Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 42 Sayı: 1, 68 - 74, 29.03.2021
https://doi.org/10.17776/csj.824566

Öz

Kaynakça

  • [1] Baran T., Mentes A., Polymeric material prepared from Schiff base based on o carboxymethyl chitosan and its Cu(II) and Pd(II) complexes, J. Mol. Struct., 1115 (2016) 220-227.
  • [2] Nair B.P., Gangadharan D., Mohan N., Sumathi B., Nair P.D., Hybrid scaffold bearing polymer-siloxane Schiff base linkage for bone tissue engineering, Mater. Sci. Eng. C., 52 (2015) 333-342.
  • [3] Erdem E., Yildirim Sari E., Kilincarslan R., Kabay N., Synthesis and characterization of azo-linked Schiff bases and their nickel(II), copper(II), and zinc(II) complexes, Trans. Met. Chem., 34 (2009) 167-174.
  • [4] Ispir E., The synthesis, characterization, electrochemical character, catalytic and antimicrobial activity of novel, azo-containing Schiff bases and their metal complexes, Dyes Pigments, 82 (2009) 13-19.
  • [5] Fakhari A.R., Khorrami A.R.,Naeimi H., Synthesis and analytical application of a novel tetradentate N2O2 Schiff base as a chromogenic reagent for determination of nickel in some natural food samples, Talanta, 66 (2005) 813-817.
  • [6] Laddha P.R., Biyani K.R., Synthesis and Biological Evaluation of Novel Schiff Bases of Aryloxy Moiety, J. Drug Deliv., 9 (2005) 44-49.
  • [7] Dewangan D., Nakhate K.T., Verma V.S., Nagori K., Tripathi D.K., Synthesis, Characterization, and Screening for Analgesic and Anti‐Inflammatory Activities of Schiff Bases of 1,3,4‐Oxadiazoles Linked With Quinazolin‐4‐One, J. Heterocycl. Chem., 54 (2017) 3187-3194.
  • [8] Amorim C.R., Pavani T.F.A., Lopes A.F.S., Duque M.D., Mengarda A.C.A., Silva M.P., de Moraes J., Rando D.G.G., Schiff bases of 4-Phenyl-2-Aminothiazoles as hits to new antischistosomals: Synthesis, in vitro, in vivo and in silico studies, Eur. J. Pharm. Sci., 150 (2020) 105-371.
  • [9] Kumar B.D., Rawat D.S., Synthesis and antioxidant activity of thymol and carvacrol based Schiff bases, Bioorg. Med. Chem. Lett., 23 (2013) 641-645.
  • [10] Albayrak Kastas C., Kastas G., Guder A., Gur M., Muglu H., Buyukgungor O., Investigation of two o-hydroxy Schiff bases in terms of prototropy and radical scavenging activity, J. Molec. Struct., 1130 (2017) 623-632.
  • [11] Fernandes S.A., Tavares E.C., Teixeira R.R., da Silva C.M., Montanari R.M., de Fatima A., Anconi C.P.A., de Almeida W.B., dos Santos H.F., Silva A.A., Inclusion complexes of Schiff bases as phytogrowth inhibitors, J. Incl. Phenom. Macro, 75 (2013) 197-204.
  • [12] Gupta V.K., Singh A.K., Ganjali M.R., Norouzi P., Mergu N., Comparative study of colorimetric sensors based on newly synthesized Schiff bases Sensor, Actuat. B-Chem., 182 (2013) 642-651.
  • [13] Berhanu A.L., Gaurav Mohiuddin I., Malik A.K., Aulakh J.S., Kumar V., Kim K.-H., A review of the applications of Schiff bases as optical chemical sensors, Trend. Anal. Chem., 116 (2019) 74-91.
  • [14] Deivanayagam P., Bhoopathy P., Thanikaikarasan S., Synthesis, characterization, antimicrobial, analgesic and CNS studies of Schiff base Cu(II) complex derived from 4-choro-o-phenylene Diamine, Int. J. Adv. Chem., 2 (2014) 166-170.
  • [15] Yu Z., Kuroda-Sowa T., Kume H., Okubo T., Maekawa M., Munakata M., Effects of Metal Doping on the Spin-Crossover Properties of an Iron(II) Complex with Extended pi-Conjugated Schiff-Base Ligand Having an N4O2 Donor Set, B. Chem. Soc. Jpn., 82 (2009) 333-337.
  • [16] Fathi A.M., Mandour H.S., Anouar H., Characteristics of multidentate Schiff base ligand and its complexes using cyclic voltammetry, fluorescence, antimicrobial behavior and DFT-calculations, J. Molec. Struct., 1224 (2021) 129263-129271.
  • [17] El-Sherif A.A., Eldebss T.M.A., Synthesis, spectral characterization, solution equilibria, in vitro antibacterial and cytotoxic activities of Cu(II), Ni(II), Mn(II), Co(II) and Zn(II) complexes with Schiff base derived from 5-bromosalicylaldehyde and 2-aminomethylthiophene, Spectrochim. Acta, 79A (2011) 1803-1814.
  • [18] Abu-Dief A.M., Nassr L.A.E., Tailoring, physicochemical characterization, antibacterial and DNA binding mode studies of Cu(II) Schiff bases amino acid bioactive agents incorporating 5-bromo-2-hydroxybenzaldehyde, J. Iran. Chem. Soc., 12 (2015) 943-955.
  • [19] Elsayed S.A., El‐Gharabawy H.M., Butler I.S., Atlam F.M., Novel metal complexes of 3‐acetylcoumarin‐2‐hydrazinobenzothiazole Schiff base: Design, structural characterizations, DNA binding, DFT calculations, molecular docking and biological studies, Appl. Organomet. Chem., 34 (2020) 5643-5661.
  • [20] Szady‐Chełmieniecka A., Rzuchowska A., Markowska‐Szczupak A., Schilf W., Rozwadowski Z., New “one‐pot” Pd(II) and Zn(II) complexes of Schiff bases, derivatives of 1‐amino‐1‐deoxy‐D‐sorbitol: Spectroscopic studies and biological and catalytic activities, Appl. Organomet. Chem., 34 (2020) 5485-5492.
  • [21] Mbugua S.N., Sibuyi N.R.S., Njenga L.W., Odhiambo R.A., Wandiga S.O., Meyer M., Lalancette R.A., Onani, M.O., New Palladium(II) and Platinum(II) Complexes Based on Pyrrole Schiff Bases: Synthesis, Characterization, X-ray Structure, and Anticancer Activity, ACS Omega 5, (2020) 14942-14954.
  • [22] Satheeshkumar R., Wu J., Chandrasekaran R., Revathi K., Sparkes H.A., Wang W.L., Synthesis of 2‐aminobenzophenone‐based Schiff base Pd(II) complexes: Investigation on crystal structure, biological behavior of DNA/protein‐binding, molecular docking, and in vitro anticancer activities, Appl. Organomet. Chem., 34 (2020) e5856-5870.
  • [23] Jirjees V.Y., Suleman V.T., Ahmed S.D., Al-Hamdani A.A.S., Determination Of Antioxidant Activity For Metal Ions Complexes, J. Univ. Duhok, 32 (2020) 41-50.
  • [24] Said M.A., Al-Unizi A., Al-Mamary M., Alzahrani S., Lentz D., Easy coordinate geometry indexes, τ4 and τ5 and HSA study for unsymmetrical Pd(II), Fe(II), Zn(II), Mn(II), Cu(II) and VO(IV) complexes of a tetradentate ligand: Synthesis, characterization, properties, and antioxidant activities, Inorg. Chim. Acta, 505 (2020) 119434-119446.
  • [25] Aly S.A., Fathalla S.K., Preparation, characterization of some transition metal complexes of hydrazone derivatives and their antibacterial and antioxidant activities, Arab. J. Chem., 13 (2020) 3735-3750.
  • [26] Bingöl M., Turan N., Schiff base and metal(II) complexes containing thiophene-3-carboxylate: Synthesis, characterization and antioxidant activities, J. Molec. Struct., 1205 (2020) 127542-127550.
  • [27] Robinson S.D., Uttley M.F., Complexes of the Platinum Metals. Part 11.l Carboxylato(tripheny1phosphine) Derivatives of Ruthenium, Osmium, Rhodium, and Iridium, J. Chem. Soc., Dalton Trans., 1912 (1973) 1912-1920.
  • [28] Faghih Z., Neshat A., Wojtczak A., Faghih Z., Mohammadi Z., Varestan S., Palladium (II) Complexes Based on Schiff Base Ligands Derived from Ortho-vanillin; Synthesis, Characterization and Cytotoxic Studies, Inorg. Chim. Acta., 471 (2018) 404-412.
  • [29] Lu J., Li C., Chai Y.F., Yang D.Y., Sun C.R., The antioxidant effect of imine resveratrol analogues, Bioorg. & Med. Chem. Lett., 22 (2012) 5744-5747.
  • [30] Blois M.S., Antioxidant Determinations by the Use of a Stable Free Radical, Nature, 26 (1958) 1199-1200.
  • [31] Dinis T.C.P., Madeira V.M.C., Almeida L.M., Action of Phenolic Derivatives (Acetaminophen, Salicylate and 5-Aminosalicylate) as Inhibitors of Membrane Lipid Peroxidation and as Peroxyl Radical Scavengers, Arch. Biocem. Biophys., 315 (1994) 161-169.
  • [32] Ravoof T.B.S.A., Crouse K.A., Tahir M.I.M., Cowley A.R., Ali M.A., Synthesis, characterization and bioactivity of mixed-ligand Cu(II) complexes containing Schiff bases derived from S-benzyldithiocarbazate and saccharinate ligand and the X-ray crystal structure of the copper-saccharinate complex containing S-benzyl-b-N-(acetylpyrid-2-yl) methylenedithiocarbazate, Polyhedron, 26 (2007) 1159-1165.
  • [33] Kontogiorgis C., Hadjipavlou-Litina D., Biological evaluation of several coumarin derivatives designed as possible anti-inflammatory/antioxidant agents, J. Enzyme Inhib. Med. Chem., 18 (2003) 63-69.
  • [34] Tyurin V.Y., Moiseeva A.А., Shpakovsky D.B., Milaeva E.R., The electrochemical approach to antioxidant activity assay of metal complexes with dipicolylamine ligand, containing 2,6-di-tert-butylphenol groups, based on electrochemical DPPH-test, J. Electroanal. Chem., 756 (2015) 212-221.

Palladium complexes of NO type Schiff bases: synthesis, characterization and antioxidant activities

Yıl 2021, Cilt: 42 Sayı: 1, 68 - 74, 29.03.2021
https://doi.org/10.17776/csj.824566

Öz

The reaction of o-aminophenol with para hydroxy and methoxy substituted benzaldehydes yielded two Schiff bases. These Schiff bases functioning precursors were turned into palladium complexes by treating palladium acetate. The structural formulas based on spectral methods (elemental analysis, FT-IR spectroscopy, NMR spectroscopy and QTOF-LC/MS spectroscopy) were suggested for obtained both complexes. According to the structural characterization methods, one of the complexes had also an acetate co-ligand along with the hydroxy substituted Schiff base ligand. In the other complex, the palladium central ion was proposed to be coordinated with two methoxy substituted Schiff bases. Besides, DPPH scavenging activities of the all synthesized compounds were determined and compared to well-known antioxidant standards. According to the results, antioxidant activities of the palladium complexes was mild but lower than parent Schiff bases. 

Kaynakça

  • [1] Baran T., Mentes A., Polymeric material prepared from Schiff base based on o carboxymethyl chitosan and its Cu(II) and Pd(II) complexes, J. Mol. Struct., 1115 (2016) 220-227.
  • [2] Nair B.P., Gangadharan D., Mohan N., Sumathi B., Nair P.D., Hybrid scaffold bearing polymer-siloxane Schiff base linkage for bone tissue engineering, Mater. Sci. Eng. C., 52 (2015) 333-342.
  • [3] Erdem E., Yildirim Sari E., Kilincarslan R., Kabay N., Synthesis and characterization of azo-linked Schiff bases and their nickel(II), copper(II), and zinc(II) complexes, Trans. Met. Chem., 34 (2009) 167-174.
  • [4] Ispir E., The synthesis, characterization, electrochemical character, catalytic and antimicrobial activity of novel, azo-containing Schiff bases and their metal complexes, Dyes Pigments, 82 (2009) 13-19.
  • [5] Fakhari A.R., Khorrami A.R.,Naeimi H., Synthesis and analytical application of a novel tetradentate N2O2 Schiff base as a chromogenic reagent for determination of nickel in some natural food samples, Talanta, 66 (2005) 813-817.
  • [6] Laddha P.R., Biyani K.R., Synthesis and Biological Evaluation of Novel Schiff Bases of Aryloxy Moiety, J. Drug Deliv., 9 (2005) 44-49.
  • [7] Dewangan D., Nakhate K.T., Verma V.S., Nagori K., Tripathi D.K., Synthesis, Characterization, and Screening for Analgesic and Anti‐Inflammatory Activities of Schiff Bases of 1,3,4‐Oxadiazoles Linked With Quinazolin‐4‐One, J. Heterocycl. Chem., 54 (2017) 3187-3194.
  • [8] Amorim C.R., Pavani T.F.A., Lopes A.F.S., Duque M.D., Mengarda A.C.A., Silva M.P., de Moraes J., Rando D.G.G., Schiff bases of 4-Phenyl-2-Aminothiazoles as hits to new antischistosomals: Synthesis, in vitro, in vivo and in silico studies, Eur. J. Pharm. Sci., 150 (2020) 105-371.
  • [9] Kumar B.D., Rawat D.S., Synthesis and antioxidant activity of thymol and carvacrol based Schiff bases, Bioorg. Med. Chem. Lett., 23 (2013) 641-645.
  • [10] Albayrak Kastas C., Kastas G., Guder A., Gur M., Muglu H., Buyukgungor O., Investigation of two o-hydroxy Schiff bases in terms of prototropy and radical scavenging activity, J. Molec. Struct., 1130 (2017) 623-632.
  • [11] Fernandes S.A., Tavares E.C., Teixeira R.R., da Silva C.M., Montanari R.M., de Fatima A., Anconi C.P.A., de Almeida W.B., dos Santos H.F., Silva A.A., Inclusion complexes of Schiff bases as phytogrowth inhibitors, J. Incl. Phenom. Macro, 75 (2013) 197-204.
  • [12] Gupta V.K., Singh A.K., Ganjali M.R., Norouzi P., Mergu N., Comparative study of colorimetric sensors based on newly synthesized Schiff bases Sensor, Actuat. B-Chem., 182 (2013) 642-651.
  • [13] Berhanu A.L., Gaurav Mohiuddin I., Malik A.K., Aulakh J.S., Kumar V., Kim K.-H., A review of the applications of Schiff bases as optical chemical sensors, Trend. Anal. Chem., 116 (2019) 74-91.
  • [14] Deivanayagam P., Bhoopathy P., Thanikaikarasan S., Synthesis, characterization, antimicrobial, analgesic and CNS studies of Schiff base Cu(II) complex derived from 4-choro-o-phenylene Diamine, Int. J. Adv. Chem., 2 (2014) 166-170.
  • [15] Yu Z., Kuroda-Sowa T., Kume H., Okubo T., Maekawa M., Munakata M., Effects of Metal Doping on the Spin-Crossover Properties of an Iron(II) Complex with Extended pi-Conjugated Schiff-Base Ligand Having an N4O2 Donor Set, B. Chem. Soc. Jpn., 82 (2009) 333-337.
  • [16] Fathi A.M., Mandour H.S., Anouar H., Characteristics of multidentate Schiff base ligand and its complexes using cyclic voltammetry, fluorescence, antimicrobial behavior and DFT-calculations, J. Molec. Struct., 1224 (2021) 129263-129271.
  • [17] El-Sherif A.A., Eldebss T.M.A., Synthesis, spectral characterization, solution equilibria, in vitro antibacterial and cytotoxic activities of Cu(II), Ni(II), Mn(II), Co(II) and Zn(II) complexes with Schiff base derived from 5-bromosalicylaldehyde and 2-aminomethylthiophene, Spectrochim. Acta, 79A (2011) 1803-1814.
  • [18] Abu-Dief A.M., Nassr L.A.E., Tailoring, physicochemical characterization, antibacterial and DNA binding mode studies of Cu(II) Schiff bases amino acid bioactive agents incorporating 5-bromo-2-hydroxybenzaldehyde, J. Iran. Chem. Soc., 12 (2015) 943-955.
  • [19] Elsayed S.A., El‐Gharabawy H.M., Butler I.S., Atlam F.M., Novel metal complexes of 3‐acetylcoumarin‐2‐hydrazinobenzothiazole Schiff base: Design, structural characterizations, DNA binding, DFT calculations, molecular docking and biological studies, Appl. Organomet. Chem., 34 (2020) 5643-5661.
  • [20] Szady‐Chełmieniecka A., Rzuchowska A., Markowska‐Szczupak A., Schilf W., Rozwadowski Z., New “one‐pot” Pd(II) and Zn(II) complexes of Schiff bases, derivatives of 1‐amino‐1‐deoxy‐D‐sorbitol: Spectroscopic studies and biological and catalytic activities, Appl. Organomet. Chem., 34 (2020) 5485-5492.
  • [21] Mbugua S.N., Sibuyi N.R.S., Njenga L.W., Odhiambo R.A., Wandiga S.O., Meyer M., Lalancette R.A., Onani, M.O., New Palladium(II) and Platinum(II) Complexes Based on Pyrrole Schiff Bases: Synthesis, Characterization, X-ray Structure, and Anticancer Activity, ACS Omega 5, (2020) 14942-14954.
  • [22] Satheeshkumar R., Wu J., Chandrasekaran R., Revathi K., Sparkes H.A., Wang W.L., Synthesis of 2‐aminobenzophenone‐based Schiff base Pd(II) complexes: Investigation on crystal structure, biological behavior of DNA/protein‐binding, molecular docking, and in vitro anticancer activities, Appl. Organomet. Chem., 34 (2020) e5856-5870.
  • [23] Jirjees V.Y., Suleman V.T., Ahmed S.D., Al-Hamdani A.A.S., Determination Of Antioxidant Activity For Metal Ions Complexes, J. Univ. Duhok, 32 (2020) 41-50.
  • [24] Said M.A., Al-Unizi A., Al-Mamary M., Alzahrani S., Lentz D., Easy coordinate geometry indexes, τ4 and τ5 and HSA study for unsymmetrical Pd(II), Fe(II), Zn(II), Mn(II), Cu(II) and VO(IV) complexes of a tetradentate ligand: Synthesis, characterization, properties, and antioxidant activities, Inorg. Chim. Acta, 505 (2020) 119434-119446.
  • [25] Aly S.A., Fathalla S.K., Preparation, characterization of some transition metal complexes of hydrazone derivatives and their antibacterial and antioxidant activities, Arab. J. Chem., 13 (2020) 3735-3750.
  • [26] Bingöl M., Turan N., Schiff base and metal(II) complexes containing thiophene-3-carboxylate: Synthesis, characterization and antioxidant activities, J. Molec. Struct., 1205 (2020) 127542-127550.
  • [27] Robinson S.D., Uttley M.F., Complexes of the Platinum Metals. Part 11.l Carboxylato(tripheny1phosphine) Derivatives of Ruthenium, Osmium, Rhodium, and Iridium, J. Chem. Soc., Dalton Trans., 1912 (1973) 1912-1920.
  • [28] Faghih Z., Neshat A., Wojtczak A., Faghih Z., Mohammadi Z., Varestan S., Palladium (II) Complexes Based on Schiff Base Ligands Derived from Ortho-vanillin; Synthesis, Characterization and Cytotoxic Studies, Inorg. Chim. Acta., 471 (2018) 404-412.
  • [29] Lu J., Li C., Chai Y.F., Yang D.Y., Sun C.R., The antioxidant effect of imine resveratrol analogues, Bioorg. & Med. Chem. Lett., 22 (2012) 5744-5747.
  • [30] Blois M.S., Antioxidant Determinations by the Use of a Stable Free Radical, Nature, 26 (1958) 1199-1200.
  • [31] Dinis T.C.P., Madeira V.M.C., Almeida L.M., Action of Phenolic Derivatives (Acetaminophen, Salicylate and 5-Aminosalicylate) as Inhibitors of Membrane Lipid Peroxidation and as Peroxyl Radical Scavengers, Arch. Biocem. Biophys., 315 (1994) 161-169.
  • [32] Ravoof T.B.S.A., Crouse K.A., Tahir M.I.M., Cowley A.R., Ali M.A., Synthesis, characterization and bioactivity of mixed-ligand Cu(II) complexes containing Schiff bases derived from S-benzyldithiocarbazate and saccharinate ligand and the X-ray crystal structure of the copper-saccharinate complex containing S-benzyl-b-N-(acetylpyrid-2-yl) methylenedithiocarbazate, Polyhedron, 26 (2007) 1159-1165.
  • [33] Kontogiorgis C., Hadjipavlou-Litina D., Biological evaluation of several coumarin derivatives designed as possible anti-inflammatory/antioxidant agents, J. Enzyme Inhib. Med. Chem., 18 (2003) 63-69.
  • [34] Tyurin V.Y., Moiseeva A.А., Shpakovsky D.B., Milaeva E.R., The electrochemical approach to antioxidant activity assay of metal complexes with dipicolylamine ligand, containing 2,6-di-tert-butylphenol groups, based on electrochemical DPPH-test, J. Electroanal. Chem., 756 (2015) 212-221.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Natural Sciences
Yazarlar

Ayşegül ŞENOCAK 0000-0001-9210-4621

Hüseyin AKBAŞ 0000-0002-3013-9033

Yayımlanma Tarihi 29 Mart 2021
Gönderilme Tarihi 11 Kasım 2020
Kabul Tarihi 17 Mart 2021
Yayımlandığı Sayı Yıl 2021Cilt: 42 Sayı: 1

Kaynak Göster

APA ŞENOCAK, A., & AKBAŞ, H. (2021). Palladium complexes of NO type Schiff bases: synthesis, characterization and antioxidant activities. Cumhuriyet Science Journal, 42(1), 68-74. https://doi.org/10.17776/csj.824566