Research Article
BibTex RIS Cite

Year 2025, Volume: 34 Issue: 2, 154 - 175
https://doi.org/10.53447/communc.1657858

Abstract

Project Number

AAY was awarded a PhD Scholarship from Council of Higher Education (YOK).

References

  • Hayat, I., Ahmad, A., Masud, T., Ahmed, A., Bashir, S., Nutritional and health perspectives of beans (Phaseolus vulgaris L.): an overview. Critical Reviews in Food Science and Nutrition, 54 (5) (2014), 580–92. https://doi.org/10.1080/10408398.2011.596639
  • Stagnari, F., Maggio, A., Galieni, A., Pisante, M., Multiple benefits of legumes for agriculture sustainability: an overview. Chemical and Biological Technologies in Agriculture, 4 (2) (2017). https://doi.org/10.1186/s40538-016-0085-1
  • Bhuyan, D.J., Basu, A. Utilization of bioactive compounds from agricultural and food production waste. In: Vuong, Q.V. Editor. Phenolic compounds potential health benefits and toxicity. CRC Press, Boca Raton, 2017, 27–59.
  • Carbas, B., Machado, N., Oppolzer, D., Ferreira, L., Queiroz, M., Brites, C., Rosa, E. A., Barros, A. I., Nutrients, antinutrients, phenolic composition, and antioxidant activity of common bean cultivars and their potential for food applications. Antioxidants (Basel), 9 (2) (2020), 186. https://doi.org/10.3390/antiox9020186
  • Lu, Q., Liu, H., Hong, Y., Liang, X., Li, S., Liu, H., Li, H., Wang, R., Deng, Q., Jiang, H., Varshney, R.K., Pandey, M.K and Chen, X., Genome-wide identification and expression of far1 gene family provide insight into pod development in peanut (Arachis hypogaea). Frontiers in Plant Science, 3 (13) (2022), 893278. https://doi.org/10.3389/fpls.2022.893278
  • Buyuk, I., Inal, B., Ilhan, E., Tanriseven, M., Aras, S., Erayman, M., Genome-wide identification of salinity responsive HSP70s in common bean. Molecular Biology Reports, 43 (11) (2016), 1251–1266. https://doi.org/10.1007/s1103 3-016-4057-0
  • Inal, B., Buyuk, I., Ilhan, E., Aras, S., Genome-wide analysis of Phaseolus vulgaris C2C2-YABBY transcription factors under salt stress condition. 3 Biotech, 7 (5) (2017), 302. https://doi.org/10.1007/s13205-017-0933-0
  • Pant, P., Iqbal, Z., Pandey, B.K., Sawant, S.V., Genome-wide comparative and evolutionary analysis of calmodulin-binding transcription activator (CAMTA) family in Gossypium species. Scientific Reports, 8 (2018), 5573. https://doi.org/10.1038/S4159 8-018-23846 -W
  • Buyuk, I., Ilhan, E., Sener, D., Ozsoy, A.T., Aras, S., Genome-wide identification of CAMTA gene family members in Phaseolus vulgaris L. and their expression profiling during salt stress. Molecular Biology Reports, 46 (3) (2019), 2721–2732. https://doi.org/10.1007/s11033-019-04716-8
  • Whitelam, G.C., Johnson, E., Peng, J., Carol, P., Anderson, M.L., Cowl, J.S., Harberd, N.P., Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light. Plant Cell, 5 (7) (1993), 757–768. https://doi.org/10.1562/0031-8655(2000)0710001PCPPII2.0.CO2
  • Casal, J.J., Phytochromes, cryptochromes, phototropin: photoreceptor interactions in plants. Photochemistry and Photobiology, 71 (1) (2000), 1–11. https://doi.org/10.1562/0031-8655(2000)071%3C0001:pcppii%3E2.0.co;2
  • Briggs, W. R., Olney, M. A., Photoreceptors in plant photomorphogenesis to date. Five phytochromes, two cryptochromes, one phototropin, and one superchrome. Plant Physiology, 125 (1) (2001), 85–88. https://doi.org/10.1104/pp.125.1.85
  • Wang, H., Deng, X. W., Arabidopsis FHY3 defines a key phytochrome A signaling component directly interacting with its homologous partner FAR1. The EMBO Journal, 21 (6) (2002), 1339–1349. https://doi.org/10.1093/emboj/21.6.1339
  • Lin, R., Ding, L., Casola, C., Ripoll, D.R., Feschotte, C., Wang, H., Transposase-derived transcription factors regulate light signaling in Arabidopsis. Science, 318 (5854) (2007), 1302–1305. https://doi.org/10.1126/science.1146281
  • Wang, H., Wang, H. Y., Multifaceted roles of FHY3 and FAR1 in light signaling and beyond. Trends in Plant Science, 20 (7) (2015), 453–461. https://doi.org/10.1016/j.tplants.2015. 04.003
  • Lin, R., Wang, H., Arabidopsis FHY3/FAR1 gene family and distinct roles of its members in light control of Arabidopsis development. Plant Physiology, 136 (4) (2004), 4010–4022. https://doi.org/10.1104/pp.104.052191
  • Ma, L., Li, G., Far1-Related Sequence (FRS) And Frs-Related Factor (FRF) family proteins in Arabidopsis growth and development. Frontiers in Plant Science, 9 (7) (2018), 692. https://doi.org/10.3389/fpls.2018.00692
  • Ouyang, X., Li, J., Li, G., Li, B., Chen, B., Shen, H., Huang, X., Mo, X., Wan, X., Lin, R., Li, S., Wang, H., Deng, X.W., Genome wide binding site analysis of FAR-RED elongated hypocotyl3 reveals its novel function in Arabidopsis development. Plant Cell, 23 (7) (2011), 2514–2535. https://doi.org/10.1105/tpc.111.085126
  • Wang, W., Tang, W., Ma, T., Niu, D., Jin, J. B., Wang, H., Lin, R., A pair of light signaling factors FHY3 and FAR1 regulates plant immunity by modulating chlorophyll biosynthesis. Journal of Integrative Plant Biology, 58 (1) (2016), 91–103. https://doi.org/10.1111/jipb.12369
  • Liu, Y., Wei, H. B., Ma, M. D., Li, Q. Q., Kong, D. X., Sun, J., Ma, X., Wang, B., Chen, C., Xie, Y., Wang, H., Arabidopsis FHY3 and FAR1 regulate the balance between growth and defense responses under shade conditions. Plant Cell, 31 (9) (2019), 2089–2106. https://doi.org/10.1105/tpc.18.00991
  • Xie, Y., Zhou, Q., Zhao, Y., Li, Q., Liu, Y., Ma, M., Wang, B., Shen, R., Zheng, Z., Wang, H., FHY3 and FAR1 integrate light signals with the miR156-SPL module-mediated aging pathway to regulate Arabidopsis flowering. Molecular Plant, 13 (3) (2020), 483–498. https://doi.org/10.1016/j.molp.2020.01.013
  • Takano, M., Kanegae, H., Shinomura, T., Miyao, A., Hirochika, H., Furuya, M., Isolation and characterization of rice phytochrome a mutants. Plant Cell, 13 (3) (2001), 521–534. https://doi.org/10.1105/tpc.13.3.521
  • Du, J., Zhang, L., Ge, X., Xiang, X., Cao, D., Yang, H., Hu, J., Genome wide identification and characterization of the FAR1/FHY3 family in Populus trichocarpa Torr. & Gray and expression analysis in light response. Forest 12 (10) (2021), 1385. https://doi.org/10.3390/f12101385
  • Huang, X., Ouyang, X., Yang, P., Lau, O. S., Li, G., Li, J., Chen, H., Deng, X.W., Arabidopsis FHY3 and HY5 positively mediate induction of COP1 transcription in response to photomorphogenic UV-B light. The Plant Cell, 24 (11) (2012), 4590–4606. https://doi.org/10.1105/tpc.112.103994
  • Letunic, I., Bork, P., 20 years of the SMART protein domain annotation resource. Nucleic Acids Research, 46 (2018), D493–D496. https://doi.org/10.1093/nar/gkx922
  • Lin, R., Teng, Y., Park, H. J., Ding, L., Black, C., Fang, P., Wang, H., Discrete and essential roles of the multiple domains of Arabidopsis FHY3 in mediating phytochrome A signal transduction. Plant Physiology, 148 (2) (2008), 981–992. https://doi.org/10.1104/pp.108.120436
  • Dai, J., Sun, J., Peng, W., Liao, W., Zhou, Y., Zhou, X.R., Qin, Y., Cheng, Y., Cao, S., FAR1/FHY3 transcription factors positively regulate the salt and temperature stress responses in Eucalyptus grandis. Frontiers in Plant Science, 13 (2022), 883654. https://doi.org/10.3389/fpls.2022.883654
  • Liu, Z., An, C., Zhao, Y., Xiao, Y., Bao, L., Gong, C., Gao, Y., Genome-wide identification and characterization of the CsFHY3/FAR1 gene family and expression analysis under biotic and abiotic stresses in Tea Plants (Camellia sinensis). Plants (Basel), 10 (3) (2021), 570. https://doi.org/10.3390/plants10030570
  • Yan, C., Li, C., Sun, Q., Zhang, H., Wang, J., Yuan, C., Zhao, C., Li, A., Wang, X., Cloning and function analysis of FAR1-5 transcription factor in peanut. Molecular Biology and Genetics, 49 (2020), 16–20. https://doi.org/10.2225/vol15-issue1-fulltext-6
  • He, X., He, Y., Dong, Y., Gao, Y., Sun, X., Chen, W., Xu, X., Su, C., Lv, Y., Ren, B., Yin, H., Zeng, J., Ma, W., Mu, P., Genome-wide analysis of FRF gene family and functional identification of HvFRF9 under drought stress in barley. Frontiers in Plant Science, 15 (2024), 1347842. https://doi.org/10.3389/fpls.2024.1347842
  • Goodstein, D.M., Shu, S.Q., Howson, R., Neupane, R., Hayes, R.D., Fazo, J., Mitros, T., Dirks, W., Hellsten, U., Putnam, N., Rokhsar, D. S., Phytozome: a comparative platform for green plant genomics. Nucleic Acids Research, 40 (2012), D1178–D1186. https://doi.org/10.1093/nar/gkr944
  • Han, Y., Cheng, H., Jiang, Y., Wang, X., Liu, X., Zhang, D., Wu, J., Liu, L., Yan, M., Zhou, D., Identification and characterization of the BnFAR1/FHY3 gene family and expression analysis under shading and low-temperature responses in Brassica napus L.. Agronomy, 14 (1) (2024), 202. https://doi.org/10.3390/agronomy14010202
  • Li, X., Li, Y., Qiao, Y., Lu, S., Yao, K., Wang, C., Liao, W., Genome-wide identification and expression analysis of FAR1/FHY3 gene family in cucumber (Cucumis sativus L.). Agronomy, 14 (1) (2024), 50. https://doi.org/10.3390/agronomy14010050
  • Nguyen, L. T., Schmidt, H.A., Von Haeseler, A., Minh, B.Q., IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32 (1) (2015), 268–274. https://doi.org/10.1093/molbev/msu300
  • Letunic, I., Bork, P., Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Research, 39 (2) (2011), W475–W478. https://doi.org/10.1093/nar/gkr201
  • Bailey, T. L., Johnson, J., Grant, C. E., Noble, W. S., The MEME Suite. Nucleic Acids Research, 43 (2015), W39–W49. https://doi.org/10.1093/nar/gkv416
  • Chen, C., Chen, H., Zhang, Y., Thomas, H.R., Frank, M.H., He, Y., Xia, R., TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 13 (8) (2020), 1194–1202. https://doi.org/10.1016/j.molp.2020.06.009
  • Kanehisa, M., Goto, S., Kawashima, S., Nakaya, A., The KEGG databases at GenomeNet. Nucleic Acids Research, 30 (1) (2002), 42–46. https://doi.org/10.1093/nar/30.1.42
  • Horton, P., Park, K.J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C.J., Nakai, K., WoLF PSORT: protein localization predictor, Nucleic Acids Research, 35 (2) (2007), W585–W587. https://doi.org/10.1093/nar/gkm259
  • Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., Rouze, P., Rombauts, S., PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30 (1) (2002), 325–327. https://doi.org/10.1093/nar/30.1.325
  • Berman, H.M., Westbrook, J., Feng Z., Gilliland G., Bhat T.N., Weissig H, Shindyalov, I.N., Bourne, P.E., The Protein Data Bank. Nucleic Acids Research, 28 (1) (2000), 235–242. https:// doi.org/10.1093/Nar/28.1.235
  • Kelley, L.A., Sternberg, M.J.E., Protein structure prediction on the web: a case study using the Phyre server. Nature Protocols, 4 (3) (2009), 363–371. https://doi.org /10.1038/nprot.2009.2
  • Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T., Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13 (11) (2003), 2498-2504. https://doi.org /10.1101/gr.1239303
  • Wang, Y., Tang, H., Debarry, J. D., Tan, X., Li, J., Wang, X., Lee, T.H., Jin, H., Marler, B., Guo, H., Kissinger, J. C., Paterson, A. H., MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research, 40 (7) (2012), e49. https://doi.org/10.1093/nar/gkr1293
  • Zhong, M. C., Jiang, X., D., Cui, W. H., Hu, J. Y., Expansion and expression diversity of FAR1/FRS-like genes provides insights into flowering time regulation in roses. Plant Diversity, 43 (2) (2021), 173–179. https://doi.org/10.1016/j.pld.2020.11.002
  • Lu, Q., Li, H., Hong, Y., Zhang, G., Wen, S., Li, X., Zhou, G., Li, S., Liu, H., Liu, H., Liu, Z., Varshney, R. K., Chen, X., Liang, X., Genome sequencing and analysis of the peanut B-genome progenitor (Arachis ipaensis). Frontiers in Plant Science, 9 (2018), 604. https://doi.org/10.3389/fpls.2018.00604
  • Tang, H., Jing, D., Liu, C., Xie, X., Zhang, L., Chen, X., Li, C., Genome-wide identification and expression analyses of the FAR1/FHY3 gene family provide insight into inflorescence development in Maize. Current Issues in Molecular Biology, 46 (1) (2024), 430-449. https://doi.org/10.3390/cimb46010027
  • Yamaguchi-Shinozaki, K., Shinozaki, K., Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends in Plant Science, 10 (2) (2005), 88–94. https://doi.org/10.1016/j.tplants.2004.12.012
  • Li, W.X., Oono, Y., Zhu, J., He, X.J., Wu, J.M., Iida, K., Lu, X.Y., Cui, X., Jin, H., Zhu, J.K., The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. The Plant Cell, 20 (2008), 2238–2251. https://doi.org/10.1105/tpc.108.059444
  • Sunkar, R., Zhu, J.K., Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. The Plant Cell, 16 (8) (2004), 2001–2019. https://doi.org/10.1105/tpc.104.022830
  • Li, H., Deng, Y., Wu, T., Subramanian, S., Yu, O., Misexpression of miR482, miR1512, and miR1515 increases soybean nodulation. Plant Physiology, 153 (4) (2010), 1759-1770. https://doi.org/10.1104/pp.110.156950
  • Arenas-Huertero, C., Perez, B., Rabanal, F., Blanco-Melo, D., De la Rosa, C., Estrada-Navarrete, G., Sanchez, F., Covarrubias, A.A., Reyes, J.L., Conserved and novel miRNAs in the legume Phaseolus vulgaris in response to stress. Plant Molecular Biology, 70 (4) (2009), 385–401. https://doi.org/10.1007/s1110 3-009-9480-3
  • Fu, Y., Tang, J., Yao, G.F., Huang, Z.Q., Li, Y.H., Han, Z., Chen, X.Y., Hu, L.Y., Hu, K.D., Zhang, H., Central role of adenosine 5'-phosphosulfate reductase in the control of plant hydrogen sulfide metabolism. Frontiers in Plant Science, 9 (2018), 1404. https://doi.org/10.3389/fpls.2018.01404
  • Di Laurenzio, L., Wysocka-Diller, J., Malamy, J.E., Pysh, L., Helariutta, Y., Freshour, G., Hahn, M.G., Feldmann, K.A., Benfey, P.N., The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell, 86 (3) (1996), 423-33. https://doi.org/10.1016/s0092-8674(00)80115-4
  • Li, S., The Arabidopsis thaliana TCP transcription factors: A broadening horizon beyond development. Plant Signaling & Behavior, 10 (7) (2015), e1044192. https://doi.org/10.1080/15592324.2015.1044192
  • Sasaki, K., Imai, R., Pleiotropic roles of cold shock domain proteins in plants. Frontiers in Plant Science, 19 (2) (2012), 116. https://doi.org/10.3389/fpls.2011.00116
  • Ritter, A., Inigo, S., Fernandez-Calvo, P., Heyndrickx, K.S., Dhondt, S., Shi, H., De Milde, L., Vanden Bossche, R., De Clercq, R., Eeckhout, D., The transcriptional repressor complex FRS7-FRS12 regulates flowering time and growth in Arabidopsis. Nature Communications, 8 (2017), 15235. https://doi.org/10.1038/ncomms15235
  • Yuan, N., Wang, T., Liu, Y., Yang, Y., Guo, Y., Liu, J., Baolong, Z., Jianchang, D., Genome-wide analysis of the FAR1/FHY3 gene family in cotton. Cotton Science, 30 (1) (2018), 1–11. https://doi.org/10.11963/1002-7807.yndjc.20171214
  • Hiz, M.C., Canher, B., Niron, H., Turet, M., Transcriptome analysis of salt tolerant common bean (Phaseolus vulgaris L.) under saline conditions. PLoS ONE, 9 (3) (2014), e92598. https://doi.org/10.1371/journal.pone.0092598
  • Mansouri, M., Naghavi, M. R., Alizadeh, H., Mohammadi-Nejad, G., Mousavi, S. A., Salekdeh, G. H., Tada, Y., Transcriptomic analysis of Aegilops tauschii during long-term salinity stress. Functional & Integrative Genomics, 19 (1) (2019), 13–28. https://doi.org/10.1007/s10142-018-0623-y
  • Allen, T., Koustenis, A., Theodorou, G., Somers, D. E., Kay, S. A., Whitelam, G. C., Devlin, P. F., Arabidopsis FHY3 specifically gates phytochrome signaling to the circadian clock. The Plant Cell, 18 (10) (2006), 2506–2516. https://doi.org/10.1105/tpc.105.037358
  • Stirnberg, P., Zhao, S., Williamson, L., Ward, S., and Leyser, O., FHY3 promotes shoot branching and stress tolerance in Arabidopsis in an AXR1-dependent manner. The Plant Journal, 71 (6) (2012), 907–920. https://doi.org/10.1111/j.1365-313X.2012.05038.x
  • Ma, L., Tian, T., Lin, R., Deng, X.W., Wang, H., Li, G., Arabidopsis FHY3 and FAR1 regulate light-induced myo-inositol biosynthesis and oxidative stress responses by transcriptional activation of MIPS1. Molecular Plant, 9 (4) (2016), 541–557. https://doi.org/10.1016/j.molp.2015.12.013

Integrative multi-omics analysis of the FAR1 gene family in Phaseolus vulgaris

Year 2025, Volume: 34 Issue: 2, 154 - 175
https://doi.org/10.53447/communc.1657858

Abstract

An essential function of the Far-red impaired response 1 (FAR1) gene family is to regulate the growth and developmental phases of plants. The FAR1 gene family has not yet been examined in Phaseolus vulgaris (common bean), despite the fact that it has been examined in several plant species utilizing bioinformatics technologies. This research was the first that the FAR1 gene family was identified and characterized throughout the whole genome of P. vulgaris. An in-silico approach was employed, utilizing various bioinformatics tools to explore the molecular and physicochemical characteristics of FAR1 genes. Consequently, 26 FAR1 genes were discovered and categorized using phylogenetic analysis into three categories. The analysis of synonymous (Ks) and non-synonymous (Ka) substitution rates, phylogenetic relationships, and synteny patterns provided important insights into the polyploidization, evolution, and domestication of FAR1 genes across P. vulgaris, Arabidopsis thaliana, and Glycine max. Transcriptome analysis demonstrated a tissue-specific expression pattern of FAR1 genes in P. vulgaris. Additionally, in reaction to salt and drought stress in P. vulgaris leaves, several FAR1 genes were discovered to be either activated or downregulated. Overall, the findings of this study offer significant perspectives for further investigations into the molecular processes that underlie the evolution and functional roles of FAR1 genes in P. vulgaris.

Ethical Statement

This study was conducted in accordance with ethical guidelines for bioinformatics research. No human or animal subjects were involved, and all data used were obtained from publicly available databases, with proper permissions and in compliance with relevant privacy and data protection laws.

Supporting Institution

-

Project Number

AAY was awarded a PhD Scholarship from Council of Higher Education (YOK).

Thanks

-

References

  • Hayat, I., Ahmad, A., Masud, T., Ahmed, A., Bashir, S., Nutritional and health perspectives of beans (Phaseolus vulgaris L.): an overview. Critical Reviews in Food Science and Nutrition, 54 (5) (2014), 580–92. https://doi.org/10.1080/10408398.2011.596639
  • Stagnari, F., Maggio, A., Galieni, A., Pisante, M., Multiple benefits of legumes for agriculture sustainability: an overview. Chemical and Biological Technologies in Agriculture, 4 (2) (2017). https://doi.org/10.1186/s40538-016-0085-1
  • Bhuyan, D.J., Basu, A. Utilization of bioactive compounds from agricultural and food production waste. In: Vuong, Q.V. Editor. Phenolic compounds potential health benefits and toxicity. CRC Press, Boca Raton, 2017, 27–59.
  • Carbas, B., Machado, N., Oppolzer, D., Ferreira, L., Queiroz, M., Brites, C., Rosa, E. A., Barros, A. I., Nutrients, antinutrients, phenolic composition, and antioxidant activity of common bean cultivars and their potential for food applications. Antioxidants (Basel), 9 (2) (2020), 186. https://doi.org/10.3390/antiox9020186
  • Lu, Q., Liu, H., Hong, Y., Liang, X., Li, S., Liu, H., Li, H., Wang, R., Deng, Q., Jiang, H., Varshney, R.K., Pandey, M.K and Chen, X., Genome-wide identification and expression of far1 gene family provide insight into pod development in peanut (Arachis hypogaea). Frontiers in Plant Science, 3 (13) (2022), 893278. https://doi.org/10.3389/fpls.2022.893278
  • Buyuk, I., Inal, B., Ilhan, E., Tanriseven, M., Aras, S., Erayman, M., Genome-wide identification of salinity responsive HSP70s in common bean. Molecular Biology Reports, 43 (11) (2016), 1251–1266. https://doi.org/10.1007/s1103 3-016-4057-0
  • Inal, B., Buyuk, I., Ilhan, E., Aras, S., Genome-wide analysis of Phaseolus vulgaris C2C2-YABBY transcription factors under salt stress condition. 3 Biotech, 7 (5) (2017), 302. https://doi.org/10.1007/s13205-017-0933-0
  • Pant, P., Iqbal, Z., Pandey, B.K., Sawant, S.V., Genome-wide comparative and evolutionary analysis of calmodulin-binding transcription activator (CAMTA) family in Gossypium species. Scientific Reports, 8 (2018), 5573. https://doi.org/10.1038/S4159 8-018-23846 -W
  • Buyuk, I., Ilhan, E., Sener, D., Ozsoy, A.T., Aras, S., Genome-wide identification of CAMTA gene family members in Phaseolus vulgaris L. and their expression profiling during salt stress. Molecular Biology Reports, 46 (3) (2019), 2721–2732. https://doi.org/10.1007/s11033-019-04716-8
  • Whitelam, G.C., Johnson, E., Peng, J., Carol, P., Anderson, M.L., Cowl, J.S., Harberd, N.P., Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light. Plant Cell, 5 (7) (1993), 757–768. https://doi.org/10.1562/0031-8655(2000)0710001PCPPII2.0.CO2
  • Casal, J.J., Phytochromes, cryptochromes, phototropin: photoreceptor interactions in plants. Photochemistry and Photobiology, 71 (1) (2000), 1–11. https://doi.org/10.1562/0031-8655(2000)071%3C0001:pcppii%3E2.0.co;2
  • Briggs, W. R., Olney, M. A., Photoreceptors in plant photomorphogenesis to date. Five phytochromes, two cryptochromes, one phototropin, and one superchrome. Plant Physiology, 125 (1) (2001), 85–88. https://doi.org/10.1104/pp.125.1.85
  • Wang, H., Deng, X. W., Arabidopsis FHY3 defines a key phytochrome A signaling component directly interacting with its homologous partner FAR1. The EMBO Journal, 21 (6) (2002), 1339–1349. https://doi.org/10.1093/emboj/21.6.1339
  • Lin, R., Ding, L., Casola, C., Ripoll, D.R., Feschotte, C., Wang, H., Transposase-derived transcription factors regulate light signaling in Arabidopsis. Science, 318 (5854) (2007), 1302–1305. https://doi.org/10.1126/science.1146281
  • Wang, H., Wang, H. Y., Multifaceted roles of FHY3 and FAR1 in light signaling and beyond. Trends in Plant Science, 20 (7) (2015), 453–461. https://doi.org/10.1016/j.tplants.2015. 04.003
  • Lin, R., Wang, H., Arabidopsis FHY3/FAR1 gene family and distinct roles of its members in light control of Arabidopsis development. Plant Physiology, 136 (4) (2004), 4010–4022. https://doi.org/10.1104/pp.104.052191
  • Ma, L., Li, G., Far1-Related Sequence (FRS) And Frs-Related Factor (FRF) family proteins in Arabidopsis growth and development. Frontiers in Plant Science, 9 (7) (2018), 692. https://doi.org/10.3389/fpls.2018.00692
  • Ouyang, X., Li, J., Li, G., Li, B., Chen, B., Shen, H., Huang, X., Mo, X., Wan, X., Lin, R., Li, S., Wang, H., Deng, X.W., Genome wide binding site analysis of FAR-RED elongated hypocotyl3 reveals its novel function in Arabidopsis development. Plant Cell, 23 (7) (2011), 2514–2535. https://doi.org/10.1105/tpc.111.085126
  • Wang, W., Tang, W., Ma, T., Niu, D., Jin, J. B., Wang, H., Lin, R., A pair of light signaling factors FHY3 and FAR1 regulates plant immunity by modulating chlorophyll biosynthesis. Journal of Integrative Plant Biology, 58 (1) (2016), 91–103. https://doi.org/10.1111/jipb.12369
  • Liu, Y., Wei, H. B., Ma, M. D., Li, Q. Q., Kong, D. X., Sun, J., Ma, X., Wang, B., Chen, C., Xie, Y., Wang, H., Arabidopsis FHY3 and FAR1 regulate the balance between growth and defense responses under shade conditions. Plant Cell, 31 (9) (2019), 2089–2106. https://doi.org/10.1105/tpc.18.00991
  • Xie, Y., Zhou, Q., Zhao, Y., Li, Q., Liu, Y., Ma, M., Wang, B., Shen, R., Zheng, Z., Wang, H., FHY3 and FAR1 integrate light signals with the miR156-SPL module-mediated aging pathway to regulate Arabidopsis flowering. Molecular Plant, 13 (3) (2020), 483–498. https://doi.org/10.1016/j.molp.2020.01.013
  • Takano, M., Kanegae, H., Shinomura, T., Miyao, A., Hirochika, H., Furuya, M., Isolation and characterization of rice phytochrome a mutants. Plant Cell, 13 (3) (2001), 521–534. https://doi.org/10.1105/tpc.13.3.521
  • Du, J., Zhang, L., Ge, X., Xiang, X., Cao, D., Yang, H., Hu, J., Genome wide identification and characterization of the FAR1/FHY3 family in Populus trichocarpa Torr. & Gray and expression analysis in light response. Forest 12 (10) (2021), 1385. https://doi.org/10.3390/f12101385
  • Huang, X., Ouyang, X., Yang, P., Lau, O. S., Li, G., Li, J., Chen, H., Deng, X.W., Arabidopsis FHY3 and HY5 positively mediate induction of COP1 transcription in response to photomorphogenic UV-B light. The Plant Cell, 24 (11) (2012), 4590–4606. https://doi.org/10.1105/tpc.112.103994
  • Letunic, I., Bork, P., 20 years of the SMART protein domain annotation resource. Nucleic Acids Research, 46 (2018), D493–D496. https://doi.org/10.1093/nar/gkx922
  • Lin, R., Teng, Y., Park, H. J., Ding, L., Black, C., Fang, P., Wang, H., Discrete and essential roles of the multiple domains of Arabidopsis FHY3 in mediating phytochrome A signal transduction. Plant Physiology, 148 (2) (2008), 981–992. https://doi.org/10.1104/pp.108.120436
  • Dai, J., Sun, J., Peng, W., Liao, W., Zhou, Y., Zhou, X.R., Qin, Y., Cheng, Y., Cao, S., FAR1/FHY3 transcription factors positively regulate the salt and temperature stress responses in Eucalyptus grandis. Frontiers in Plant Science, 13 (2022), 883654. https://doi.org/10.3389/fpls.2022.883654
  • Liu, Z., An, C., Zhao, Y., Xiao, Y., Bao, L., Gong, C., Gao, Y., Genome-wide identification and characterization of the CsFHY3/FAR1 gene family and expression analysis under biotic and abiotic stresses in Tea Plants (Camellia sinensis). Plants (Basel), 10 (3) (2021), 570. https://doi.org/10.3390/plants10030570
  • Yan, C., Li, C., Sun, Q., Zhang, H., Wang, J., Yuan, C., Zhao, C., Li, A., Wang, X., Cloning and function analysis of FAR1-5 transcription factor in peanut. Molecular Biology and Genetics, 49 (2020), 16–20. https://doi.org/10.2225/vol15-issue1-fulltext-6
  • He, X., He, Y., Dong, Y., Gao, Y., Sun, X., Chen, W., Xu, X., Su, C., Lv, Y., Ren, B., Yin, H., Zeng, J., Ma, W., Mu, P., Genome-wide analysis of FRF gene family and functional identification of HvFRF9 under drought stress in barley. Frontiers in Plant Science, 15 (2024), 1347842. https://doi.org/10.3389/fpls.2024.1347842
  • Goodstein, D.M., Shu, S.Q., Howson, R., Neupane, R., Hayes, R.D., Fazo, J., Mitros, T., Dirks, W., Hellsten, U., Putnam, N., Rokhsar, D. S., Phytozome: a comparative platform for green plant genomics. Nucleic Acids Research, 40 (2012), D1178–D1186. https://doi.org/10.1093/nar/gkr944
  • Han, Y., Cheng, H., Jiang, Y., Wang, X., Liu, X., Zhang, D., Wu, J., Liu, L., Yan, M., Zhou, D., Identification and characterization of the BnFAR1/FHY3 gene family and expression analysis under shading and low-temperature responses in Brassica napus L.. Agronomy, 14 (1) (2024), 202. https://doi.org/10.3390/agronomy14010202
  • Li, X., Li, Y., Qiao, Y., Lu, S., Yao, K., Wang, C., Liao, W., Genome-wide identification and expression analysis of FAR1/FHY3 gene family in cucumber (Cucumis sativus L.). Agronomy, 14 (1) (2024), 50. https://doi.org/10.3390/agronomy14010050
  • Nguyen, L. T., Schmidt, H.A., Von Haeseler, A., Minh, B.Q., IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32 (1) (2015), 268–274. https://doi.org/10.1093/molbev/msu300
  • Letunic, I., Bork, P., Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Research, 39 (2) (2011), W475–W478. https://doi.org/10.1093/nar/gkr201
  • Bailey, T. L., Johnson, J., Grant, C. E., Noble, W. S., The MEME Suite. Nucleic Acids Research, 43 (2015), W39–W49. https://doi.org/10.1093/nar/gkv416
  • Chen, C., Chen, H., Zhang, Y., Thomas, H.R., Frank, M.H., He, Y., Xia, R., TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 13 (8) (2020), 1194–1202. https://doi.org/10.1016/j.molp.2020.06.009
  • Kanehisa, M., Goto, S., Kawashima, S., Nakaya, A., The KEGG databases at GenomeNet. Nucleic Acids Research, 30 (1) (2002), 42–46. https://doi.org/10.1093/nar/30.1.42
  • Horton, P., Park, K.J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C.J., Nakai, K., WoLF PSORT: protein localization predictor, Nucleic Acids Research, 35 (2) (2007), W585–W587. https://doi.org/10.1093/nar/gkm259
  • Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., Rouze, P., Rombauts, S., PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30 (1) (2002), 325–327. https://doi.org/10.1093/nar/30.1.325
  • Berman, H.M., Westbrook, J., Feng Z., Gilliland G., Bhat T.N., Weissig H, Shindyalov, I.N., Bourne, P.E., The Protein Data Bank. Nucleic Acids Research, 28 (1) (2000), 235–242. https:// doi.org/10.1093/Nar/28.1.235
  • Kelley, L.A., Sternberg, M.J.E., Protein structure prediction on the web: a case study using the Phyre server. Nature Protocols, 4 (3) (2009), 363–371. https://doi.org /10.1038/nprot.2009.2
  • Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T., Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13 (11) (2003), 2498-2504. https://doi.org /10.1101/gr.1239303
  • Wang, Y., Tang, H., Debarry, J. D., Tan, X., Li, J., Wang, X., Lee, T.H., Jin, H., Marler, B., Guo, H., Kissinger, J. C., Paterson, A. H., MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research, 40 (7) (2012), e49. https://doi.org/10.1093/nar/gkr1293
  • Zhong, M. C., Jiang, X., D., Cui, W. H., Hu, J. Y., Expansion and expression diversity of FAR1/FRS-like genes provides insights into flowering time regulation in roses. Plant Diversity, 43 (2) (2021), 173–179. https://doi.org/10.1016/j.pld.2020.11.002
  • Lu, Q., Li, H., Hong, Y., Zhang, G., Wen, S., Li, X., Zhou, G., Li, S., Liu, H., Liu, H., Liu, Z., Varshney, R. K., Chen, X., Liang, X., Genome sequencing and analysis of the peanut B-genome progenitor (Arachis ipaensis). Frontiers in Plant Science, 9 (2018), 604. https://doi.org/10.3389/fpls.2018.00604
  • Tang, H., Jing, D., Liu, C., Xie, X., Zhang, L., Chen, X., Li, C., Genome-wide identification and expression analyses of the FAR1/FHY3 gene family provide insight into inflorescence development in Maize. Current Issues in Molecular Biology, 46 (1) (2024), 430-449. https://doi.org/10.3390/cimb46010027
  • Yamaguchi-Shinozaki, K., Shinozaki, K., Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends in Plant Science, 10 (2) (2005), 88–94. https://doi.org/10.1016/j.tplants.2004.12.012
  • Li, W.X., Oono, Y., Zhu, J., He, X.J., Wu, J.M., Iida, K., Lu, X.Y., Cui, X., Jin, H., Zhu, J.K., The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. The Plant Cell, 20 (2008), 2238–2251. https://doi.org/10.1105/tpc.108.059444
  • Sunkar, R., Zhu, J.K., Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. The Plant Cell, 16 (8) (2004), 2001–2019. https://doi.org/10.1105/tpc.104.022830
  • Li, H., Deng, Y., Wu, T., Subramanian, S., Yu, O., Misexpression of miR482, miR1512, and miR1515 increases soybean nodulation. Plant Physiology, 153 (4) (2010), 1759-1770. https://doi.org/10.1104/pp.110.156950
  • Arenas-Huertero, C., Perez, B., Rabanal, F., Blanco-Melo, D., De la Rosa, C., Estrada-Navarrete, G., Sanchez, F., Covarrubias, A.A., Reyes, J.L., Conserved and novel miRNAs in the legume Phaseolus vulgaris in response to stress. Plant Molecular Biology, 70 (4) (2009), 385–401. https://doi.org/10.1007/s1110 3-009-9480-3
  • Fu, Y., Tang, J., Yao, G.F., Huang, Z.Q., Li, Y.H., Han, Z., Chen, X.Y., Hu, L.Y., Hu, K.D., Zhang, H., Central role of adenosine 5'-phosphosulfate reductase in the control of plant hydrogen sulfide metabolism. Frontiers in Plant Science, 9 (2018), 1404. https://doi.org/10.3389/fpls.2018.01404
  • Di Laurenzio, L., Wysocka-Diller, J., Malamy, J.E., Pysh, L., Helariutta, Y., Freshour, G., Hahn, M.G., Feldmann, K.A., Benfey, P.N., The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell, 86 (3) (1996), 423-33. https://doi.org/10.1016/s0092-8674(00)80115-4
  • Li, S., The Arabidopsis thaliana TCP transcription factors: A broadening horizon beyond development. Plant Signaling & Behavior, 10 (7) (2015), e1044192. https://doi.org/10.1080/15592324.2015.1044192
  • Sasaki, K., Imai, R., Pleiotropic roles of cold shock domain proteins in plants. Frontiers in Plant Science, 19 (2) (2012), 116. https://doi.org/10.3389/fpls.2011.00116
  • Ritter, A., Inigo, S., Fernandez-Calvo, P., Heyndrickx, K.S., Dhondt, S., Shi, H., De Milde, L., Vanden Bossche, R., De Clercq, R., Eeckhout, D., The transcriptional repressor complex FRS7-FRS12 regulates flowering time and growth in Arabidopsis. Nature Communications, 8 (2017), 15235. https://doi.org/10.1038/ncomms15235
  • Yuan, N., Wang, T., Liu, Y., Yang, Y., Guo, Y., Liu, J., Baolong, Z., Jianchang, D., Genome-wide analysis of the FAR1/FHY3 gene family in cotton. Cotton Science, 30 (1) (2018), 1–11. https://doi.org/10.11963/1002-7807.yndjc.20171214
  • Hiz, M.C., Canher, B., Niron, H., Turet, M., Transcriptome analysis of salt tolerant common bean (Phaseolus vulgaris L.) under saline conditions. PLoS ONE, 9 (3) (2014), e92598. https://doi.org/10.1371/journal.pone.0092598
  • Mansouri, M., Naghavi, M. R., Alizadeh, H., Mohammadi-Nejad, G., Mousavi, S. A., Salekdeh, G. H., Tada, Y., Transcriptomic analysis of Aegilops tauschii during long-term salinity stress. Functional & Integrative Genomics, 19 (1) (2019), 13–28. https://doi.org/10.1007/s10142-018-0623-y
  • Allen, T., Koustenis, A., Theodorou, G., Somers, D. E., Kay, S. A., Whitelam, G. C., Devlin, P. F., Arabidopsis FHY3 specifically gates phytochrome signaling to the circadian clock. The Plant Cell, 18 (10) (2006), 2506–2516. https://doi.org/10.1105/tpc.105.037358
  • Stirnberg, P., Zhao, S., Williamson, L., Ward, S., and Leyser, O., FHY3 promotes shoot branching and stress tolerance in Arabidopsis in an AXR1-dependent manner. The Plant Journal, 71 (6) (2012), 907–920. https://doi.org/10.1111/j.1365-313X.2012.05038.x
  • Ma, L., Tian, T., Lin, R., Deng, X.W., Wang, H., Li, G., Arabidopsis FHY3 and FAR1 regulate light-induced myo-inositol biosynthesis and oxidative stress responses by transcriptional activation of MIPS1. Molecular Plant, 9 (4) (2016), 541–557. https://doi.org/10.1016/j.molp.2015.12.013
There are 63 citations in total.

Details

Primary Language English
Subjects Genomics and Transcriptomics, Proteomics and Metabolomics
Journal Section Research Articles
Authors

Ahmet Aşkın Yilmaz 0000-0001-8523-8939

Serdar Coşkun 0000-0002-6401-7552

Sümer Aras 0000-0002-6597-1508

İlker Büyük 0000-0002-0843-8299

Project Number AAY was awarded a PhD Scholarship from Council of Higher Education (YOK).
Publication Date November 14, 2025
Submission Date March 14, 2025
Acceptance Date June 11, 2025
Published in Issue Year 2025 Volume: 34 Issue: 2

Cite

Communications Faculty of Sciences University of Ankara Series C Biology licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License