Araştırma Makalesi
PDF Zotero Mendeley EndNote BibTex Kaynak Göster

-

Yıl 2013, Cilt 34, Sayı 1, 42 - 51, 23.01.2013

Öz

-

Kaynakça

  • Agostinelli, S., et al., 2003. Geant4-A simulation toolikit. Nucl. Instr. Meth. Phys. Res. A 506, 250-303.
  • Akkoyun, S., et al., 2012. AGATA-Advanced GAmmaTrackingArray. Nucl. Instr. Meth. Phys. Res. A 668, 26-58.
  • Schmid, G.J., et al., 1999. A Gamma-ray tracking algorithm for the GRETA Spectrometer. Nucl. Instr. Meth. Phys. Res. A 430, 69-83.
  • Ataç, A,. et al., 2009. Discrimination of Gamma-rays Due to Inelastic Neutron Scattering in AGATA. Nucl. Instr. Meth. Phys. Res. A 607 554-563.
  • Cao, Z., et al., 1998. Implementation of dynamic bias for neutron–photon pulse shape discrimination by using neural network classifiers. Nucl. Instr. Meth. Phys. Res. A 416, 4384
  • Esposito, B., Fortuna, L., Rizzo, A., 2004. Neural neutron/gamma discrimination in organic scintillators for fusion applications. IEEE International Joint Conference on, Volume: 4, 293129
  • Liu, G., et al., 2009. An investigation of the digital discrimination of neutrons and γ rays with organic scintillation detectors using an artificial neural network. Nucl. Instr. Meth. Phys. Res. A 607, 620-628.
  • Yildiz, N and Akkoyun, S., 2013. Neural network consistent empirical physical formula construction for neutron–gamma discrimination in gamma ray tracking. Annals of Nucl. Energy. 51, 10-17.
  • Vetter, K., 2001. GRETA: The proof-of-principle for gamma-ray tracking. Nucl. Phys. A 682, 286-294.
  • GSI web site: http://www.gsi.de. Akkoyun, S and Yildiz, N., 2012. Consistent empirical physical formula construction for recoil energy distribution in HPGe detectors by using artificial neural networks. Rad. Meas. 47, 571-5
  • Bazzacco, D., 2004. The Advanced Gamma Ray Tracking Array AGATA. Nucl. Phys.A 746, 248-254.
  • Van der Marel, J., Cederwall, B., 1999. Backtracking as a Way to Reconstruct Compton Scattered Gamma-rays. Nucl. Instr. Meth. Phys. Res. A 437, 538-551.
  • Haykin, S., 1999. Neural networks: a comprehensive foundation, 2nd ed, Prentice-Hall, New Jersey.
  • Medhat, M.E., 2012. Artificial intelligence methods applied for quantitative analysis of natural radioactive sources. Annals of Nucl. Energy. 45, 73-79.
  • Levenberg, K., 1944. A method for the solution of certain nonlinear problems in least squares. Quart. Appl. Math. 2, 164.
  • Marquardt, D., 1963. An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11, 431.

Yıl 2013, Cilt 34, Sayı 1, 42 - 51, 23.01.2013

Öz

Kaynakça

  • Agostinelli, S., et al., 2003. Geant4-A simulation toolikit. Nucl. Instr. Meth. Phys. Res. A 506, 250-303.
  • Akkoyun, S., et al., 2012. AGATA-Advanced GAmmaTrackingArray. Nucl. Instr. Meth. Phys. Res. A 668, 26-58.
  • Schmid, G.J., et al., 1999. A Gamma-ray tracking algorithm for the GRETA Spectrometer. Nucl. Instr. Meth. Phys. Res. A 430, 69-83.
  • Ataç, A,. et al., 2009. Discrimination of Gamma-rays Due to Inelastic Neutron Scattering in AGATA. Nucl. Instr. Meth. Phys. Res. A 607 554-563.
  • Cao, Z., et al., 1998. Implementation of dynamic bias for neutron–photon pulse shape discrimination by using neural network classifiers. Nucl. Instr. Meth. Phys. Res. A 416, 4384
  • Esposito, B., Fortuna, L., Rizzo, A., 2004. Neural neutron/gamma discrimination in organic scintillators for fusion applications. IEEE International Joint Conference on, Volume: 4, 293129
  • Liu, G., et al., 2009. An investigation of the digital discrimination of neutrons and γ rays with organic scintillation detectors using an artificial neural network. Nucl. Instr. Meth. Phys. Res. A 607, 620-628.
  • Yildiz, N and Akkoyun, S., 2013. Neural network consistent empirical physical formula construction for neutron–gamma discrimination in gamma ray tracking. Annals of Nucl. Energy. 51, 10-17.
  • Vetter, K., 2001. GRETA: The proof-of-principle for gamma-ray tracking. Nucl. Phys. A 682, 286-294.
  • GSI web site: http://www.gsi.de. Akkoyun, S and Yildiz, N., 2012. Consistent empirical physical formula construction for recoil energy distribution in HPGe detectors by using artificial neural networks. Rad. Meas. 47, 571-5
  • Bazzacco, D., 2004. The Advanced Gamma Ray Tracking Array AGATA. Nucl. Phys.A 746, 248-254.
  • Van der Marel, J., Cederwall, B., 1999. Backtracking as a Way to Reconstruct Compton Scattered Gamma-rays. Nucl. Instr. Meth. Phys. Res. A 437, 538-551.
  • Haykin, S., 1999. Neural networks: a comprehensive foundation, 2nd ed, Prentice-Hall, New Jersey.
  • Medhat, M.E., 2012. Artificial intelligence methods applied for quantitative analysis of natural radioactive sources. Annals of Nucl. Energy. 45, 73-79.
  • Levenberg, K., 1944. A method for the solution of certain nonlinear problems in least squares. Quart. Appl. Math. 2, 164.
  • Marquardt, D., 1963. An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11, 431.

Improvement studies on neutron-gamma separation in HPGe detectors by using neural networks

Yıl 2013, Cilt 34, Sayı 1, 42 - 51, 23.01.2013

Öz

The neutrons emitted in heavy-ion fusion-evaporation (HIFE) reactions together with the gamma-rays cause unwanted backgrounds in gamma-ray spectra. Especially in the nuclear reactions where relativistic ion beams (RIBs) are used, these neutrons are serious problem. They have to be rejected in order to obtain clearer gamma-ray peaks. In this study, the radiation energy and three criteria which are previously determined for separation of neutron and gamma-rays in the HPGe detectors have been used in artificial neural network (ANN) for improving of the decomposition power. According to the preliminary results, by the help of ANN method, the ratio of neutron rejection has been improved by a factor of 1.27 and the ratio of the lost in gamma-rays has been decreased by a factor of 0.5.

Kaynakça

  • Agostinelli, S., et al., 2003. Geant4-A simulation toolikit. Nucl. Instr. Meth. Phys. Res. A 506, 250-303.
  • Akkoyun, S., et al., 2012. AGATA-Advanced GAmmaTrackingArray. Nucl. Instr. Meth. Phys. Res. A 668, 26-58.
  • Schmid, G.J., et al., 1999. A Gamma-ray tracking algorithm for the GRETA Spectrometer. Nucl. Instr. Meth. Phys. Res. A 430, 69-83.
  • Ataç, A,. et al., 2009. Discrimination of Gamma-rays Due to Inelastic Neutron Scattering in AGATA. Nucl. Instr. Meth. Phys. Res. A 607 554-563.
  • Cao, Z., et al., 1998. Implementation of dynamic bias for neutron–photon pulse shape discrimination by using neural network classifiers. Nucl. Instr. Meth. Phys. Res. A 416, 4384
  • Esposito, B., Fortuna, L., Rizzo, A., 2004. Neural neutron/gamma discrimination in organic scintillators for fusion applications. IEEE International Joint Conference on, Volume: 4, 293129
  • Liu, G., et al., 2009. An investigation of the digital discrimination of neutrons and γ rays with organic scintillation detectors using an artificial neural network. Nucl. Instr. Meth. Phys. Res. A 607, 620-628.
  • Yildiz, N and Akkoyun, S., 2013. Neural network consistent empirical physical formula construction for neutron–gamma discrimination in gamma ray tracking. Annals of Nucl. Energy. 51, 10-17.
  • Vetter, K., 2001. GRETA: The proof-of-principle for gamma-ray tracking. Nucl. Phys. A 682, 286-294.
  • GSI web site: http://www.gsi.de. Akkoyun, S and Yildiz, N., 2012. Consistent empirical physical formula construction for recoil energy distribution in HPGe detectors by using artificial neural networks. Rad. Meas. 47, 571-5
  • Bazzacco, D., 2004. The Advanced Gamma Ray Tracking Array AGATA. Nucl. Phys.A 746, 248-254.
  • Van der Marel, J., Cederwall, B., 1999. Backtracking as a Way to Reconstruct Compton Scattered Gamma-rays. Nucl. Instr. Meth. Phys. Res. A 437, 538-551.
  • Haykin, S., 1999. Neural networks: a comprehensive foundation, 2nd ed, Prentice-Hall, New Jersey.
  • Medhat, M.E., 2012. Artificial intelligence methods applied for quantitative analysis of natural radioactive sources. Annals of Nucl. Energy. 45, 73-79.
  • Levenberg, K., 1944. A method for the solution of certain nonlinear problems in least squares. Quart. Appl. Math. 2, 164.
  • Marquardt, D., 1963. An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11, 431.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Editöriyal
Yazarlar

Serkan AKKOYUN
0000-0002-8996-3385


Tuncay BAYRAM
0000-0003-3704-0818


Seyit KARA

Yayımlanma Tarihi 23 Ocak 2013
Yayınlandığı Sayı Yıl 2013, Cilt 34, Sayı 1

Kaynak Göster

Bibtex @araştırma makalesi { cumuscij57950, journal = {Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi}, issn = {1300-1949}, eissn = {1300-1949}, address = {}, publisher = {Sivas Cumhuriyet Üniversitesi}, year = {2013}, volume = {34}, pages = {42 - 51}, doi = {}, title = {Improvement studies on neutron-gamma separation in HPGe detectors by using neural networks}, key = {cite}, author = {Akkoyun, Serkan and Bayram, Tuncay and Kara, Seyit} }
APA Akkoyun, S. , Bayram, T. & Kara, S. (2013). Improvement studies on neutron-gamma separation in HPGe detectors by using neural networks . Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi , 34 (1) , 42-51 . Retrieved from https://dergipark.org.tr/tr/pub/cumuscij/issue/4326/57950
MLA Akkoyun, S. , Bayram, T. , Kara, S. "Improvement studies on neutron-gamma separation in HPGe detectors by using neural networks" . Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 34 (2013 ): 42-51 <https://dergipark.org.tr/tr/pub/cumuscij/issue/4326/57950>
Chicago Akkoyun, S. , Bayram, T. , Kara, S. "Improvement studies on neutron-gamma separation in HPGe detectors by using neural networks". Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 34 (2013 ): 42-51
RIS TY - JOUR T1 - Improvement studies on neutron-gamma separation in HPGe detectors by using neural networks AU - Serkan Akkoyun , Tuncay Bayram , Seyit Kara Y1 - 2013 PY - 2013 N1 - DO - T2 - Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi JF - Journal JO - JOR SP - 42 EP - 51 VL - 34 IS - 1 SN - 1300-1949-1300-1949 M3 - UR - Y2 - 2021 ER -
EndNote %0 Cumhuriyet Üniversitesi Fen-Edebiyat Fakültesi Fen Bilimleri Dergisi Improvement studies on neutron-gamma separation in HPGe detectors by using neural networks %A Serkan Akkoyun , Tuncay Bayram , Seyit Kara %T Improvement studies on neutron-gamma separation in HPGe detectors by using neural networks %D 2013 %J Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi %P 1300-1949-1300-1949 %V 34 %N 1 %R %U
ISNAD Akkoyun, Serkan , Bayram, Tuncay , Kara, Seyit . "Improvement studies on neutron-gamma separation in HPGe detectors by using neural networks". Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 34 / 1 (Ocak 2013): 42-51 .
AMA Akkoyun S. , Bayram T. , Kara S. Improvement studies on neutron-gamma separation in HPGe detectors by using neural networks. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. 2013; 34(1): 42-51.
Vancouver Akkoyun S. , Bayram T. , Kara S. Improvement studies on neutron-gamma separation in HPGe detectors by using neural networks. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. 2013; 34(1): 42-51.
IEEE S. Akkoyun , T. Bayram ve S. Kara , "Improvement studies on neutron-gamma separation in HPGe detectors by using neural networks", Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, c. 34, sayı. 1, ss. 42-51, Oca. 2013