Araştırma Makalesi
BibTex RIS Kaynak Göster

CdO–WO3–TeO2 Camlarının 0.015–10 MeV için Gama Radyasyonu Zırhlama Davranışlarının Araştırılması

Yıl 2018, Cilt: 39 Sayı: 4, 983 - 990, 24.12.2018
https://doi.org/10.17776/csj.451770

Öz

Bu çalışmada, CdO–WO3–TeO2 üç sistemli
camların gama radyasyonu zırhlama özellikleri WinXCom program kullanılarak hesaplanmıştır. 0.015–10 MeV’lik geniş bir
foton enerji aralığı için kütle zayıflatma katsayısı (
), yarı-kalınlık değeri (HVL), etkin atom
numarası (Zeff) ve elektron yoğunluğu (Neff) değerleri
tahmin edilmiştir. İncelenen cam sistemlerini radyasyon zırhlaması açısından
onaylamak için araştırmada elde edilen sonuçlar, bazı standart beton ve farklı
cam örneklerinin HVL değerleri karşılaştırılmıştır. Mevcut camların içinde G6
örneği gama radyasyonuna karşı en iyi zırhlama yeteneğine sahiptir.

Kaynakça

  • [1]. M. Jalali, A. Mohammadi, Gamma ray attenuation coefficient measurement for neutron-absorbent materials, Radiat. Phys. Chem. 77 (2008) 523–527.
  • [2]. N. Chanthima, J. Kaewkhao, Investigation on radiation shielding parameters of bismuth borosilicate glass from 1 keV to 100 GeV, Ann. Nucl. Energy, 55 (2013) 23-28.
  • [3]. C. Eke, O. Agar, C. Segebade, I. Boztosun, Attenuation properties of radiation shielding materials such as granite and marble against γ-ray energies between 80 and 1350 keV, Radiochim. Acta, 105 (10) (2017) 851.
  • [4]. J. Kaewkhao, Interaction of 662 keV gamma-rays with bismuth-based glass matrices, J. Korean Phys. Soc. 59(2) (2011) 661–665.
  • [5]. S.R. Manohara, S.M. Hanagodimath, L. Gerward, K.C. Mittal, Exposure buildup factors for heavy metal oxide glass: a radiation shield, J. Korean Phys. Soc. 59(2) (2011) 2039–2042.
  • [6]. M.I. Sayyed, G. Lakshminarayana, Structural, thermal, optical features and shielding parameters investigations of optical glasses for gamma radiation shielding and defense applications, J. Non-Cryst. Solids, 487 (2018) 53–59.
  • [7]. R. El-Mallawany, M.I. Sayyed, Comparative shielding properties of some tellurite glasses: Part 1, Physica B, 539 (2018) 133–140
  • [8]. K. Singh, H. Singh, V. Sharma, R. Nathuram, A. Khanna, R. Kumar, S.S. Bhatti, H.S. Sahota, Gamma ray attenuation coefficients in bismuth borate glasses, Nucl. Instrum. Methods Phys. Res. Sect. B, 194 (2002) 1–6.
  • [9]. H. Singh, K. Singh, L. Gerward, K. Singh, H.S. Sahota, R. Nathuram, ZnO–PbO–B2O3 glasses as gamma-ray shielding materials, Nucl. Instrum. Methods B, 207 (2003) 257–262.
  • [10]. K. Singh, H. Singh, G. Sharma, L. Gerward, A. Khanna, R. Kumar, R. Nathuram, H.S. Sahota, Gamma-ray shielding properties of CaO-SrO-B2O3 glasses, Radiat. Phys. Chem. 72 (2005) 225–228.
  • [11]. P. Kaur, D. Singh, T. Singh, Heavy metal oxide glasses as gamma rays shielding material, Nucl. Eng. Design, 307 (2016) 364–376.
  • [12]. S. Kaewjang, U. Maghanemi, S. Kothan, H.J. Kim, P. Limkitjaroenporn, J. Kaewkhao, New gadolinium based glasses for gamma-rays shielding materials, Nucl. Eng. Design, 280 (2014) 21–26.
  • [13]. R. Laopaiboon, J. Laopaiboon, S. Pencharee, S. Nontachat, C. Bootjomchai, The effects of gamma irradiation on the elastic properties of soda lime glass doped with cerium oxide, J. Alloys Compd. 666 (2016) 292–300.
  • [14]. J. Kaewkhao, P. Limsuwan, Mass attenuation coefficients and effective atomic numbers in phosphate glass containing Bi2O3, PbO and BaO at 662 keV, Nucl. Instrum. Methods Phys. Res. Sect. A, 619(1–3) (2010) 295–297.
  • [15]. D.K. Gaikwad, M.I. Sayyed, Shamsan S. Obaid, Shams A.M. Issa, P.P. Pawar, Gamma ray shielding properties of TeO2-ZnF2-As2O3-Sm2O3 glasses, J. Alloys Compd. 765 (2018) 451–458
  • [16]. M.I. Sayyed, Half value layer, mean free path and exposure buildup factor for tellurite glasses with different oxide compositions, J. Alloys Compd. 695 (2017) 3191–3197.
  • [17]. M.I. Sayyed, Investigations of gamma ray and fast neutron shielding properties of tellurite glasses with different oxide compositions, Can. J. Phys. 94(11) (2016) 1133–1137.
  • [18]. M.I. Sayyed, Bismuth modified shielding properties of zinc boro-tellurite glasses, J. Alloys Compd. 688 (2016) 111–117.
  • [19]. M.I. Sayyed, R. El-Mallawany, Shielding properties of (100-x) TeO2–(x) MoO3 glasses, Mater. Chem. Phys. 201 (2017) 50–56.
  • [20]. A. Kumar, M.I. Sayyed, M. Dong, X. Xue, Effect of PbO on the shielding behavior of ZnO–P2O5 glass system using Monte Carlo simulation, J. Non-Cryst. Solids, 481 (2018) 604–607.
  • [21]. H.O. Tekin, M.I. Sayyed, E.E. Altunsoy, T. Manici, Shielding properties and effects of WO3 and PbO on mass attenuation coefficients by using MCNPX code, Dig. J. Nanomater. Biostruct., 12(3) (2017) 861–867.
  • [22]. H.O. Tekin, M.I. Sayyed, T. Manici, E.E. Altunsoy, Photon shielding characterizations of bismuth modified borate–silicate–tellurite glasses using MCNPX Monte Carlo code, Mater. Chem. Phys. 211 (2018) 9–16.
  • [23]. S.A. Issa, Y.B. Saddeek, H.O. Tekin, M. I. Sayyed, Investigations of radiation shielding and elastic properties of PbO–SiO2–B2O3–Na2O glasses using Monte Carlo method, Curr. Appl. Phys. (2018) DOI:10.1016/j.cap.2018.02.018
  • [24]. M.I. Sayyed, S.A. Issa, M. Büyükyıldız, M. Dong, Determination of nuclear radiation shielding properties of some tellurite glasses using MCNP5 code, Radiat. Phys. Chem. 150 (2018) 1–8.
  • [25]. R. El-Mallawany, M.I. Sayyed, M.G. Dong, Y.S. Rammah, Simulation of radiation shielding properties of glasses contain PbO, Radiat. Phys. Chem. 151 (2018) 239–252
  • [26]. R.A.H. El-Mallawany, Tellurite glasses handbook. Boca Raton/London/New York/Washington, DC: CRC Press; 2002.
  • [27]. M.L. Öveçoğlu, G. Özen, S. Cenk, Microstructural characterization and crystallization behaviour of (1− x) TeO2–xWO3 (x= 0.15, 0.25, 0.3 mol) glasses, J. Eur. Ceram. Soc. 26(7) (2006) 1149–1158.
  • [28]. A.E. Ersundu, G. Karaduman, M. Çelikbilek, N. Solak, S. Aydın, Effect of rare-earth dopants on the thermal behavior of tungsten–tellurite glasses, J. Alloys Compd. 508(2) (2010) 266–272.
  • [29]. A.E. Ersundu, G. Karaduman, M. Çelikbilek, N. Solak, S. Aydin, Stability of the δ-TeO2 phase in the binary and ternary TeO2 glasses, J. Eur. Ceram. Soc. 30(15) (2010) 3087–3092.
  • [30]. S. Manning, H. Ebendorff-Heidepriem, T.M. Monro, Ternary tellurite glasses for the fabrication of nonlinear optical fibres, Opt. Mater. Express, 2(2) (2012) 140–152. [31]. V.V. Safonov, V.N. Tsygankov, Electrical properties of glasses in the systems BaO (Bi2O3, CdO, PbO)–TeO2–WO3 and CdO–PbO–TeO2, Inorganic Materials, 32 (1996) 984–7.
  • [32]. A.E. Ersundu, M. Çelikbilek, N. Solak, S. Aydin, Glass formation area and characterization studies in the CdO–WO3–TeO2 ternary system, J. Eur. Ceram. Soc. 31(15) (2011) 2775–2781.
  • [33]. F. Akman, R. Durak, M.F. Turhan, M.R. Kaçal, Studies on effective atomic numbers, electron densities from mass attenuation coefficients near the K edge in some samarium compounds, App. Rad. Iso. 101 (2015) 107–113.
  • [34]. L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, WinXCom-a program for calculating X-ray attenuation coefficients, Radiat. Phys. Chem. 71 (2004) 653–654.
  • [35]. D.C. Wang, L.A. Ping, H. Yang, Measurement of the mass attenuation coefficients for SiH4 and Si, Nucl. Instrum. Methods Phys. Res., Sect. B, 95 (1995) 161–165.
  • [36]. T. Singh, U. Kaur, P.S. Singh, Photon energy absorption parameters for some polymers, Ann. Nucl. Energy, 37(3) (2010) 422–427.
  • [37]. M.I. Sayyed, Investigation of shielding parameters for smart polymers, Chin. J. Phys. 54(3) (2016) 408-415.
  • [38]. P. Pawar, K.G. Bichile, Effective atomic numbers and electron densities of amino acids containing H, C, N and O, Arch. Phys. Res. 2(4) (2011) 94–103.
  • [39]. E.S.A. Waly, M.A. Fusco, M.A. Bourham, Gamma-ray mass attenuation coefficient and half value layer factor of some oxide glass shielding materials, Ann. Nucl. Energy, 96 (2016) 26–30.
  • [40]. M. Mariyappan, K. Marimuthu, M.I. Sayyed, M.G. Dong, U. Kara, Effect Bi2O3 on the physical, structural and radiation shielding properties of Er3+ ions doped bismuth sodiumfluoroborate glasses, J. Non-Cryst. Solids, 499 (2018) 75–85
  • [41]. I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes, Ann. Nucl. Energy, 24 (1997) 1389–1401.
  • [42]. A. Saeed, Y.H. Elbashar, A.A. El-Azm, M.M. El-Okr, M.N.H. Comsan, A.M. Osman, A.R. El-Sersy, Gamma ray attenuation in a developed borate glassy system, Radiat. Phys. Chem. 102 (2014) 167–170.

Investigation on Gamma Radiation Shielding Behaviour of CdO–WO3–TeO2 Glasses from 0.015 to 10 MeV

Yıl 2018, Cilt: 39 Sayı: 4, 983 - 990, 24.12.2018
https://doi.org/10.17776/csj.451770

Öz

In the present study, the gamma radiation
shielding properties of glasses in
CdO–WO3–TeO2 ternary systems have been calculated using WinXCom
program. The mass attenuation coefficient (
, half value layer (HVL), effective atomic
number (Zeff) and electron density (Neff) values for
total photon interaction for a wide range of photon energies from 0.015 to 10
MeV have been estimated. The obtained results for the investigated glass
systems have been compared in terms of HVL with some standard concrete and
different glass samples in order to validate these glasses in point of the
radiation shielding.
Among the present glasses, G6 glass sample has the best shielding
capability against gamma radiation.

Kaynakça

  • [1]. M. Jalali, A. Mohammadi, Gamma ray attenuation coefficient measurement for neutron-absorbent materials, Radiat. Phys. Chem. 77 (2008) 523–527.
  • [2]. N. Chanthima, J. Kaewkhao, Investigation on radiation shielding parameters of bismuth borosilicate glass from 1 keV to 100 GeV, Ann. Nucl. Energy, 55 (2013) 23-28.
  • [3]. C. Eke, O. Agar, C. Segebade, I. Boztosun, Attenuation properties of radiation shielding materials such as granite and marble against γ-ray energies between 80 and 1350 keV, Radiochim. Acta, 105 (10) (2017) 851.
  • [4]. J. Kaewkhao, Interaction of 662 keV gamma-rays with bismuth-based glass matrices, J. Korean Phys. Soc. 59(2) (2011) 661–665.
  • [5]. S.R. Manohara, S.M. Hanagodimath, L. Gerward, K.C. Mittal, Exposure buildup factors for heavy metal oxide glass: a radiation shield, J. Korean Phys. Soc. 59(2) (2011) 2039–2042.
  • [6]. M.I. Sayyed, G. Lakshminarayana, Structural, thermal, optical features and shielding parameters investigations of optical glasses for gamma radiation shielding and defense applications, J. Non-Cryst. Solids, 487 (2018) 53–59.
  • [7]. R. El-Mallawany, M.I. Sayyed, Comparative shielding properties of some tellurite glasses: Part 1, Physica B, 539 (2018) 133–140
  • [8]. K. Singh, H. Singh, V. Sharma, R. Nathuram, A. Khanna, R. Kumar, S.S. Bhatti, H.S. Sahota, Gamma ray attenuation coefficients in bismuth borate glasses, Nucl. Instrum. Methods Phys. Res. Sect. B, 194 (2002) 1–6.
  • [9]. H. Singh, K. Singh, L. Gerward, K. Singh, H.S. Sahota, R. Nathuram, ZnO–PbO–B2O3 glasses as gamma-ray shielding materials, Nucl. Instrum. Methods B, 207 (2003) 257–262.
  • [10]. K. Singh, H. Singh, G. Sharma, L. Gerward, A. Khanna, R. Kumar, R. Nathuram, H.S. Sahota, Gamma-ray shielding properties of CaO-SrO-B2O3 glasses, Radiat. Phys. Chem. 72 (2005) 225–228.
  • [11]. P. Kaur, D. Singh, T. Singh, Heavy metal oxide glasses as gamma rays shielding material, Nucl. Eng. Design, 307 (2016) 364–376.
  • [12]. S. Kaewjang, U. Maghanemi, S. Kothan, H.J. Kim, P. Limkitjaroenporn, J. Kaewkhao, New gadolinium based glasses for gamma-rays shielding materials, Nucl. Eng. Design, 280 (2014) 21–26.
  • [13]. R. Laopaiboon, J. Laopaiboon, S. Pencharee, S. Nontachat, C. Bootjomchai, The effects of gamma irradiation on the elastic properties of soda lime glass doped with cerium oxide, J. Alloys Compd. 666 (2016) 292–300.
  • [14]. J. Kaewkhao, P. Limsuwan, Mass attenuation coefficients and effective atomic numbers in phosphate glass containing Bi2O3, PbO and BaO at 662 keV, Nucl. Instrum. Methods Phys. Res. Sect. A, 619(1–3) (2010) 295–297.
  • [15]. D.K. Gaikwad, M.I. Sayyed, Shamsan S. Obaid, Shams A.M. Issa, P.P. Pawar, Gamma ray shielding properties of TeO2-ZnF2-As2O3-Sm2O3 glasses, J. Alloys Compd. 765 (2018) 451–458
  • [16]. M.I. Sayyed, Half value layer, mean free path and exposure buildup factor for tellurite glasses with different oxide compositions, J. Alloys Compd. 695 (2017) 3191–3197.
  • [17]. M.I. Sayyed, Investigations of gamma ray and fast neutron shielding properties of tellurite glasses with different oxide compositions, Can. J. Phys. 94(11) (2016) 1133–1137.
  • [18]. M.I. Sayyed, Bismuth modified shielding properties of zinc boro-tellurite glasses, J. Alloys Compd. 688 (2016) 111–117.
  • [19]. M.I. Sayyed, R. El-Mallawany, Shielding properties of (100-x) TeO2–(x) MoO3 glasses, Mater. Chem. Phys. 201 (2017) 50–56.
  • [20]. A. Kumar, M.I. Sayyed, M. Dong, X. Xue, Effect of PbO on the shielding behavior of ZnO–P2O5 glass system using Monte Carlo simulation, J. Non-Cryst. Solids, 481 (2018) 604–607.
  • [21]. H.O. Tekin, M.I. Sayyed, E.E. Altunsoy, T. Manici, Shielding properties and effects of WO3 and PbO on mass attenuation coefficients by using MCNPX code, Dig. J. Nanomater. Biostruct., 12(3) (2017) 861–867.
  • [22]. H.O. Tekin, M.I. Sayyed, T. Manici, E.E. Altunsoy, Photon shielding characterizations of bismuth modified borate–silicate–tellurite glasses using MCNPX Monte Carlo code, Mater. Chem. Phys. 211 (2018) 9–16.
  • [23]. S.A. Issa, Y.B. Saddeek, H.O. Tekin, M. I. Sayyed, Investigations of radiation shielding and elastic properties of PbO–SiO2–B2O3–Na2O glasses using Monte Carlo method, Curr. Appl. Phys. (2018) DOI:10.1016/j.cap.2018.02.018
  • [24]. M.I. Sayyed, S.A. Issa, M. Büyükyıldız, M. Dong, Determination of nuclear radiation shielding properties of some tellurite glasses using MCNP5 code, Radiat. Phys. Chem. 150 (2018) 1–8.
  • [25]. R. El-Mallawany, M.I. Sayyed, M.G. Dong, Y.S. Rammah, Simulation of radiation shielding properties of glasses contain PbO, Radiat. Phys. Chem. 151 (2018) 239–252
  • [26]. R.A.H. El-Mallawany, Tellurite glasses handbook. Boca Raton/London/New York/Washington, DC: CRC Press; 2002.
  • [27]. M.L. Öveçoğlu, G. Özen, S. Cenk, Microstructural characterization and crystallization behaviour of (1− x) TeO2–xWO3 (x= 0.15, 0.25, 0.3 mol) glasses, J. Eur. Ceram. Soc. 26(7) (2006) 1149–1158.
  • [28]. A.E. Ersundu, G. Karaduman, M. Çelikbilek, N. Solak, S. Aydın, Effect of rare-earth dopants on the thermal behavior of tungsten–tellurite glasses, J. Alloys Compd. 508(2) (2010) 266–272.
  • [29]. A.E. Ersundu, G. Karaduman, M. Çelikbilek, N. Solak, S. Aydin, Stability of the δ-TeO2 phase in the binary and ternary TeO2 glasses, J. Eur. Ceram. Soc. 30(15) (2010) 3087–3092.
  • [30]. S. Manning, H. Ebendorff-Heidepriem, T.M. Monro, Ternary tellurite glasses for the fabrication of nonlinear optical fibres, Opt. Mater. Express, 2(2) (2012) 140–152. [31]. V.V. Safonov, V.N. Tsygankov, Electrical properties of glasses in the systems BaO (Bi2O3, CdO, PbO)–TeO2–WO3 and CdO–PbO–TeO2, Inorganic Materials, 32 (1996) 984–7.
  • [32]. A.E. Ersundu, M. Çelikbilek, N. Solak, S. Aydin, Glass formation area and characterization studies in the CdO–WO3–TeO2 ternary system, J. Eur. Ceram. Soc. 31(15) (2011) 2775–2781.
  • [33]. F. Akman, R. Durak, M.F. Turhan, M.R. Kaçal, Studies on effective atomic numbers, electron densities from mass attenuation coefficients near the K edge in some samarium compounds, App. Rad. Iso. 101 (2015) 107–113.
  • [34]. L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, WinXCom-a program for calculating X-ray attenuation coefficients, Radiat. Phys. Chem. 71 (2004) 653–654.
  • [35]. D.C. Wang, L.A. Ping, H. Yang, Measurement of the mass attenuation coefficients for SiH4 and Si, Nucl. Instrum. Methods Phys. Res., Sect. B, 95 (1995) 161–165.
  • [36]. T. Singh, U. Kaur, P.S. Singh, Photon energy absorption parameters for some polymers, Ann. Nucl. Energy, 37(3) (2010) 422–427.
  • [37]. M.I. Sayyed, Investigation of shielding parameters for smart polymers, Chin. J. Phys. 54(3) (2016) 408-415.
  • [38]. P. Pawar, K.G. Bichile, Effective atomic numbers and electron densities of amino acids containing H, C, N and O, Arch. Phys. Res. 2(4) (2011) 94–103.
  • [39]. E.S.A. Waly, M.A. Fusco, M.A. Bourham, Gamma-ray mass attenuation coefficient and half value layer factor of some oxide glass shielding materials, Ann. Nucl. Energy, 96 (2016) 26–30.
  • [40]. M. Mariyappan, K. Marimuthu, M.I. Sayyed, M.G. Dong, U. Kara, Effect Bi2O3 on the physical, structural and radiation shielding properties of Er3+ ions doped bismuth sodiumfluoroborate glasses, J. Non-Cryst. Solids, 499 (2018) 75–85
  • [41]. I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes, Ann. Nucl. Energy, 24 (1997) 1389–1401.
  • [42]. A. Saeed, Y.H. Elbashar, A.A. El-Azm, M.M. El-Okr, M.N.H. Comsan, A.M. Osman, A.R. El-Sersy, Gamma ray attenuation in a developed borate glassy system, Radiat. Phys. Chem. 102 (2014) 167–170.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Natural Sciences
Yazarlar

Osman Ağar

Yayımlanma Tarihi 24 Aralık 2018
Gönderilme Tarihi 8 Ağustos 2018
Kabul Tarihi 4 Aralık 2018
Yayımlandığı Sayı Yıl 2018Cilt: 39 Sayı: 4

Kaynak Göster

APA Ağar, O. (2018). Investigation on Gamma Radiation Shielding Behaviour of CdO–WO3–TeO2 Glasses from 0.015 to 10 MeV. Cumhuriyet Science Journal, 39(4), 983-990. https://doi.org/10.17776/csj.451770

Cited By