Research Article
BibTex RIS Cite

In vitro Experimental Study of Aqueous and Ethanolic Extracts of Selected Medicinal Plants for Free Radical Scavenging and Hypoglycemic Activity

Year 2025, Issue: Advanced Online Publication, 36 - 50

Abstract

Diabetes mellitus (DM) is a metabolic disorder characterized by persistent hyperglycemia, which results from either insufficient insulin production by pancreatic β-cells (Type I diabetes) or impaired cellular insulin responsiveness (Type II diabetes). This study aimed to qualitatively and quantitatively assess the phytochemical constituents, antioxidant potential, and both in vitro and in vivo hypoglycemic effects of specific parts of four medicinal plants, employing solvents of differing polarity; ethanol and water. The selected species included Artocarpus heterophyllus Lam., Dendrocalamus hamiltoni, Fagopyrum megacarpum H. Hara., and Urtica parviflora Roxb. Results indicated that A. heterophyllus and F. megacarpum exhibited superior total phenolic content (TPC) and total flavonoid content (TFC), correlating with significant free radical scavenging activity. In vitro analysis revealed potent α-amylase inhibitory activity of the ethanolic and aqueous extracts of F. megacarpum, with half-maximal inhibitory concentrations (IC50) of 0.136 mg/ml and 0.168 mg/ml, respectively. These findings suggest that the bioactivity of these extracts, particularly those of F. megacarpum, may be largely ascribed to their rich phenolic profiles, which confer both antioxidant and hypoglycemic properties. Given that diabetes management primarily focuses on hyperglycemia control, the concurrent mitigation of oxidative stress induced by reactive oxygen species (ROS) and reactive nitrogen species (RNS) is critical in preserving β-cell function and limiting disease progression. Thus, the present study demonstrates that plant-derived antioxidants with robust free radical scavenging activity can also serve as effective hypoglycemic agents. Moreover, the potent α-amylase inhibition observed in F. megacarpum extracts may be mediated through both antioxidant-dependent and other mechanistic pathways, underscoring their potential as natural therapeutic agents for diabetes management. Further research, including the isolation and characterization of bioactive compounds and molecular docking analyses, is warranted to develop efficacious plant-based antidiabetic therapeutics.

Ethical Statement

This study did not involve any human or animal subjects, nor were any primary cell lines or tissues used. All experiments were conducted using synthetic or acellular in vitro systems, and therefore did not require ethical approval.

Supporting Institution

This work was supported by the Department of Pharmaceutical Sciences, School of Health and Allied Sciences, Faculty of Health Science, Pokhara University, Kaski, Nepal.

Project Number

No specific project number

Thanks

The authors would like to express their gratitude to National Herbarium and Plant Laboratory, Godawari, Kathmandu, Nepal, for their cooperation in plant identification used in research. The authors are grateful to Sumy Pharmaceuticals, Nepal, and Quest Pharmaceuticals, Nepal, for providing Metformin and Voglibose as bounteous gifts.

References

  • 1. Bahmani, M., Golshahi, H., Saki, K., Rafieian-Kopaei, M., Delfan, B. & Mohammadi, T., (2014). Medicinal plants and secondary metabolites for diabetes mellitus control.Asian Pacific Journal of Tropical Disease, 4(S687-S692. https://doi.org /10.1016/S2222-1808(14)60708-8
  • 2. Baral, R., Prevention of Viral Effect and Enhancement of Immune System with the help of Herbal Plants and Himalayan Crude Drugs in SAR-COV-2 Patient; A Review. Current Perspectives on Medicinal Aromatic Plants, 4(1). 66-86. https://doi.org/10.38093/cupmap.948975
  • 3. Baral, R., Subedİ, L., Gurung, M., Sabita, O., Shrestha, B. & Jamarkattel, N., (2022). Qualitative and quantitative phytoconstituent determination, DPPH free radical lowering effect and In-vitro hypoglycemic activity study by alpha amylase enzyme assay along with membrane diffusion technique.Current Perspectives on Medicinal Aromatic Plants, 5(1). 19-35. https://doi.org/10.38093/cupmap.1111518
  • 4. Belwal, T., Ezzat, S. M., Rastrelli, L., Bhatt, I. D., Daglia, M., Baldi, A., Devkota, H. P., Orhan, I. E., Patra, J. K. & Das, G., (2018). A critical analysis of extraction techniques used for botanicals: Trends, priorities, industrial uses and optimization strategies.Trends in Analytical Chemistry, 100(82-102. https://doi.org/10.1016/j.trac.2017.12.018 5. Benariba, N., Djaziri, R., Bellakhdar, W., Belkacem, N., Kadiata, M., Malaisse, W. J. & Sener, A., (2013). Phytochemical screening and free radical scavenging activity of Citrullus colocynthis seeds extracts.Asian Pacific Journal of Tropical Biomedicine, 3(1). 35-40. https://doi.org/ 10.1016/S2221-1691(13)60020-9
  • 6. Contreras-Puentes, N. & Alvíz-Amador, A., (2020). Hypoglycaemic Property of Yacon (Smallanthus sonchifolius (Poepp. and Hendl.) H. Robinson): A Review.Pharmacognosy reviews, 14(27). 10.5530/phrev.2020.14.7
  • 7. Dzubak, P., Hajduch, M., Vydra, D., Hustova, A., Kvasnica, M., Biedermann, D., Markova, L., Urban, M. & Sarek, J., (2006). Pharmacological activities of natural triterpenoids and their therapeutic implications.Natural product reports, 23(3). 394-411. https://pubs.rsc.org/en/content/ articlelanding/2014/wn/b515312n/unauth
  • 8. Etxeberria, U., De La Garza, A. L., Campión, J., Martínez, J. A. & Milagro, F. I., (2012). Antidiabetic effects of natural plant extracts via inhibition of carbohydrate hydrolysis enzymes with emphasis on pancreatic alpha amylase.Expert opinion on therapeutic targets, 16(3). 269-297. https://doi.org/10.1517/14728222.2012.664134
  • 9. Gao, Z., Yang, X., Huang, K. & Xu, H., (2000). Free-radical scavenging and mechanism study of flavonoids extracted from the radix of Scutellaria baicalensis Georgi.Applied Magnetic Resonance, 19(35-44. https://link.springer.com/ article/10.1007/BF03162259
  • 10. Giri, B. R., Baral, R., Bhatt, H., Khadka, A., Tamrakar, R., Timalsina, G. & Gyawali, R., (2023b). Phytochemical Screening, Free-Radical Scavenging Activity, in vitro Alpha-Amylase Inhibitory Activity, and in vivo Hypoglycemic Activity Studies of Several Crude Drug Formulations Based on Selected Medicinal Plants of Nepal.Pharmaceutical Chemistry Journal, 1-10. https://link.springer.com/article/10.1007/s11094-023-02799-z
  • 11. Hendrich, A. B., (2006). Flavonoid‐membrane interactions: possible consequences for biological effects of some polyphenolic compounds 1.Acta Pharmacologica Sinica, 27(1). 27-40. https://doi.org/10.1111/j.1745-7254.2006.00238.x
  • 12. Hossain, M. A., Al-Raqmi, K. a. S., Al-Mijizy, Z. H., Weli, A. M. & Al-Riyami, Q., (2013). Study of total phenol, flavonoids contents and phytochemical screening of various leaves crude extracts of locally grown Thymus vulgaris.Asian Pacific Journal of Tropical Biomedicine, 3(9). 705-710.
  • 13. Iftikhar, A., Aslam, B., Iftikhar, M., Majeed, W., Batool, M., Zahoor, B., Amna, N., Gohar, H. & Latif, I., (2020). Effect of Caesalpinia bonduc polyphenol extract on alloxan-induced diabetic rats in attenuating hyperglycemia by upregulating insulin secretion and inhibiting JNK signaling pathway.Oxidative Medicine Cellular Longevity. https://doi.org/10.1155/2020/9020219
  • 14. Kabir, A. U., Samad, M. B., D’costa, N. M., Akhter, F., Ahmed, A. & Hannan, J. M. A., (2014). Anti-hyperglycemic activity of Centella asiatica is partly mediated by carbohydrase inhibition and glucose-fiber binding.BMC complementary alternative medicine, 14(1). 1-14. https://link.springer.com/article/10.1186/1472-6882-14-31
  • 15. Kajaria, D., Tripathi, J., Tripathi, Y. B. & Tiwari, S., (2013). In-vitro α amylase and glycosidase inhibitory effect of ethanolic extract of antiasthmatic drug—Shirishadi.Journal of advanced pharmaceutical technology research, 4(4). 206. 0.4103/2231-4040.121415
  • 16. Kashiwagi, A., Asahina, T., Nishio, Y., Ikebuchi, M., Tanaka, Y., Kikkawa, R. & Shigeta, Y., (1996). Glycation, oxidative stress, and scavenger activity: glucose metabolism and radical scavenger dysfunction in endothelial cells.Diabetes, 45(Supplement_3). S84-S86. https://doi.org/10.2337/diab.45.3.S84
  • 17. Kaul, K., Tarr, J. M., Ahmad, S. I., Kohner, E. M. & Chibber, R., (2013). Introduction to diabetes mellitus.Diabetes: an old disease, a new insight, 1-11. https://link.springer.com/ chapter/10.1007/978-1-4614-5441-0_1
  • 18. Kawasaki, E., Abiru, N., Eguchi, K. J. D. R. & Practice, C., (2004). Prevention of type 1 diabetes: from the view point of β cell damage.Diabetes Research Clinical Practice, 66(S27-S32. https://doi.org/10.1016/j.diabres.2003.09.015
  • 19. Khan, M. a. B., Hashim, M. J., King, J. K., Govender, R. D., Mustafa, H. & Al Kaabi, J., (2020). Epidemiology of type 2 diabetes–global burden of disease and forecasted trends.Journal of epidemiology global health, 10(1). 107. https://doi.org/10.2991/jegh.k.191028.001
  • 20. Lamİchhane, A., Khatrİ, S., Dhungana, M., Trİpathİ, B., Bhattraİ, N., Baral, R. & Jamarkattel, N., Qualitative and Quantitative Phytochemical Screening and Free Radical Scavenging Activity of Different Parts of Rubus ellipticus Sm.Current Perspectives on Medicinal Aromatic Plants 5(2). 106-117. https://doi.org/10.38093/cupmap.1194739
  • 21. Lathiff, S. M. A., Arriffin, N. M. & Jamil, S., (2021). Phytochemicals, pharmacological and ethnomedicinal studies of Artocarpus: A scoping review.Asian Pacific Journal of Tropical Biomedicine 11(11). 469. : 10.4103/2221-1691.328054
  • 22. Lin, H.-C., Tsai, S.-H., Chen, C.-S., Chang, Y.-C., Lee, C.-M., Lai, Z.-Y. & Lin, C.-M., (2008). Structure–activity relationship of coumarin derivatives on xanthine oxidase-inhibiting and free radical-scavenging activities.Biochemical pharmacology, 75(6). 1416-1425. https://doi.org/10.1016/j.bcp.2007.11.023
  • 23. Maritim, A., Sanders, A. & Watkins Iii, J., (2003). Diabetes, oxidative stress, and antioxidants: a review.Journal of Biochemical Molecular Toxicology, 17(1). 24-38. https://doi.org/10.1002/jbt.10058
  • 24. Mosquera, O. M., Correa, Y. M., Buitrago, D. C. & Niño, J., (2007). Antioxidant activity of twenty five plants from Colombian biodiversity.Memorias do Instituto Oswaldo Cruz, 102. 631-634. https://doi.org/10.1590/S0074-02762007005000066
  • 25. Musa, K. H., Abdullah, A. & Al-Haiqi, A., (2016). Determination of DPPH free radical scavenging activity: application of artificial neural networks.Food Chemistry, 194. 705-711. https://doi.org/10.1016/j.foodchem.2015.08.038
  • 26. Mustafa, R., Hamid, A. A., Mohamed, S. & Bakar, F. A., (2010). Total phenolic compounds, flavonoids, and radical scavenging activity of 21 selected tropical plants.Journal of food science, 75(1). C28-C35. https://doi.org/10.1111/j.1750-3841.2009.01401.x
  • 27. Ozougwu, J., Obimba, K., Belonwu, C. & Unakalamba, C. J. J. P. P., (2013). The pathogenesis and pathophysiology of type 1 and type 2 diabetes mellitus.J Physiol Pathophysiol, 4(4). 46-57. DOI 10.5897/JPAP2013.0001
  • 28. Pandey, B., Baral, R., Kaundinnyayana, A. & Panta, S., (2023). Promising hepatoprotective agents from the natural sources: a study of scientific evidence. Egyptian Liver Journal, 13(1). 1-26. https://link.springer.com/article/10.1186/s43066-023-00248-w
  • 29. Pandey, S., Sah, S. P., Sah, M. L. & Mishra, D., (2010). An antioxidant potential of hydromethanolic extract of urtica parviflora roxb.Journal of basic clinical pharmacy, 1(3). 191. https://pmc.ncbi.nlm.nih.gov/articles/PMC3979195/pdf/JBCP-1-191.pdf
  • 30. Pękal, A. & Pyrzynska, K., (2014). Evaluation of aluminium complexation reaction for flavonoid content assay. Food Analytical Methods, 7. 1776-1782. https://link.springer.com/article/10.1007/s12161-014-9814-x
  • 31. Pisoschi, A. M. & Pop, A., (2015). The role of antioxidants in the chemistry of oxidative stress: A review.European journal of medicinal chemistry, 97. 55-74. https://doi.org/10.1016/j.ejmech.2015.04.040 32. Prabhakar, P. & Mukesh, D., (2008). Mechanism of action of medicinal plants towards diabetes mellitus-a review. Phytopharmacology therapeutic values IV, 181-204. https://www.cabidigitallibrary.org/doi/full/10.5555/20083117479
  • 33. Prabhakar, P. K. & Doble, M., (2011). Mechanism of action of natural products used in the treatment of diabetes mellitus.Chinese journal of integrative medicine, 17. 563-574. https://link.springer.com/article/10.1007/s11655-011-0810-3
  • 34. Reuser, A. & Wisselaar, H., (1994). An evaluation of the potential side‐effects of α‐glucosidase inhibitors used for the management of diabetes mellitus.European journal of clinical investigation, 24(S3). 19-24. https://doi.org/10.1111/j.1365-2362.1994.tb02251.x
  • 35. Salleh, N. H., Zulkipli, I. N., Mohd Yasin, H., Ja’afar, F., Ahmad, N., Wan Ahmad, W. a. N. & Ahmad, S. R., (2021). Systematic review of medicinal plants used for treatment of diabetes in human clinical trials: an ASEAN perspective.Evidence-Based Complementary Alternative Medicine, 2021. https://doi.org/10.1155/2021/5570939
  • 36. Sun, L., Wang, Y. & Miao, M., (2020). Inhibition of α-amylase by polyphenolic compounds: Substrate digestion, binding interactions and nutritional intervention.Trends in Food Science Technology, 104. 190-207. https://doi.org/10.1016/j.tifs.2020.08.003
  • 37. Surya, S., Salam, A. D., Tomy, D. V., Carla, B., Kumar, R. A. & Sunil, C., (2014). Diabetes mellitus and medicinal plants-a review.Asian Pacific Journal of Tropical Disease, 4(5). 337-347. https://doi.org/10.1016/S2222-1808(14)60585-5
  • 38. Taha, M., Javid, M. T., Imran, S., Selvaraj, M., Chigurupati, S., Ullah, H., Rahim, F., Khan, F., Mohammad, J. I. & Khan, K. M., (2017). Synthesis and study of the α-amylase inhibitory potential of thiadiazole quinoline derivatives.Bioorganic chemistry, 74. 179-186. https://doi.org/10.1016/j.bioorg.2017.08.003
  • 39. Venkatesh, S., Madhava Reddy, B., Dayanand Reddy, G., Mullangi, R. & Lakshman, M., (2010). Antihyperglycemic and hypolipidemic effects of Helicteres isora roots in alloxan-induced diabetic rats: a possible mechanism of action.Journal of natural medicines, 64. 295-304. https://link.springer.com/article/10.1007/s11418-010-0406-9
  • 40. Wink, M., (2015). Modes of action of herbal medicines and plant secondary metabolites.Medicines, 2(3). 251-286. https://doi.org/10.3390/medicines2030251
  • 41. Yang, C.-Y., Yen, Y.-Y., Hung, K.-C., Hsu, S.-W., Lan, S.-J. & Lin, H.-C., (2019). Inhibitory effects of pu-erh tea on alpha glucosidase and alpha amylase: a systemic review.Nutrition Diabetes, 9(1). 23. https://www.nature.com/articles/s41387-019-0092-y
  • 42. Zhao, C., Yang, C., Wai, S. T. C., Zhang, Y., P. Portillo, M., Paoli, P., Wu, Y., San Cheang, W., Liu, B. & Carpéné, C., (2019). Regulation of glucose metabolism by bioactive phytochemicals for the management of type 2 diabetes mellitus.Critical Reviews in Food Science Nutrition, 59(6). 830-847. https://doi.org/10.1080/10408398.2018.150165
There are 40 citations in total.

Details

Primary Language English
Subjects Pharmacognosy
Journal Section Research Article
Authors

Prakash Rawal 0009-0008-8895-4269

Rishiram Baral 0000-0003-3701-1873

Sushil Panta 0000-0002-8401-4471

Project Number No specific project number
Submission Date June 27, 2025
Acceptance Date July 26, 2025
Early Pub Date July 28, 2025
Published in Issue Year 2025 Issue: Advanced Online Publication

Cite

APA Rawal, P., Baral, R., & Panta, S. (2025). In vitro Experimental Study of Aqueous and Ethanolic Extracts of Selected Medicinal Plants for Free Radical Scavenging and Hypoglycemic Activity. Current Perspectives on Medicinal and Aromatic Plants(Advanced Online Publication), 36-50. https://doi.org/10.38093/cupmap.1728419

-------------------------------------------------------------------------------------------------------------------------------

csm_neu_ezb_logo_670e8bf80b.jpg  Google_Scholar_logo_2015.PNG index_copernicus.jpg wclogo_block.png  logo.png  

Akademia_sosyal_bilimler_indeksi_logosu.gif  wide.png424-4243430_reviewers-for-these-journals-can-track-verify-and.png  orcid_logo.png?version=1&modificationDate=1473862307894&api=v2  1*mvsP194Golg0Dmo2rjJ-oQ.jpeg  aji.png citefactor-e1553074491226.png    logo1.jpg  semantci.png

-------------------------------------------------------------------------------------------------------------------------

88x31.png CUPMAP Journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

-----------------------------------------------------------------------------------------------------------------------------------------

Open_Access_PLoS.svg

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or  use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.