews, (2016), 501-513.
  • Liu, P., Chen, W., Liu, C., Tian, M., Liu, P., A novel poly (vinyl alcohol)/poly (ethylene glycol) scaffold for tissue engineering with a unique bimodal open-celled structure fabricated using supercritical fluid foaming. Scientific Reports, 9 (2019), 1–12. https://doi.org/10.1038/s41598-019-46061-7
  • Guler, H.K., Çallıoglu, F.C., Çetin, E.S., Antibacterial PVP/cinnamon essential oil nanofibers by emulsion electrospinning. Journal of the Textile Institute, 110 (2019), 302–310. https://doi.org/10.1080/00405000.2018.1477237
  • Unalan, I., Endlein, S.J., Slavik, B., Buettner, A., Goldmann, W.H., Detsch, R., Boccaccini A.R., Evaluation of electrospun poly(ε-caprolactone)/gelatin nanofiber mats containing clove essential oil for antibacterial wound dressing. Pharmaceutics, 11 (2019), 570. https://doi.org/10.3390/pharmaceutics11110570
  • Zhang, Z., Zheng, Y., Zhang, L., Mani, M.P., Jaganathan, S.K., In vitro blood compatibility and bone mineralization aspects of polymeric scaffold laden with essential oil and metallic particles for bone tissue engineering. International Journal of Polymer Analysis and Characterization, 24(6) (2019), 504–516. https://doi.org/10.1080/1023666X.2019.1611029
  • Huang, Y.C., Chen, C.T., Chen, S.C., Lai, P.H., Liang, H..C, Chang, Y., Yu, L.C., Sung, H. W. A natural compound (Ginsenoside Re) isolated from Panax ginseng as a novel angiogenic agent for tissue regeneration. Pharmaceutical Research, 22 (2005), 636–646. https://doi.org/10.1007/s11095-005-2500-3
  • Wang, P., Wei, X., Zhang, F., Yang, K., Qu, C., Luo, H, He, L., Ginsenoside Rg1 of Panax ginseng stimulates the proliferation, odontogenic/osteogenic differentiation and gene expression profiles of human dental pulp stem cells. Phytomedicine, 21 (2) (2014), 177–183. https://doi.org/10.1016/j.phymed.2013.08.021
  • Jin, G., Prabhakaran, M.P., Kai, D., Annamalai, S.K., Arunachalam, K.D., Ramakrishna, S., Tissue engineered plant extracts as nanofibrous wound dressing. Biomaterials, 34 (2013), 724–734. https://doi.org/10.1016/j.biomaterials.2012.10.026
  • Bak, M.J., Jun, M., Jeong, W.S., Antioxidant and hepatoprotective effects of the red ginseng essential oil in H2O2-treated HepG2 cells and CCl4-treated mice. Int International Journal of Molecular Sciences, 13 (2012), 2314–2330. https://doi.org/10.3390/ijms13022314
  • Wu, Y., Sun, J., George, J., Ye, H., Cui, Z., Li, Z., Liu, Q., Zhang, Y., Ge, D., Liu, Y., Study of neuroprotective function of Ginkgo biloba extract (EGb761) derived-flavonoid monomers using a three-dimensional stem cell-derived neural model. Biotechnology Progress, 32 (3) (2016), 735–744. https://doi.org/10.1002/btpr.2255
  • Ghobadian, Z., Ahmadi, M.R.H., Rezazadeh, L,, Hosseini, E., Kokhazadeh, T., Ghavam, S., In vitro evaluation of Achillea Millefolium on the production and stimulation of human skin fibroblast cells (HFS-PI-16). Medical Archives, 69(4) (2015), 212–217. https://doi.org/10.5455/medarh.2015.69.212-217
  • Seneviratne, C.J., Wong, R.W.K., Hagg, U., Chen, Y., Herath, T.D.K., Samaranayake P L and Kao R (2011) Prunus mume extract exhibits antimicrobial activity against pathogenic oral bacteria. International Journal of Paediatric Dentistry, 21 (4), 299–305. https://doi.org/10.1111/j.1365-263X.2011.01123.x
  • Velu, G., Palanichamy, V., Rajan, A.P., Phytochemical and pharmacological importance of plant secondary metabolites in modern medicine. Bioorganic Phase in Natural Food: An Overview, (2018), 135–156. https://doi.org/10.1007/978-3-319-74210-6_8
  • Manickam, B., Sreedharan, R., Elumalai, M., ‘Genipin’ – the natural water soluble cross-linking agent and its importance in the modified drug delivery systems: an Overview. Current Drug Delivery, 11 (1) (2014), 139–145. https://doi.org/10.2174/15672018113106660059
  • Ramachandran, R., Jung, D., Spokoyny, A. M., Cross-linking dots on metal oxides. NPG Asia Materials, 11 (1) (2019), 9–12. https://doi.org/10.1038/s41427-019-0119-9
  • Zhou, H., Wang, Z., Cao, H., Hu, H., Luo, Z., Yang, X., Cui, M., Zhou, L., Genipincrosslinked polyvinyl alcohol/silk fibroin/nano-hydroxyapatite hydrogel for fabrication of artificial cornea scaffolds—a novel approach to corneal tissue engineering. Journal of Biomaterials Science, Polymer Edition, 30 (2019), 1604–1619. https://doi.org/10.1080/09205063.2019.1652418
  • Gershlak, J.R., Hernandez, S., Fontana, G., Perreault, L.R., Hansen, K. J., Larson, S.A., Binder, B.Y.K., Dolivo, D.M., Yang, T., Dominko, T., Rolle, M.W., Weathers, P.J., Medina-Bolivar, F., Cramer, C.L., Murphy, W.L., Gaudette, G.R. Crossing kingdoms: using decellularized plants as perfusable tissue engineering scaffolds. Biomaterials, 125 (2017), 13–22. https://doi.org/10.1016/j.biomaterials.2017.02.011
  • Kumar, S., Dobos, G.J., Rampp, T. The significance of ayurvedic medicinal plants. Journal of Evidence-Based Complementary & Alternative Medicine, 22 (3) (2017), 494–501. https://doi.org/10.1177/2156587216671392
  • Kweon, H., Yoo, M.K., Park, I.K., Kim, T.H., Lee, H.C., Lee, H.S., Oh, J.S., Akaike, T., Cho, C.S., A novel degradable polycaprolactone networks for tissue engineering. Biomaterials, 24(5) (2003), 801–808. https://doi.org/10.1016/s0142-9612(02)00370-8
  • Nijst, C.L.E., Bruggeman, J.P., Karp, J.M., Ferreira, L., Zumbuehl, A., Bettinger, C.J., Langer, R. Synthesis and characterization of photocurable elastomers from poly(glycerol-co-sebacate). Biomacromolecules, 8 (10) (2007), 3067–3073. https://doi.org/10.1021/bm070423u
  • Smith, A., Hunneyball, I.M., Evaluation of poly(lactic acid) as a biodegradable drug delivery system for parenteral administration. International Journal of Pharmaceutics, 30 (1986), 215–220. https://doi.org/10.1016/0378-5173(86)90081-5
  • Tessmar, J.K., Gopferich, A.M., Customized PEG-derived copolymers for tissueengineering applications. Macromolecular Bioscience, 7 (1) (2007), 23–39. https://doi.org/10.1002/mabi.200600096
  • Iravani, S., Varma, R.S., Plants and plant-based polymers as scaffolds for tissue engineering. Green Chemistry, 21 (2019), 4839–4867. https://doi.org/10.1039/C9GC02391G
  • Laternser, S., Keller, H., Leupin, O., Rausch, M., Graf-Hausner, U., Rimann, M. A Novel Microplate 3D Bioprinting Platform for the Engineering of Muscle and Tendon Tissues. SLAS Technology, 23(6) (2018), 599-613. https://doi.org/10.1177/2472630318776594
  • Malda, J., Visser, J., Melchels, F.P., Jungst, T., Hennink, W.E., Dhert, W.J.A., Groll, J., Hutmacher, D.W., 25th Anniversary Article: Engineering Hydrogels for Biofabrication. Advanced Materials, 25 (36) (2013), 5011-5028. https://doi.org/10.1002/adma.201302042
  • Rimann, M., Bono, E., Annaheim, H., Bleisch, M., Graf-Hausner, U., Standardized 3D Bioprinting of Soft Tissue Models with Human Primary Cells. Journal of Laboratory Automation, 21 (4) (2016), 496-509. https://doi.org/10.1177/2211068214567146
  • Holzl, K., Lin, S., Tytgat, L., Van Vlierberghe, S., Gu, L., Ovsianikov, A. Bioink properties before, during and after 3D bioprinting. Biofabrication, 8 (3) (2016), 032002. https://doi.org/10.1088/1758-5090/8/3/032002
  • Derakhshanfar, S., Mbeleck, R., Xu, K., Zhang, X., Zhong, W., Xing, M., 3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advances. Bioactive Materials, 3 (2018), 144–156. https://doi.org/10.1016/j.bioactmat.2017.11.008
  • Jakab, K., Norotte, C., Damon, B., Marga, F.,Neagu, A., Besch-Williford, C.L., Kachurin, A., Church, K.H., Park, H., Mironov, V., Markwald, R., Vunjak-Novakovic, G., Forgacs, G., Tissue engineering by self-assembly of cells printed into topologically defined structures. Tissue Engineering Part A, 14 (2008), 413–421. https://doi.org/10.1089/tea.2007.0173
  • Landers, R., Hubner, U., Schmelzeisen, R., Mulhaupt, RRapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials, 23 (2002), 4437–4447. https://doi.org/10.1016/S0142-9612(02)00139-4
  • Smith, C.M., Stone, A.L., Parkhill, R.L., Stewart, R.L., Simpkins, M.W., Kachurin, A.M., Warren, W.L., Williams, S.K., Three-dimensional bioassembly tool for generating viable tissue-engineered constructs. Tissue Engineering, 10 (9-10) (2004), 1566–1576. https://doi.org/10.1089/ten.2004.10.1566
  • Aljohani, W., Ullah, M.W., Zhang, X., Yang, G., Bioprinting and its applications in tissue engineering and regenerative medicine. International Journal of Biological Macromolecules, 107 (2018), 261–275. https://doi.org/10.1016/j.ijbiomac.2017.08.171
  • Malkoc, V., Challenges and the Future of 3D Bioprinting. Available online at: http://www.alliedacademies.org/articles/challenges-and-the-futureof-3d-bioprinting.pdf (accessed on: December 31, 2018)
  • Le May I., Lappi, V.G., White, W.E. Materials for biomedical applications. Polymer Engineering & Science, 15 (1975), 789–794. https://doi.org/10.1002/pen.760151105
  • Drury, J. L., Mooney, D. J., Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials, 24 (2003), 4337–4351. https://doi.org/10.1016/S0142-9612(03)00340-5
  • Gungor-Ozkerim, P.S., Inci, I., Zhang, Y.S., Khademhosseini, A., Dokmeci, M.R. Bioinks for 3D bioprinting: an overview. Biomaterials Science, 6 (2018), 915–946. https://doi.org/10.1039/C7BM00765E
  • Chung, J.H.Y., Naficy, S., Yue, Z., Kapsa, R., Quigley, A., Moulton, S.E., Wallace, G.G., Bio-ink properties and printability for extrusion printing livingmcells. Biomaterials Science, 1 (2013), 763-773. https://doi.org/10.1039/C3BM00012E
  • Gunatillake, P.A., Adhikari, R., Gadegaard, N., Biodegradable synthetic polymers for tissue engineering. European Cells and Materials, 5 (2003), 1–16. https://doi.org/10.22203/ecm.v005a01
  • Hammock, M.L., Chortos, A., Benjamin, C., Tee, K., Jeffrey, B., Tok, H., Bao, Z., 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Advanced Materials, 25 (2013), 5997-6038. https://doi.org/10.1002/adma.201302240
  • Pan, L., Chortos, A., Yu, G., Wang, Y., Isaacson, S., Allen, R., Shi, Y., Dauskardt, R., Bao, Z., An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nature Communications, 5 (2014), 3002. https://doi.org/10.1038/ncomms4002
  • Lou, Z., Chen, S., Wang, L., Shi, R., Li, L., Jiang, K., Chen, D., Shen, G., Ultrasensitive and ultraflexible e-skins with dual functionalities for wearable electronics. Nano Energy, 38 (2017), 28-35. https://doi.org/10.1016/j.nanoen.2017.05.024
  • Owens, R.M., Malliaras, G.G., Organic Electronics at the Interface with Biology. MRS Bulletin, 35 (2010), 449–456. https://doi.org/10.1557/mrs20
  • Sekitani, T., Someya, T., Human-Friendly Organic Integrated Circuit. Materials Today, 14 (2011), 398-407. http://dx.doi.org/10.1016/S1369-7021(11)70184-5
  • Irimia-Vladu, M. “Green” electronics: biodegradable and biocompatible materials and devices for sustainable future. Chemical Society Reviews, 43 (2014), 588-610. https://doi.org/10.1039/C3CS60235D
  • Wang, L., Chen, D., Jiang, K., Shen, G., New insights and perspectives into biological materials for flexible electronics. Chemical Society Reviews, 46 (2017), 6764–6815. https://doi.org/10.1039/c7cs00278e
  • Chen, Q., Pugno, N.M., Bio-mimetic mechanisms of natural hierarchical materials: a review. Journal of the Mechanical Behavior of Biomedical Materials, 19 (2013), 3-33. https://doi.org/10.1016/j.jmbbm.2012.10.012
  • Hwang, S.W., Tao, H., Kim, D.H., Cheng, H., Song, J.K., Rill, E., Brenckle, M.A., Panilaitis, B., Won, S.M., Kim, Y.S., Song, Y.M., Yu, K.J., Ameen, A., Li, R., Su, Y., Yang, M., Kaplan, D.L., Zakin, M.R., Slepian, M.J., Huang, Y., Omenetto, F.G., Rogers, J.A., A physically transient form of silicon electronics. Science, 337 (6102) (2012), 1640–1644. https://doi.org/10.1126/science.122632
  • Wegst, U.G.K., Bai, H., Saiz, E., Tomsia, A.P., Ritchie, R.O. Bioinspired structural materials. Nature Materials, 14 (2015), 23–36. https://doi.org/10.1038/nmat4089
  • Zan, G., Wu, Q., Biomimetic and bioinspired synthesis of nanomaterials/nanostructures. Advanced Materials, 28 (11) (2016), 2099-2147. https://doi.org/10.1002/adma.201503215
  • Zhang, P., Ma, Y., Zhang, Z., He, X., Zhang, J., Guo, Z., Tai, R., Zhao, Y., Chai, Z., Biotransformation of ceria nanoparticles in cucumber plants. ACS Nano, 6 (11) (2012), 9943–9950. https://doi.org/10.1021/nn303543n
  • Zhou, H., Li, X., Fan, T., Osterloh, F.E., Ding, J., Sabio, E.M., Zhang, D., Guo, Q., Artificial inorganic leafs for efficient photochemical hydrogen production inspired by natural photosynthesis. Advanced Materials, 22 (2010), 951-956. https://doi.org/10.1002/adma.200902039
  • Feng, L., Li, S., Li, Y., Li, H., Zhang, L., Zhai, J., Song, Y., Liu, B., Jiang, L., Zhu, D., Super-Hydrophobic Surfaces: From Natural to Artificial. Advanced Materials, 14 (2002), 1857–1860. https://doi.org/10.1002/adma.20029002
  • Diah, S.Z.M., Karman, S.B., Gebeshuber, I.C. Nanostructural colouration in Malaysian plants: Lessons for biomimetics and biomaterials. Journal of Nanomaterials, 2014 (2014), 1-15. https://doi.org/10.1155/2014/878409
  • Kamata, K., Suzuki, S., Ohtsuka, M., Nakagawa, M., Iyoda, T., Yamada, A., Fabrication of left-handed metal microcoil from spiral vessel of vascular plant. Advanced Materials, 23(46) (2011), 5509-5513. https://doi.org/10.1002/adma.201103605
  • Gao, W., Feng, X., Pei, A., Kane, C.R., Tam, R., Hennessy, C., Wang, J., Bioinspired helical microswimmers based on vascular plants. Nano Letters, 14 (1) (2014), 305-10. https://doi.org/10.1021/nl404044d
  • Lin, H., Allen, M.C., Wu, J., deGlee, B.M., Shin, D., Cai, Y., Sandhage, K.H., Deheyn, D.D., Meredith, J.C., Bio-Enabled, Core/Shell Microparticles with Tailored Multimodal Adhesion and Optical Reflectivity. Chemistry of Materials, 27 (21) (2015), 7321-7330. https://doi.org/10.1021/acs.chemmater.5b02782
  • Su, B., Gong, S., Ma, Z., Yap, L. W, Cheng, W., Mimosa-inspired design of a flexible pressure sensor with touch sensitivity. Small, 11 (16) (2015), 1886-1891. https://doi.org/10.1002/smll.201403036
  • Li, T., Luo, H., Qin, L., Wang, X., Xiong, Z., Ding, H., Gu, Y., Liu, Z., Zhang, T. Flexible Capacitive Tactile Sensor Based on Micropatterned Dielectric Layer. Small, 12 (36) (2016), 5042–5048. https://doi.org/10.1002/smll.201600760
  • Zhu, J.Y., Zhuang, X.S., Conceptual net energy output for biofuel production from lignocellulosic biomass through biorefining. Progress in Energy and Combustion Science, 38 (2012), 360-1285. https://doi.org/10.1016/j.pecs.2012.03.007
  • de Souza Lima, M. M., Borsali, R. rodlike cellulose microcrystals: structure, properties, and applications. Macromolecular Rapid Communications, 25 (7) (2004), 771–787. https://doi.org/10.1002/marc.200300268
  • Cheng, H., Du, Y., Wang, B., Mao, Z., Xu, H., Zhang, L., Zhong, Y., Jiang, W., Wang, L., Sui, X., Flexible cellulose-based thermoelectric sponge towards wearable pressure sensor and energy harvesting. Chemical Engineering Journal, 338 (2018), 1-7. https://doi.org/10.1016/j.cej.2017.12.134
  • Isogai, A. Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. Journal of Wood Science, 59 (2013), 449–459. https://doi.org/10.1007/s10086-013-1365-z
  • Fukuzumi, H., Saito, T., Iwata, T., Kumamoto, Y., Isogai, A, Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules, 10 (1) (2009), 162-5. https://doi.org/10.1021/bm801065u
  • Isogai, A., Saito, T., Fukuzumi, H., TEMPO-Oxidized cellulose nanofibers. Nanoscale, 3 (2011), 71-85. http://dx.doi.org/10.1039/C0NR00583E
  • Saito, T., Uematsu, T., Kimura, S., Enomae, T., Isogai, A., Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter, 7 (2011), 8804-8809. https://doi.org/10.1039/C1SM06050C
  • Fang, Z., Zhu, H., Preston, C., Hu, L., Development, application and commercialization of transparent paper. Translational Materials Research, 1 (1) (2014), 015004. http://iopscience.iop.org/2053-1613/1/1/015004
  • Jung, Y., Chang, T. H., Zhang, H., Yao, C., Zheng, Q., Yang, V.W., Mi, H., Kim, M., Cho, S.J., Park, D.W., Jiang, H., Lee, J., Qiu, Y., Zhou, W., Cai, Z., Gong, S., Ma, Z., High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nature Communications, 6 (2015), 7170. https://doi.org/10.1038/ncomms8170
  • Song, J., Chen, C., Wang, C., Kuang, Y., Li, Y., Jiang, F., Li, Y., Hitz, E., Zhang, Y., Liu, B., Gong, A., Bian, H., Zhu, J.Y., Zhang, J., Li, J., Hu, L., Superflexible Wood. ACS Applied Materials & Interfaces, 9 (28) (2017), 23520-23527. https://doi.org/10.1021/acsami.7b06529
  • Wang, L., Jackman, J.A., Ng, W.B., Cho, N.J., Flexible, graphene-coated biocomposite for highly sensitive, real-time molecular detection. Advanced Functional Materials, 26 (2016a), 8623. https://doi.org/10.1002/adfm.201603550
  • Wang, L., Ng, W., Jackman, J.A., Cho, N.J., A flexible, ultra-sensitive chemical sensor with 3D biomimetic templating for diabetes-related acetone detection. Advanced Functional Materials, 26 (2016b), 2097. https://doi.org/10.1039/C7TB00787F
  • Zang, L., Bu, Z., Sun, L., Zhang, Y., Hollow carbon fiber sponges from crude catkins: an ultralow cost absorbent for oils and organic solvents. RSC Advances, 6 (2016), 48715-48719. https://doi.org/10.1039/C6RA08183E
  • Li, L., Tao, H., Sun, H., Zhang, J., Wang, A., Pressure-sensitive and conductive carbon aerogels from poplars catkins for selective oil absorption and oil/water separation. ACS Applied Materials & Interfaces, 9 (21) (2017), 18001–18007. https://doi.org/10.1021/acsami.7b04687 Si, Y., Wang, X., Yan, C., Yang, L., Yu, J., Ding, B., Ultralight Biomass-Derived Carbonaceous Nanofibrous Aerogels with Superelasticity and High Pressure-Sensitivity. Advanced Materials, 28 (43) (2016), 9512-9518. https://doi.org/10.1002/adma.201603143
  • Kokkonen, H., Niiranen, H., Schols, H.A., Morra, M., Stenback, F., Tuukkanen, J., Pectin-coated titanium implants are well-tolerated in vivo. Journal of Biomedical Materials Research Part A, 93 (4) (2010), 1404–1409. https://doi.org/10.1002/jbm.a.32649
  • Mohammadinejad, R., Maleki, H., Larraneta, E., Fajardo, A.R., Nik, A.B., Shavand A., Sheikhi, A., Ghorbanpour, M., Farokhi, M., Govindh, P., Cabane, E., Azizi, S., Aref, A.R., Mozafari, M., Mehrali, M., Thomas, S., Mano, J.F., Mishra, Y.K., Thakur, V.K., Status and future scope of plant-based green hydrogels in biomedical engineering. Applied Materials Today, 16 (2019), 213–246. https://doi.org/10.1016/j.apmt.2019.04.010
  • Ngoenkam, J., Faikrua, A., Yasothornsrikul, S., Viyoch, J., Potential of an injectable chitosan/starch/β-glycerol phosphate hydrogel for sustaining normal chondrocyte function. International Journal of Pharmaceutics, 391(1-2) (2010), 115–24. https://doi.org/10.1016/j.ijpharm.2010.02.028
  • Ciolacu, D.E., Nicu, R., Ciolacu, F. Cellulose-based hydrogels as sustained drug-delivery systems. Materials, 13 (22) (2020), 5270. https://doi.org/10.3390/ma13225270
  • Sakurai, M.H., Matsumoto, T., Kiyohara, H., Yamada, H. B-cell proliferation activity of pectic polysaccharide from a medicinal herb, the roots of Bupleurum falcatum L. and its structural requirement. Immunology, 97 (3) (1999), 540–547. https://doi.org/10.1046/j.1365-2567.1999.00774.x
  • Silindile, S.I., Phikelelani, P.S., Serumula, M.R., Musabayane, C., Transdermal delivery of insulin by amidated pectin hydrogel matrix patch in streptozotocin-induced diabetic rats: effects on some selected metabolic parameters. PLoSONE, 9 (7) (2014), e101461. https://doi.org/10.1371/journal.pone.0101461
  • Modulevsky, D.J., Lefebvre, C., Haase, K., Al-Rekabi, Z., Pelling AE apple derived cellulose scaffolds for 3d mammalian cell culture. PLoSONE, 9 (5) (2014), e97835. https://doi.org/10.1371/journal.pone.0097835
  • Zadegan, S., Hosainalipour, M., Rezaie, H., Ghassai, H., Shokrgozar, M.A., Synthesis and biocompatibility evaluation of cellulose/hydroxyapatitenano composite scaffold in 1-n-allyl-3-methylimidazolium chloride. Materials Science and Engineering: C, 31 (2011), 954–961. https://doi.org/10.1016/j.msec.2011.02.021
  • Plant-Based Biomaterials: Engineering the Future. The Biochemist Blog, 2018. https://thebiochemistblog.com/2018/03/07/plant-based-biomaterials-engineering-the-future/
  • Dolcimascolo, A., Calabrese, G., Conoci, S., Parenti, R., Biomaterial-supported tissue reconstruction or regeneration. In: Innovative biomaterials for tissue engineering, from the edited volume. InTechOpen: Rijeka, Croatia, 2019. https://doi.org/10.5772/intechopen.83839
  • Oughlis, S., Lessim, S., Changotade, S., Bollotte, F., Poirier, F., Helary, G., Lataillade, J.J., Migonney, V., Lutomski, D., Development of proteomic tools to study protein adsorption on a biomaterial titanium grafted with poly (sodium styrene sulfonate). Journal of Chromatography B, 879 (31) (2011), 3681–3687. https://doi.org/10.1016/j.jchromb.2011.10.006
  • Gilabert-Chirivella, E., Perez-Feito, R., Ribeiro, C., Ribeiro, S., Correia, D.M., González-Martín, M.L., Manero, J.M., Lanceros-Méndez, S., Ferrer, G.G., Gómez-Ribelles, J.L., Chitosan patterning on titanium implants. Progress in Organic Coatings, 111 (2017), 23-28. https://doi.org/10.1016/j.porgcoat.2017.04.027
  • Wu, C., Zhou, Y., Xu, M., Han, P., Chen, L., Chang, J., Coppercontaining mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials, 34 (2) (2013), 422–433. https://doi.org/10.1016/j.biomaterials.2012.09.066

Overview of plant-derived biomaterials

Year 2025, Volume: 34 Issue: 1, 104 - 153, 20.06.2025
https://doi.org/10.53447/communc.1491834

Abstract

Humans have been using plant-derived biomaterials throughout the history and they have an important place in today’s daily life. They have a wide range of uses, from biotechnological to medical purposes. Plant-derived biomaterials possess various implementation in many fields including food industry, health care, biomedical science, cosmetics, energy science, environmental health and drug-gene delivery. Biomaterials have evolved to tissue-specific smart polymers since their discovery. Many biotechnological applications have allowed the production of biomaterials with different structures and shapes. Furthermore, latest studies demonstrated that constitutive organization and surface topographies of plants might also be beneficial for many biomaterial production processes. In this article, the history, classification, properties and application areas of biomaterials are explained by supporting studies. As a conclusion, it is inescapable for scientists to realise that plants are affordable, maintainable and regenerative platforms, and thus, they are optimal resources for generation of organic biomaterials. In this review, important current developments in the field of plant-derived biomaterials are also discussed.

Ethical Statement

-

Supporting Institution

-

Thanks

-

References

  • Naderi, H., Matin, M.M., Bahrami, A.R., Critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems. Journal of Biomaterials Applications, 26 (4) (2011), 383–417. https://doi.org/10.1177/0885328211408946
  • Campoccia, D., Montanaro, L., Arciola, C.R.A., Review of the biomaterials technologies for infection-resistant surfaces. Biomaterials, 34 (2013), 8533–8554. https://doi.org/10.1016/j.biomaterials.2013.07.089
  • Pradhan, D., Sukla, L.B., Thin film of yttria stabilized zirconia on NiO using vacuum cold spraying process for solid oxide fuel cell. IJNBM, 7 (1) (2017), 38–47. https://doi.org/10.1504/IJNBM.2017.089322 Biswal, T., BadJena, S.K., Pradhan, D., Sustainable biomaterials and their applications: A short review. Materials Today Proceedings, 30 (2020), 274–282. https://doi.org/10.1016/j.matpr.2020.01.437
  • Kulinets, I., Biomaterials and their applications in medicine, In: Amato, S.F., Ezzell Jr, R.M. (Eds.). Regulatory Affairs for Biomaterials and Medical Devices. Woodhead Publishing Series in Biomaterials, (2015), 1–10. https://doi.org/10.1533/9780857099204.1
  • Stoddart, A., Cleave, V., The evolution of biomaterials. Nature Materials, 8 (2009), 444–445. https://doi.org/10.1038/nmat2447
  • Jebakumar, A.Z., Idrees, M., Nondo, H.S., A review on application of biomaterial in medical sciences. Journal of Science, 4 (2014), 390–393.
  • Jovic, T.H., Kungwengwe, G., Mills, A.C., Whitaker, I.S., Plant-derived biomaterials: A review of 3D bioprinting and biomedical applications. Frontiers in Mechanical Engineering, 5 (2019), 19. https://doi.org/10.3389/fmech.2019.00019
  • Shogren, R., Wood, D., Orts, W., Glenn, G., Plant-based materials and transitioning to a circular economy. Sustainable Production and Consumption, 19 (25) (2019), 194-215. https://doi.org/10.1016/j.spc.2019.04.007
  • Hudecki, A., Kiryczynski, G., Los, M.J. Biomaterials, Definition, Overview. In: Los, M.J., Hudecki, A., Wiechec E. Stem Cells and Biomaterials for Regenerative Medicine. Academic Press, (2018), 85–98. https://doi.org/10.1016/B978-0-12-812258-7.00007-1
  • Wang, L., Wang, K., Lou, Z., Jiang, K., Shen, G., Plant-based modular building blocks for “green” electronic skins. Advanced Functional Materials, 28 (51) (2018), 1804510 (1-16). https://doi.org/10.1002/adfm.201804510
  • Walker, B.W., Lara, R.P., Mogadam, E., Yu, C.H., Kimball, W., Annabi, N., Rational design of microfabricated electroconductive hydrogels for biomedical applications. Progress in Polymer Science, 92 (2019), 135–157. https://doi.org/10.1016/j.progpolymsci.2019.02.007
  • Karunamoorthi, K., Jegajeevanram, K., Vijayalakshmi, J., Mengistie, E., Traditional medicinal plants: a source of phytotherapeutic modality in resource-constrained health care settings. Journal of Evidence-Based Integrative Medicine, 18 (1) (2013), 67-74. https://doi.org/10.1177/2156587212460241
  • Sen, R., Chatterjee, M., Plant derived therapeutics for the treatment of Leishmaniasis. Phytomedicine, 18 (12) (2011), 1056–1069. https://doi.org/10.1016/j.phymed.2011.03.004
  • Modulevsky, D., Plant derived cellulose scaffolds as a novel biomaterial for 3d cell culture and tissue regeneration. PhD Thesis, University of Ottawa, Ottawa, Canada, 2021. http://dx.doi.org/10.20381/ruor-26406
  • Heness, G., Ben-Nissan, B. Innovative bioceramics. Materials Forum, 27 (2004), 104 –114.
  • Moore, D.B., Harris, A., Siesky, B., The world through a lens: The vision of Sir Harold Ridley. British Journal of Ophthalmology, 94 (2010), 1277–1280. https://doi.org/10.1136/bjo.2009.163956
  • Sarwar, H., Modi, N., Sir Harold Ridley: Innovator of cataract surgery. The Journal of Perioperative Practice, 24 (9) (2014), 210–212. https://doi.org/10.1177/1750458914024009
  • Patel, A.S., Intraocular Lens Implants: A Scientific Perspective. In: Ratner, B.D., Hoffman, A.S., Schoen, F.J., Lemons, J.E. Biomaterials Science: An Introduction to Materials in Medicine. Academic Press, (2013), 917-930. https://doi.org/10.1016/B978-0-08-087780-8.00078-4
  • Hench, L.L., Thompson, I., Twenty-first century challenges for biomaterials Subject collections Twenty-first century challenges for biomaterials. ournal of the Royal Society Interface, 7 (2010), 379–391. https://doi.org/10.1098/rsif.2010.0151.focus
  • Kattula, S., Brynes, J.R., Wolberg, A.S., Fibrinogen and fibrin in hemostasis and thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 37 (2017), e13–e21. https://doi.org/10.1161/ATVBAHA.117.308564
  • Chen, H., Xie, F., Chen, L., Zheng, B., Effect of rheological properties of potato, rice and corn starches on their hot-extrusion 3D printing behaviors. Journal of Food Engineering, 244 (2019), 150–158. https://doi.org/10.1016/j.jfoodeng.2018.09.011
  • Liu, H., Slamovich, E., Webster, T.J., Less harmful acidic degradation of poly (lactic- co-glycolic acid) bone tissue engineering scaffolds through titania nanoparticle addition. International Journal of Nanomedicine, 1 (4) (2006), 541–545. https://doi.org/10.2147/nano.2006.1.4.541
  • Saini, M., Singh, Y., Arora, P., Arora, V., Jain, K., Implant biomaterials: A comprehensive review. World Journal of Clinical Cases, 3 (1) (2015), 52-57. https://dx.doi.org/10.12998/wjcc.v3.i1.52
  • Heath, D.E., Cooper, S.L., Polyurethanes. In: Ratner, B.D., Hoffman, A.S., Schoen, F.J., Lemons, J.E. Biomaterials Science: An Introduction to Materials in Medicine. Academic Press, (2013), 79–82. https://doi.org/10.1016/B978-0-08-087780-8.00009-7
  • Wells, C.M., Harris, M., Choi, L., Murali, V.P., Guerra, F.D., Jennings, J.A. Stimuli-responsive drug release from smart polymers. Journal of Functional Biomaterials, 10(3) (2019), 34. https://doi.org/10.3390/jfb10030034
  • Sultana, M.J., Ahmed, F.R.S., Porous biomaterials: classification, fabrication and its applications in advanced medical science. American Journal of Nano Research, 4(2) (2018), 16-20. https://doi.org/10.11648/j.ajn.20180402.11
  • Zybutz, M.D., Laurell, L., Rapoport, D. A., Persson, G.R., Treatment of intrabony defects with resorbable materials, non-resorbable materials and flap debridement. Journal of Clinical Periodontology, 27 (2000), 169–178. https://doi.org/10.1034/j.1600-051x.2000.027003169.x
  • D Sheikh, Z., Najeeb, S., Khurshid, Z., Verma, V., Rashid, H., Glogauer, M., Biodegradable materials for bone repair and tissue engineering applications. Materials, 8(9) (2015), 5744–5794. https://doi.org/10.3390/ma8095273
  • Varma, R.S., Biomass-derived renewable carbonaceous materials forsustainable chemical and environmental applications. ACS Sustainable Chemistry & Engineering, 7 (7) (2019), 6458–6470. https://doi.org/10.1021/acssuschemeng.8b06550
  • Yang, H., Ye, S., Zhou, J., Liang, T., Biomass-derived porous carbon materials for supercapacitor. Frontiers in Chemistry, 7 (274) (2019), 1–17. https://doi.org/10.3389/fchem.2019.00274
  • Andrades, J.A., Regenerative Medicine and Tissue Engineering. InTechOpen: Houston, TX, USA, 2013. https://doi.org/10.5772/55668
  • Indurkar, A., Pandit, A., Jain, R., Dandekar, P., Plant-based biomaterials in tissue engineering. Bioprinting, 21 (2021), e00127. https://doi.org/10.1016/j.bprint.2020.e00127
  • Zarrintaj, P., Manouchehri, S., Ahmadi, Z., Saeb, M.R., Urbanska, A.M., Kaplan, D.L., Mozafari, M., Agarose-based biomaterials for tissue engineering. Carbohydrate Polymers, 187 (2018), 66–84. https://doi.org/10.1016/j.carbpol.2018.01.060
  • Campos, F., Bonhome-Espinosa, A.B., Vizcaino, G., Rodriguez, I.A., Duran-Herrera, D., Lopez-Lopez, M.T., Sanchez-Montesinos, I., Alaminos, M., Sanchez-Quevedo, M.C., Carriel, V., Generation of genipin cross-linked fibrin-agarose hydrogel tissue-like models for tissue engineering applications. Biomedical Materials, 13 (2) (2018), 025021. https://doi.org/10.1088/1748-605X/aa9ad2
  • Annamalai, R.T., Mertz, D.R., Daley, E.L.H., Stegemann, J.P., Collagen Type II enhances chondrogenic differentiation in agarose-based modular microtissues. Cytotherapy, 18 (2016), 263–277. https://doi.org/10.1016/j.jcyt.2015.10.015
  • Lee, K.Y., Mooney, D.J., Alginate: properties and biomedical applications. Progress in Polymer Science, 37 (2012), 106–126. https://doi.org/10.1016/j.progpolymsci.2011.06.003
  • Axpe, E., Oyen, M.L., Applications of alginate-based bioinks in 3D bioprinting. International Journal of Molecular Sciences, 17 (12) (2016), 1976. https://doi.org/10.3390/ijms17121976
  • Cardoso, M.J., Costa, R.R., Mano, J.F., Marine origin polysaccharides in drug delivery systems. Marine Drugs, 14 (2) (2016), 34. https://doi.org/10.3390/md14020034
  • Maleki, S., Almaas, E., Zotchev, S., Valla, S., Ertesvag, H., Alginate biosynthesis factories in pseudomonas fluorescens: localization and correlation with alginate production level. Applied and Environmental Microbiology, 82 (2016), 1227–1236. https://doi.org/10.1128/AEM.03114-15
  • Mishra, R.K., Sabu, A., Tiwari, S.K., Materials chemistry and the futurist ecofriendly applications of nanocellulose: status and prospect. Journal of Saudi Chemical Society, 22 (2018), 949–978. https://doi.org/10.1016/j.jscs.2018.02.005
  • Lu, D.R., Xiao, C.M., Xu, S.J., Starch-based completely biodegradable polymer materials. Express Polymer Letters, 3 (2009), 366-375. https://doi.org/10.3144/expresspolymlett.2009.46
  • Vengal, J.C., Srikumar, M., Processing and study of novel lignin-starch and lignin-gelatin biodegradable polymeric films. Trends in Biomaterials and Artificial Organs, 18 (2005), 2.
  • Dong, D., Li, J., Cui, M.,Wang, J., Zhou, Y., Luo, L., Wei, Y., Ye, L., Sun, H., Yao, Y., In situ “Clickable” zwitterionic starch-based hydrogel for 3D cell encapsulation. ACS Applied Materials & Interfaces, 8 (2016), 4442–4455. https://doi.org/10.1021/acsami.5b12141
  • Dumanli, A.G., Nanocellulose and its composites for biomedical applications. Current Medicinal Chemistry, 24 (2017), 512–528. http://dx.doi.org/10.2174/0929867323666161014124008
  • Lin, N., Dufresne, A., Nanocellulose in biomedicine: current status and future prospect. European Polymer Journal, 59 (2014), 302–325. https://doi.org/10.1016/j.eurpolymj.2014.07.025
  • Jin, G., Kim, G.H. Rapid-prototyped PCL/fucoidan composite scaffolds for bone tissue regeneration: design, fabrication, and physical/biological properties. ournal of Materials Chemistry, 21 (2011), 17710–17718. https://doi.org/10.1039/C1JM12915E
  • Silva, S.S., Fernandes, E.M., Pina, S., Silva-Correia,J., Vieira, S., Oliveira, J.M., Reis, R.L., Polymers of biological origin. Comprehensive Biomaterials, 2 (2017), 228–252. https://doi.org/10.1016/B978-0-12-803581-8.10134-1
  • Tako, M., Rheological characteristics of fucoidan isolated from commercially cultured Cladosiphon okamuranus. Botanica Marina, 46 (2003), 461–465. https://doi.org/10.1515/BOT.2003.047
  • Collins, K. G., Fitzgerald, G. F., Stanton, C., Ross, R. P. Looking beyond the terrestrial: the potential of seaweed derived bioactives to treat non-communicable diseases. Marine Drugs, 14 (3) (2016), 60. https://doi.org/10.3390/md14030060
  • Kim, B.S., Yang, S.S., You, H.K., Shin, H.I., Lee, J., Fucoidan-induced osteogenic differentiation promotes angiogenesis by inducing vascular endothelial growth factor secretion and accelerates bone repair. Journal of Tissue Engineering and Regenerative Medicine, 12 (2018), e1311–e1324. https://doi.org/10.1002/term.2509
  • Lowe, B., Venkatesan, J., Anil, S., Shim, M.S., Kim, S.K., Preparation and characterization of chitosan-natural nano hydroxyapatite-fucoidan nanocomposites for bone tissue engineering. International Journal of Biological Macromolecules, 93 (2016), 1479–1487. https://doi.org/10.1016/j.ijbiomac.2016.02.054
  • Puvaneswary, S., Talebian, S., Raghavendran, H.B., Murali, M.R., Mehrali, M., Afifi, A.M., Kasim, N.H.B.A., Kamarul, T., Fabrication and in vitro biological activity of βTCP-Chitosan-Fucoidan composite for bone tissue engineering. Carbohydrate Polymers, 134 (2015), 799–807. https://doi.org/10.1016/j.carbpol.2015.07.098
  • Chimene, D., Peak, C.W., Gentry, J.L., Carrow, J.K., Cross, L.M., Mondragon, E., Cardoso, G.B., Kaunas R., Akhilesh, K., Gaharwar. A.K., Nanoengineered Ionic–Covalent Entanglement (NICE) bioinks for 3D bioprinting. ACS Applied Materials & Interfaces, 10 (2018), 9957–9968. https://doi.org/10.1021/acsami.7b19808
  • Li, J., Yang, B., Qian, Y., Wang, Q., Han, R., Hao, T., Shu, Y., Zhang, Y., Yao, F., Wang, C., Iota-carrageenan/chitosan/gelatin scaffold for the osteogenic differentiation of adipose-derived MSCs in vitro. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 103 (2015), 1498–1510. https://doi.org/10.1002/jbm.b.33339
  • Feng, W., Qi, Y., Wang, S., Effects of short-range order on the magnetic and mechanical properties of FeCoNi(AlSi)x high entropy alloys. Metals, 7 (11) (2017), 482. https://doi.org/10.3390/met7110482
  • Bhattacharyya, S., Liu, H., Zhang, Z., Jam, M., Dudeja, P.K., Michel, G., Linhardt, R.J., Tobacman, J.K., Carrageenan-induced innate immune response is modified by enzymes that hydrolyze distinct galactosidic bonds. Journal of Nutritional Biochemistry, 21 (2010), 906–913. https://doi.org/10.1016/j.jnutbio.2009.07.002
  • Popa, E.G., Caridade, S.G., Mano, J.F., Reis, R.L., Gomes, M.E., Chondrogenic potential of injectable K-carrageenan hydrogel with encapsulated adipose stem cells for cartilage tissue-engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 9 (5) (2015), 550–563. https://doi.org/10.1002/term.1683
  • Pereira, R.F., Barrias, C.C., Bartolo, P.J., Granja, P.L., Cell-instructive pectin hydrogels crosslinked via thiol-norbornene photoclick chemistry for skin tissue engineering. Acta Biomaterialia, 66 (15) (2018), 282–293. https://doi.org/10.1016/j.actbio.2017.11.016
  • Cui, S., Yao, B., Gao, M., Sun, X., Gou, D., Hu, J., Zhou Y., Liu, Y., Effects of pectin structure and crosslinking method on the properties of crosslinked pectin nanofibers. Carbohydrate Polymers, 157 (2017), 766–774. https://doi.org/10.1016/j.carbpol.2016.10.052
  • Jayani, R.S., Saxena, S., Gupta, R., Microbial pectinolytic enzymes: a review. Process Biochemistry, 40 (2005), 2931–2944. https://doi.org/10.1016/j.procbio.2005.03.026
  • Munarin, F., Tanzi, M.C., Petrini, P., Advances in biomedical applications of pectin gels. International Journal of Biological Macromolecules, 51 (4) (2012), 681–689. https://doi.org/10.1016/j.ijbiomac.2012.07.002
  • Fang, Y., Al-Assaf, S., Phillips, G.O., Nishinari, K., Funami, T., Williams, P.A., Binding behavior of calciumto polyuronates: comparison of pectin with alginate. Carbohydrate Polymers, 72 (2008), 334–341. https://doi.org/10.1016/j.carbpol.2007.08.021
  • Coimbra, P., Ferreira, P., de Sousa, H.C., Batista, P., Rodrigues, M.A., Correia, I. J., Gil, M.H., Preparation and chemical and biological characterization of a pectin/chitosan polyelectrolyte complex scaffold for possible bone tissue engineering applications. International Journal of Biological Macromolecules, 48 (2011), 112–118. https://doi.org/10.1016/j.ijbiomac.2010.10.006
  • Kokkonen, H.E., Ilvesaro, J.M., Morra, M., Schols, H.A., Tuukkanen, J. Effect of modified pectin molecules on the growth of bone cells. Biomacromolecules, 8 (2) (2006), 509–515. https://doi.org/10.1021/bm060614h Yao, N., Huang, C., Jin, D., Evaluation of biocompatibility of a pectin/polyvinyl alcohol composite hydrogel as a new nucleus material. Orthopaedic Surgery, 1 (3) (2009), 231–237. https://doi.org/10.1111/j.1757-7861.2009.00036.x
  • Robic, A., Gaillard, C., Sassi, J.F., Lerat, Y., Lahaye, M., Ultrastructure of Ulvan: a polysaccharide from green seaweeds. Biopolymers, 91 (8) (2009), 652–664. https://doi.org/10.1002/bip.21195
  • Chiellini, F., Morelli, A., Ulvan: A versatile platform of biomaterials from renewable resources. In: Pignatello, R. Biomaterials-Physics and Chemistry. InTechOpen, (2011), 1-26. https://doi.org/10.5772/24901
  • Morelli, A., Puppi, D., Chiellini, F., Perspectives on biomedical applications of ulvan. Seaweed Polysaccharides: Isolation, Biological and Biomedical Applications, 16 (2017), 305–330. https://doi.org/10.1016/B978-0-12-809816-5.00016-5
  • Reddy, N., Yang, Y., Potential and properties of plant proteins for tissue engineering applications. In: Proceedings of the 13th International Conference on Biomedical Engineering, Singapore, 2008. https://doi.org/10.1007/978-3-540-92841-6_315
  • Jahangirian, H., Azizi, S., Rafiee-Moghaddam, R., Baratvand, B., Webster, T.J., Status of plant protein-based green scaffolds for regenerative medicine applications. Biomolecules, 9 (10) (2019), 619. https://doi.org/10.3390/biom9100619
  • Saha, D., Bhattacharya, S., Hydrocolloids as thickening and gelling agents in food: a critical review. Journal of Food Science and Technology, 47 (2010), 587–597. https://doi.org/10.1007/s13197-010-0162-6
  • Indurkar, A., Bangde, P., Gore, M., Reddy, P., Jain, R., Dandekar, P., Optimization of guar gum-gelatin bioink for 3D printing of mammalian cells. Bioprinting, 20 (2020), e00101. https://doi.org/10.1016/j.bprint.2020.e00101
  • Ehlers, M.R., Todd, R.M., Genesis and maintenance of attentional biases: the role of the locus coeruleus-noradrenaline system. Neural Plasticity, 2017 (2017), 6817349. https://doi.org/10.1155/2017/6817349
  • Gushiken, L.F.S., Rozza, A.L.A., Vieira, A.J., Fernando, P., Essential oils and their use in skin wound healing. Natural Products Research Reviews, (2016), 501-513.
  • Liu, P., Chen, W., Liu, C., Tian, M., Liu, P., A novel poly (vinyl alcohol)/poly (ethylene glycol) scaffold for tissue engineering with a unique bimodal open-celled structure fabricated using supercritical fluid foaming. Scientific Reports, 9 (2019), 1–12. https://doi.org/10.1038/s41598-019-46061-7
  • Guler, H.K., Çallıoglu, F.C., Çetin, E.S., Antibacterial PVP/cinnamon essential oil nanofibers by emulsion electrospinning. Journal of the Textile Institute, 110 (2019), 302–310. https://doi.org/10.1080/00405000.2018.1477237
  • Unalan, I., Endlein, S.J., Slavik, B., Buettner, A., Goldmann, W.H., Detsch, R., Boccaccini A.R., Evaluation of electrospun poly(ε-caprolactone)/gelatin nanofiber mats containing clove essential oil for antibacterial wound dressing. Pharmaceutics, 11 (2019), 570. https://doi.org/10.3390/pharmaceutics11110570
  • Zhang, Z., Zheng, Y., Zhang, L., Mani, M.P., Jaganathan, S.K., In vitro blood compatibility and bone mineralization aspects of polymeric scaffold laden with essential oil and metallic particles for bone tissue engineering. International Journal of Polymer Analysis and Characterization, 24(6) (2019), 504–516. https://doi.org/10.1080/1023666X.2019.1611029
  • Huang, Y.C., Chen, C.T., Chen, S.C., Lai, P.H., Liang, H..C, Chang, Y., Yu, L.C., Sung, H. W. A natural compound (Ginsenoside Re) isolated from Panax ginseng as a novel angiogenic agent for tissue regeneration. Pharmaceutical Research, 22 (2005), 636–646. https://doi.org/10.1007/s11095-005-2500-3
  • Wang, P., Wei, X., Zhang, F., Yang, K., Qu, C., Luo, H, He, L., Ginsenoside Rg1 of Panax ginseng stimulates the proliferation, odontogenic/osteogenic differentiation and gene expression profiles of human dental pulp stem cells. Phytomedicine, 21 (2) (2014), 177–183. https://doi.org/10.1016/j.phymed.2013.08.021
  • Jin, G., Prabhakaran, M.P., Kai, D., Annamalai, S.K., Arunachalam, K.D., Ramakrishna, S., Tissue engineered plant extracts as nanofibrous wound dressing. Biomaterials, 34 (2013), 724–734. https://doi.org/10.1016/j.biomaterials.2012.10.026
  • Bak, M.J., Jun, M., Jeong, W.S., Antioxidant and hepatoprotective effects of the red ginseng essential oil in H2O2-treated HepG2 cells and CCl4-treated mice. Int International Journal of Molecular Sciences, 13 (2012), 2314–2330. https://doi.org/10.3390/ijms13022314
  • Wu, Y., Sun, J., George, J., Ye, H., Cui, Z., Li, Z., Liu, Q., Zhang, Y., Ge, D., Liu, Y., Study of neuroprotective function of Ginkgo biloba extract (EGb761) derived-flavonoid monomers using a three-dimensional stem cell-derived neural model. Biotechnology Progress, 32 (3) (2016), 735–744. https://doi.org/10.1002/btpr.2255
  • Ghobadian, Z., Ahmadi, M.R.H., Rezazadeh, L,, Hosseini, E., Kokhazadeh, T., Ghavam, S., In vitro evaluation of Achillea Millefolium on the production and stimulation of human skin fibroblast cells (HFS-PI-16). Medical Archives, 69(4) (2015), 212–217. https://doi.org/10.5455/medarh.2015.69.212-217
  • Seneviratne, C.J., Wong, R.W.K., Hagg, U., Chen, Y., Herath, T.D.K., Samaranayake P L and Kao R (2011) Prunus mume extract exhibits antimicrobial activity against pathogenic oral bacteria. International Journal of Paediatric Dentistry, 21 (4), 299–305. https://doi.org/10.1111/j.1365-263X.2011.01123.x
  • Velu, G., Palanichamy, V., Rajan, A.P., Phytochemical and pharmacological importance of plant secondary metabolites in modern medicine. Bioorganic Phase in Natural Food: An Overview, (2018), 135–156. https://doi.org/10.1007/978-3-319-74210-6_8
  • Manickam, B., Sreedharan, R., Elumalai, M., ‘Genipin’ – the natural water soluble cross-linking agent and its importance in the modified drug delivery systems: an Overview. Current Drug Delivery, 11 (1) (2014), 139–145. https://doi.org/10.2174/15672018113106660059
  • Ramachandran, R., Jung, D., Spokoyny, A. M., Cross-linking dots on metal oxides. NPG Asia Materials, 11 (1) (2019), 9–12. https://doi.org/10.1038/s41427-019-0119-9
  • Zhou, H., Wang, Z., Cao, H., Hu, H., Luo, Z., Yang, X., Cui, M., Zhou, L., Genipincrosslinked polyvinyl alcohol/silk fibroin/nano-hydroxyapatite hydrogel for fabrication of artificial cornea scaffolds—a novel approach to corneal tissue engineering. Journal of Biomaterials Science, Polymer Edition, 30 (2019), 1604–1619. https://doi.org/10.1080/09205063.2019.1652418
  • Gershlak, J.R., Hernandez, S., Fontana, G., Perreault, L.R., Hansen, K. J., Larson, S.A., Binder, B.Y.K., Dolivo, D.M., Yang, T., Dominko, T., Rolle, M.W., Weathers, P.J., Medina-Bolivar, F., Cramer, C.L., Murphy, W.L., Gaudette, G.R. Crossing kingdoms: using decellularized plants as perfusable tissue engineering scaffolds. Biomaterials, 125 (2017), 13–22. https://doi.org/10.1016/j.biomaterials.2017.02.011
  • Kumar, S., Dobos, G.J., Rampp, T. The significance of ayurvedic medicinal plants. Journal of Evidence-Based Complementary & Alternative Medicine, 22 (3) (2017), 494–501. https://doi.org/10.1177/2156587216671392
  • Kweon, H., Yoo, M.K., Park, I.K., Kim, T.H., Lee, H.C., Lee, H.S., Oh, J.S., Akaike, T., Cho, C.S., A novel degradable polycaprolactone networks for tissue engineering. Biomaterials, 24(5) (2003), 801–808. https://doi.org/10.1016/s0142-9612(02)00370-8
  • Nijst, C.L.E., Bruggeman, J.P., Karp, J.M., Ferreira, L., Zumbuehl, A., Bettinger, C.J., Langer, R. Synthesis and characterization of photocurable elastomers from poly(glycerol-co-sebacate). Biomacromolecules, 8 (10) (2007), 3067–3073. https://doi.org/10.1021/bm070423u
  • Smith, A., Hunneyball, I.M., Evaluation of poly(lactic acid) as a biodegradable drug delivery system for parenteral administration. International Journal of Pharmaceutics, 30 (1986), 215–220. https://doi.org/10.1016/0378-5173(86)90081-5
  • Tessmar, J.K., Gopferich, A.M., Customized PEG-derived copolymers for tissueengineering applications. Macromolecular Bioscience, 7 (1) (2007), 23–39. https://doi.org/10.1002/mabi.200600096
  • Iravani, S., Varma, R.S., Plants and plant-based polymers as scaffolds for tissue engineering. Green Chemistry, 21 (2019), 4839–4867. https://doi.org/10.1039/C9GC02391G
  • Laternser, S., Keller, H., Leupin, O., Rausch, M., Graf-Hausner, U., Rimann, M. A Novel Microplate 3D Bioprinting Platform for the Engineering of Muscle and Tendon Tissues. SLAS Technology, 23(6) (2018), 599-613. https://doi.org/10.1177/2472630318776594
  • Malda, J., Visser, J., Melchels, F.P., Jungst, T., Hennink, W.E., Dhert, W.J.A., Groll, J., Hutmacher, D.W., 25th Anniversary Article: Engineering Hydrogels for Biofabrication. Advanced Materials, 25 (36) (2013), 5011-5028. https://doi.org/10.1002/adma.201302042
  • Rimann, M., Bono, E., Annaheim, H., Bleisch, M., Graf-Hausner, U., Standardized 3D Bioprinting of Soft Tissue Models with Human Primary Cells. Journal of Laboratory Automation, 21 (4) (2016), 496-509. https://doi.org/10.1177/2211068214567146
  • Holzl, K., Lin, S., Tytgat, L., Van Vlierberghe, S., Gu, L., Ovsianikov, A. Bioink properties before, during and after 3D bioprinting. Biofabrication, 8 (3) (2016), 032002. https://doi.org/10.1088/1758-5090/8/3/032002
  • Derakhshanfar, S., Mbeleck, R., Xu, K., Zhang, X., Zhong, W., Xing, M., 3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advances. Bioactive Materials, 3 (2018), 144–156. https://doi.org/10.1016/j.bioactmat.2017.11.008
  • Jakab, K., Norotte, C., Damon, B., Marga, F.,Neagu, A., Besch-Williford, C.L., Kachurin, A., Church, K.H., Park, H., Mironov, V., Markwald, R., Vunjak-Novakovic, G., Forgacs, G., Tissue engineering by self-assembly of cells printed into topologically defined structures. Tissue Engineering Part A, 14 (2008), 413–421. https://doi.org/10.1089/tea.2007.0173
  • Landers, R., Hubner, U., Schmelzeisen, R., Mulhaupt, RRapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials, 23 (2002), 4437–4447. https://doi.org/10.1016/S0142-9612(02)00139-4
  • Smith, C.M., Stone, A.L., Parkhill, R.L., Stewart, R.L., Simpkins, M.W., Kachurin, A.M., Warren, W.L., Williams, S.K., Three-dimensional bioassembly tool for generating viable tissue-engineered constructs. Tissue Engineering, 10 (9-10) (2004), 1566–1576. https://doi.org/10.1089/ten.2004.10.1566
  • Aljohani, W., Ullah, M.W., Zhang, X., Yang, G., Bioprinting and its applications in tissue engineering and regenerative medicine. International Journal of Biological Macromolecules, 107 (2018), 261–275. https://doi.org/10.1016/j.ijbiomac.2017.08.171
  • Malkoc, V., Challenges and the Future of 3D Bioprinting. Available online at: http://www.alliedacademies.org/articles/challenges-and-the-futureof-3d-bioprinting.pdf (accessed on: December 31, 2018)
  • Le May I., Lappi, V.G., White, W.E. Materials for biomedical applications. Polymer Engineering & Science, 15 (1975), 789–794. https://doi.org/10.1002/pen.760151105
  • Drury, J. L., Mooney, D. J., Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials, 24 (2003), 4337–4351. https://doi.org/10.1016/S0142-9612(03)00340-5
  • Gungor-Ozkerim, P.S., Inci, I., Zhang, Y.S., Khademhosseini, A., Dokmeci, M.R. Bioinks for 3D bioprinting: an overview. Biomaterials Science, 6 (2018), 915–946. https://doi.org/10.1039/C7BM00765E
  • Chung, J.H.Y., Naficy, S., Yue, Z., Kapsa, R., Quigley, A., Moulton, S.E., Wallace, G.G., Bio-ink properties and printability for extrusion printing livingmcells. Biomaterials Science, 1 (2013), 763-773. https://doi.org/10.1039/C3BM00012E
  • Gunatillake, P.A., Adhikari, R., Gadegaard, N., Biodegradable synthetic polymers for tissue engineering. European Cells and Materials, 5 (2003), 1–16. https://doi.org/10.22203/ecm.v005a01
  • Hammock, M.L., Chortos, A., Benjamin, C., Tee, K., Jeffrey, B., Tok, H., Bao, Z., 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Advanced Materials, 25 (2013), 5997-6038. https://doi.org/10.1002/adma.201302240
  • Pan, L., Chortos, A., Yu, G., Wang, Y., Isaacson, S., Allen, R., Shi, Y., Dauskardt, R., Bao, Z., An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nature Communications, 5 (2014), 3002. https://doi.org/10.1038/ncomms4002
  • Lou, Z., Chen, S., Wang, L., Shi, R., Li, L., Jiang, K., Chen, D., Shen, G., Ultrasensitive and ultraflexible e-skins with dual functionalities for wearable electronics. Nano Energy, 38 (2017), 28-35. https://doi.org/10.1016/j.nanoen.2017.05.024
  • Owens, R.M., Malliaras, G.G., Organic Electronics at the Interface with Biology. MRS Bulletin, 35 (2010), 449–456. https://doi.org/10.1557/mrs20
  • Sekitani, T., Someya, T., Human-Friendly Organic Integrated Circuit. Materials Today, 14 (2011), 398-407. http://dx.doi.org/10.1016/S1369-7021(11)70184-5
  • Irimia-Vladu, M. “Green” electronics: biodegradable and biocompatible materials and devices for sustainable future. Chemical Society Reviews, 43 (2014), 588-610. https://doi.org/10.1039/C3CS60235D
  • Wang, L., Chen, D., Jiang, K., Shen, G., New insights and perspectives into biological materials for flexible electronics. Chemical Society Reviews, 46 (2017), 6764–6815. https://doi.org/10.1039/c7cs00278e
  • Chen, Q., Pugno, N.M., Bio-mimetic mechanisms of natural hierarchical materials: a review. Journal of the Mechanical Behavior of Biomedical Materials, 19 (2013), 3-33. https://doi.org/10.1016/j.jmbbm.2012.10.012
  • Hwang, S.W., Tao, H., Kim, D.H., Cheng, H., Song, J.K., Rill, E., Brenckle, M.A., Panilaitis, B., Won, S.M., Kim, Y.S., Song, Y.M., Yu, K.J., Ameen, A., Li, R., Su, Y., Yang, M., Kaplan, D.L., Zakin, M.R., Slepian, M.J., Huang, Y., Omenetto, F.G., Rogers, J.A., A physically transient form of silicon electronics. Science, 337 (6102) (2012), 1640–1644. https://doi.org/10.1126/science.122632
  • Wegst, U.G.K., Bai, H., Saiz, E., Tomsia, A.P., Ritchie, R.O. Bioinspired structural materials. Nature Materials, 14 (2015), 23–36. https://doi.org/10.1038/nmat4089
  • Zan, G., Wu, Q., Biomimetic and bioinspired synthesis of nanomaterials/nanostructures. Advanced Materials, 28 (11) (2016), 2099-2147. https://doi.org/10.1002/adma.201503215
  • Zhang, P., Ma, Y., Zhang, Z., He, X., Zhang, J., Guo, Z., Tai, R., Zhao, Y., Chai, Z., Biotransformation of ceria nanoparticles in cucumber plants. ACS Nano, 6 (11) (2012), 9943–9950. https://doi.org/10.1021/nn303543n
  • Zhou, H., Li, X., Fan, T., Osterloh, F.E., Ding, J., Sabio, E.M., Zhang, D., Guo, Q., Artificial inorganic leafs for efficient photochemical hydrogen production inspired by natural photosynthesis. Advanced Materials, 22 (2010), 951-956. https://doi.org/10.1002/adma.200902039
  • Feng, L., Li, S., Li, Y., Li, H., Zhang, L., Zhai, J., Song, Y., Liu, B., Jiang, L., Zhu, D., Super-Hydrophobic Surfaces: From Natural to Artificial. Advanced Materials, 14 (2002), 1857–1860. https://doi.org/10.1002/adma.20029002
  • Diah, S.Z.M., Karman, S.B., Gebeshuber, I.C. Nanostructural colouration in Malaysian plants: Lessons for biomimetics and biomaterials. Journal of Nanomaterials, 2014 (2014), 1-15. https://doi.org/10.1155/2014/878409
  • Kamata, K., Suzuki, S., Ohtsuka, M., Nakagawa, M., Iyoda, T., Yamada, A., Fabrication of left-handed metal microcoil from spiral vessel of vascular plant. Advanced Materials, 23(46) (2011), 5509-5513. https://doi.org/10.1002/adma.201103605
  • Gao, W., Feng, X., Pei, A., Kane, C.R., Tam, R., Hennessy, C., Wang, J., Bioinspired helical microswimmers based on vascular plants. Nano Letters, 14 (1) (2014), 305-10. https://doi.org/10.1021/nl404044d
  • Lin, H., Allen, M.C., Wu, J., deGlee, B.M., Shin, D., Cai, Y., Sandhage, K.H., Deheyn, D.D., Meredith, J.C., Bio-Enabled, Core/Shell Microparticles with Tailored Multimodal Adhesion and Optical Reflectivity. Chemistry of Materials, 27 (21) (2015), 7321-7330. https://doi.org/10.1021/acs.chemmater.5b02782
  • Su, B., Gong, S., Ma, Z., Yap, L. W, Cheng, W., Mimosa-inspired design of a flexible pressure sensor with touch sensitivity. Small, 11 (16) (2015), 1886-1891. https://doi.org/10.1002/smll.201403036
  • Li, T., Luo, H., Qin, L., Wang, X., Xiong, Z., Ding, H., Gu, Y., Liu, Z., Zhang, T. Flexible Capacitive Tactile Sensor Based on Micropatterned Dielectric Layer. Small, 12 (36) (2016), 5042–5048. https://doi.org/10.1002/smll.201600760
  • Zhu, J.Y., Zhuang, X.S., Conceptual net energy output for biofuel production from lignocellulosic biomass through biorefining. Progress in Energy and Combustion Science, 38 (2012), 360-1285. https://doi.org/10.1016/j.pecs.2012.03.007
  • de Souza Lima, M. M., Borsali, R. rodlike cellulose microcrystals: structure, properties, and applications. Macromolecular Rapid Communications, 25 (7) (2004), 771–787. https://doi.org/10.1002/marc.200300268
  • Cheng, H., Du, Y., Wang, B., Mao, Z., Xu, H., Zhang, L., Zhong, Y., Jiang, W., Wang, L., Sui, X., Flexible cellulose-based thermoelectric sponge towards wearable pressure sensor and energy harvesting. Chemical Engineering Journal, 338 (2018), 1-7. https://doi.org/10.1016/j.cej.2017.12.134
  • Isogai, A. Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. Journal of Wood Science, 59 (2013), 449–459. https://doi.org/10.1007/s10086-013-1365-z
  • Fukuzumi, H., Saito, T., Iwata, T., Kumamoto, Y., Isogai, A, Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules, 10 (1) (2009), 162-5. https://doi.org/10.1021/bm801065u
  • Isogai, A., Saito, T., Fukuzumi, H., TEMPO-Oxidized cellulose nanofibers. Nanoscale, 3 (2011), 71-85. http://dx.doi.org/10.1039/C0NR00583E
  • Saito, T., Uematsu, T., Kimura, S., Enomae, T., Isogai, A., Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter, 7 (2011), 8804-8809. https://doi.org/10.1039/C1SM06050C
  • Fang, Z., Zhu, H., Preston, C., Hu, L., Development, application and commercialization of transparent paper. Translational Materials Research, 1 (1) (2014), 015004. http://iopscience.iop.org/2053-1613/1/1/015004
  • Jung, Y., Chang, T. H., Zhang, H., Yao, C., Zheng, Q., Yang, V.W., Mi, H., Kim, M., Cho, S.J., Park, D.W., Jiang, H., Lee, J., Qiu, Y., Zhou, W., Cai, Z., Gong, S., Ma, Z., High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nature Communications, 6 (2015), 7170. https://doi.org/10.1038/ncomms8170
  • Song, J., Chen, C., Wang, C., Kuang, Y., Li, Y., Jiang, F., Li, Y., Hitz, E., Zhang, Y., Liu, B., Gong, A., Bian, H., Zhu, J.Y., Zhang, J., Li, J., Hu, L., Superflexible Wood. ACS Applied Materials & Interfaces, 9 (28) (2017), 23520-23527. https://doi.org/10.1021/acsami.7b06529
  • Wang, L., Jackman, J.A., Ng, W.B., Cho, N.J., Flexible, graphene-coated biocomposite for highly sensitive, real-time molecular detection. Advanced Functional Materials, 26 (2016a), 8623. https://doi.org/10.1002/adfm.201603550
  • Wang, L., Ng, W., Jackman, J.A., Cho, N.J., A flexible, ultra-sensitive chemical sensor with 3D biomimetic templating for diabetes-related acetone detection. Advanced Functional Materials, 26 (2016b), 2097. https://doi.org/10.1039/C7TB00787F
  • Zang, L., Bu, Z., Sun, L., Zhang, Y., Hollow carbon fiber sponges from crude catkins: an ultralow cost absorbent for oils and organic solvents. RSC Advances, 6 (2016), 48715-48719. https://doi.org/10.1039/C6RA08183E
  • Li, L., Tao, H., Sun, H., Zhang, J., Wang, A., Pressure-sensitive and conductive carbon aerogels from poplars catkins for selective oil absorption and oil/water separation. ACS Applied Materials & Interfaces, 9 (21) (2017), 18001–18007. https://doi.org/10.1021/acsami.7b04687 Si, Y., Wang, X., Yan, C., Yang, L., Yu, J., Ding, B., Ultralight Biomass-Derived Carbonaceous Nanofibrous Aerogels with Superelasticity and High Pressure-Sensitivity. Advanced Materials, 28 (43) (2016), 9512-9518. https://doi.org/10.1002/adma.201603143
  • Kokkonen, H., Niiranen, H., Schols, H.A., Morra, M., Stenback, F., Tuukkanen, J., Pectin-coated titanium implants are well-tolerated in vivo. Journal of Biomedical Materials Research Part A, 93 (4) (2010), 1404–1409. https://doi.org/10.1002/jbm.a.32649
  • Mohammadinejad, R., Maleki, H., Larraneta, E., Fajardo, A.R., Nik, A.B., Shavand A., Sheikhi, A., Ghorbanpour, M., Farokhi, M., Govindh, P., Cabane, E., Azizi, S., Aref, A.R., Mozafari, M., Mehrali, M., Thomas, S., Mano, J.F., Mishra, Y.K., Thakur, V.K., Status and future scope of plant-based green hydrogels in biomedical engineering. Applied Materials Today, 16 (2019), 213–246. https://doi.org/10.1016/j.apmt.2019.04.010
  • Ngoenkam, J., Faikrua, A., Yasothornsrikul, S., Viyoch, J., Potential of an injectable chitosan/starch/β-glycerol phosphate hydrogel for sustaining normal chondrocyte function. International Journal of Pharmaceutics, 391(1-2) (2010), 115–24. https://doi.org/10.1016/j.ijpharm.2010.02.028
  • Ciolacu, D.E., Nicu, R., Ciolacu, F. Cellulose-based hydrogels as sustained drug-delivery systems. Materials, 13 (22) (2020), 5270. https://doi.org/10.3390/ma13225270
  • Sakurai, M.H., Matsumoto, T., Kiyohara, H., Yamada, H. B-cell proliferation activity of pectic polysaccharide from a medicinal herb, the roots of Bupleurum falcatum L. and its structural requirement. Immunology, 97 (3) (1999), 540–547. https://doi.org/10.1046/j.1365-2567.1999.00774.x
  • Silindile, S.I., Phikelelani, P.S., Serumula, M.R., Musabayane, C., Transdermal delivery of insulin by amidated pectin hydrogel matrix patch in streptozotocin-induced diabetic rats: effects on some selected metabolic parameters. PLoSONE, 9 (7) (2014), e101461. https://doi.org/10.1371/journal.pone.0101461
  • Modulevsky, D.J., Lefebvre, C., Haase, K., Al-Rekabi, Z., Pelling AE apple derived cellulose scaffolds for 3d mammalian cell culture. PLoSONE, 9 (5) (2014), e97835. https://doi.org/10.1371/journal.pone.0097835
  • Zadegan, S., Hosainalipour, M., Rezaie, H., Ghassai, H., Shokrgozar, M.A., Synthesis and biocompatibility evaluation of cellulose/hydroxyapatitenano composite scaffold in 1-n-allyl-3-methylimidazolium chloride. Materials Science and Engineering: C, 31 (2011), 954–961. https://doi.org/10.1016/j.msec.2011.02.021
  • Plant-Based Biomaterials: Engineering the Future. The Biochemist Blog, 2018. https://thebiochemistblog.com/2018/03/07/plant-based-biomaterials-engineering-the-future/
  • Dolcimascolo, A., Calabrese, G., Conoci, S., Parenti, R., Biomaterial-supported tissue reconstruction or regeneration. In: Innovative biomaterials for tissue engineering, from the edited volume. InTechOpen: Rijeka, Croatia, 2019. https://doi.org/10.5772/intechopen.83839
  • Oughlis, S., Lessim, S., Changotade, S., Bollotte, F., Poirier, F., Helary, G., Lataillade, J.J., Migonney, V., Lutomski, D., Development of proteomic tools to study protein adsorption on a biomaterial titanium grafted with poly (sodium styrene sulfonate). Journal of Chromatography B, 879 (31) (2011), 3681–3687. https://doi.org/10.1016/j.jchromb.2011.10.006
  • Gilabert-Chirivella, E., Perez-Feito, R., Ribeiro, C., Ribeiro, S., Correia, D.M., González-Martín, M.L., Manero, J.M., Lanceros-Méndez, S., Ferrer, G.G., Gómez-Ribelles, J.L., Chitosan patterning on titanium implants. Progress in Organic Coatings, 111 (2017), 23-28. https://doi.org/10.1016/j.porgcoat.2017.04.027
  • Wu, C., Zhou, Y., Xu, M., Han, P., Chen, L., Chang, J., Coppercontaining mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials, 34 (2) (2013), 422–433. https://doi.org/10.1016/j.biomaterials.2012.09.066
There are 157 citations in total.

Details

Primary Language English
Subjects Plant Biotechnology
Journal Section Review Articles
Authors

Ahmet Aşkın Yilmaz 0000-0001-8523-8939

İlker Büyük 0000-0002-0843-8299

Publication Date June 20, 2025
Submission Date May 29, 2024
Acceptance Date August 29, 2024
Published in Issue Year 2025 Volume: 34 Issue: 1

Cite

Communications Faculty of Sciences University of Ankara Series C Biology licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License