Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2015, Cilt: 36 Sayı: 5, 57 - 63, 02.03.2015
https://doi.org/10.17776/csj.56855

Öz

Kaynakça

  • Rejman M., The elements of modeling leg and monofin movements using a neural network, Acta Bioengineering and Biomechanics, 2006, 8 (1), 53-61.
  • Kutilek P., Farkasova B., Prediction of lower extremities’ movement by angle-angle diagrams and neural networks, Acta Bioengineering and Biomechanics, 2011, 13 (2), 57- 65.
  • Kaufman J.J. et al., A neural network approach for bone fracture healing assessment, IEEE Eng. Med. Biol. Mag. 1990, 9(3), 23-30.
  • Özerdem M.S., Akpolat V., Yapay Sinir Ağları ile Kemik Yoğunluğunun Sınıflandırılması, IEEE 15. Sinyal İşleme ve İletişim Uygulamaları Kurultayı, 2007, Eskişehir.
  • Haykin S., Neural networks: a comprehensive foundation, 2nd ed, Prentice-Hall, New Jersey, 1999.
  • Levenberg K.A., Method for the Solution of Certain Non-Linear Problems in Least Squares, Quart. Appl. Math., 1944, 2, 164-168.
  • Marquardt D., An Algorithm for Least-Squares Estimation of Nonlinear Parameters, SIAM J. Appl. Math., 1963, 11, 431-441.
  • Neurosolutions, http://www.neurosolutions.com/.
  • Igbigni P.S., Mutesasira A.N., Calcaneal angle in Ugandans, Clinical Anatomy, 2003, 16, 328-330.

Boehler’s Angle Estimations in Calcaneus Bone by Using Artificial Neural Networks

Yıl 2015, Cilt: 36 Sayı: 5, 57 - 63, 02.03.2015
https://doi.org/10.17776/csj.56855

Öz

Boehler’s angle has a great importance in diagnosis and treatment of calcaneus bones fractures. In this study, Boehler’s angle was estimated by using artificial neural network method. This angle was obtained from 51 well-preserved calcaneus bones which was previously measured in anatomy laboratory at Cumhuriyet University. The data values for estimation belonging to these 51 different calcaneus bones are maximum anteroposterior length, maximum height, cuboidal facet height, body height and load arm length. By using this five different parameters, ANN estimation on Boehler’s angle was performed. It is clearly seen from the results that the method is capable for the estimation.

Kaynakça

  • Rejman M., The elements of modeling leg and monofin movements using a neural network, Acta Bioengineering and Biomechanics, 2006, 8 (1), 53-61.
  • Kutilek P., Farkasova B., Prediction of lower extremities’ movement by angle-angle diagrams and neural networks, Acta Bioengineering and Biomechanics, 2011, 13 (2), 57- 65.
  • Kaufman J.J. et al., A neural network approach for bone fracture healing assessment, IEEE Eng. Med. Biol. Mag. 1990, 9(3), 23-30.
  • Özerdem M.S., Akpolat V., Yapay Sinir Ağları ile Kemik Yoğunluğunun Sınıflandırılması, IEEE 15. Sinyal İşleme ve İletişim Uygulamaları Kurultayı, 2007, Eskişehir.
  • Haykin S., Neural networks: a comprehensive foundation, 2nd ed, Prentice-Hall, New Jersey, 1999.
  • Levenberg K.A., Method for the Solution of Certain Non-Linear Problems in Least Squares, Quart. Appl. Math., 1944, 2, 164-168.
  • Marquardt D., An Algorithm for Least-Squares Estimation of Nonlinear Parameters, SIAM J. Appl. Math., 1963, 11, 431-441.
  • Neurosolutions, http://www.neurosolutions.com/.
  • Igbigni P.S., Mutesasira A.N., Calcaneal angle in Ugandans, Clinical Anatomy, 2003, 16, 328-330.
Toplam 9 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Fen Bilimleri Makalesi
Yazarlar

İlhan Otağ

Serkan Akkoyun

Yaşar Taştemur Bu kişi benim

Mehmet Çimen Bu kişi benim

Yayımlanma Tarihi 2 Mart 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 36 Sayı: 5

Kaynak Göster

APA Otağ, İ., Akkoyun, S., Taştemur, Y., Çimen, M. (2015). Boehler’s Angle Estimations in Calcaneus Bone by Using Artificial Neural Networks. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, 36(5), 57-63. https://doi.org/10.17776/csj.56855
AMA Otağ İ, Akkoyun S, Taştemur Y, Çimen M. Boehler’s Angle Estimations in Calcaneus Bone by Using Artificial Neural Networks. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. Ağustos 2015;36(5):57-63. doi:10.17776/csj.56855
Chicago Otağ, İlhan, Serkan Akkoyun, Yaşar Taştemur, ve Mehmet Çimen. “Boehler’s Angle Estimations in Calcaneus Bone by Using Artificial Neural Networks”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 36, sy. 5 (Ağustos 2015): 57-63. https://doi.org/10.17776/csj.56855.
EndNote Otağ İ, Akkoyun S, Taştemur Y, Çimen M (01 Ağustos 2015) Boehler’s Angle Estimations in Calcaneus Bone by Using Artificial Neural Networks. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 36 5 57–63.
IEEE İ. Otağ, S. Akkoyun, Y. Taştemur, ve M. Çimen, “Boehler’s Angle Estimations in Calcaneus Bone by Using Artificial Neural Networks”, Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, c. 36, sy. 5, ss. 57–63, 2015, doi: 10.17776/csj.56855.
ISNAD Otağ, İlhan vd. “Boehler’s Angle Estimations in Calcaneus Bone by Using Artificial Neural Networks”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 36/5 (Ağustos 2015), 57-63. https://doi.org/10.17776/csj.56855.
JAMA Otağ İ, Akkoyun S, Taştemur Y, Çimen M. Boehler’s Angle Estimations in Calcaneus Bone by Using Artificial Neural Networks. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. 2015;36:57–63.
MLA Otağ, İlhan vd. “Boehler’s Angle Estimations in Calcaneus Bone by Using Artificial Neural Networks”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, c. 36, sy. 5, 2015, ss. 57-63, doi:10.17776/csj.56855.
Vancouver Otağ İ, Akkoyun S, Taştemur Y, Çimen M. Boehler’s Angle Estimations in Calcaneus Bone by Using Artificial Neural Networks. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. 2015;36(5):57-63.