Year 2024,
Volume: 7 Issue: 2, 127 - 134
Vasiu Aurel
,
Carmen Sandru
,
Emoke Pall
,
Florina Marian
,
Diana Olah
,
Emilia Ungureanu
,
Marina Spinu
References
- 1. Bîlbîie V., Pozsgi N. 1987. Bacteriologie medicală, Vol. I-II, Ed. Medicală, Bucureşti.
- 2. Bukharin OV, Chelpachenko OE, Usviatsov BIa, Zykova LS, Valyshev AV, Fomicheva SV, Tarasevich AV, Perunova NB, Mikhaĭlova EA. 2003. Effect of medicinal plants on the antilysozyme activity of microorganisms. Antibiot Khimioter.;48(5):11-4.
- 3. Ferraboschi P, Ciceri S, Grisenti P. 2021. Applications of Lysozyme, an Innate Immune Defense Factor, as an Alternative Antibiotic. Antibiotics.; 10(12):1534. https://doi.org/10.3390/antibiotics1012153
- 4. Khorshidian N, Khanniri E, Koushki MR, Sohrabvandi S, Yousefi M. 2022. An Overview of Antimicrobial Activity of Lysozyme and Its Functionality in Cheese. Front Nutr.; 9:833618. doi: 10.3389/fnut.2022.833618.
- 5. Potapova T.V., Spolianski J.V., Nisambaev K.N. - 1988 - Veterinarija, Moskva, 6, 60-62.
- 6. Rainer H. 1984. Lysozym und Immunoglobulinbestimmungen in Tracheobronchialsekret von Pferden mit chronische obstructiver Bronchiolitis, teză de doctorat , Hanover.
- 7. Roitt I.M. 1991. Essential immunology, Blackwell Scientific Publications, 179-203.
- 8. Spînu M., Degen A.A. 1999. Haematological and immunological variables in a domesticated and wild subspecies of ostrich (Struthio camelus), British Poultry Science,40: 613–618.
- 9. Stites D.P., Terr A.I. 1991. Basic & Clinical Immunology, Lange Medical Books, 632-633.
10. Baron F., Nau F., Guérin-Dubiard C., Bonnassie S., Gautier M., Andrews S. C., Jan S. 2016, Egg white versus Salmonella Enteritidis! A harsh medium meets a resilient pathogen, Food Microbiology, Volume 53 (B): 82-93, https://doi.org/10.1016/j.fm.2015.09.009.
- 11. Callewaert, L., Michiels, C.W. Lysozymes in the animal kingdom. (2010). J Biosci 35, 127–160. https://doi.org/10.1007/s12038-010-0015-5
- 12. Gutiérrez T. J. (2019). Chapter 19 - Antibiofilm Enzymes as an Emerging Technology for Food Quality and Safety, Editor(s): Mohammed Kuddus, Enzymes in Food Biotechnology, Academic Press, 321-342, https://doi.org/10.1016/B978-0-12-813280-7.00019-0.
- 13. Juneja, V. K., Dwivedi, H. P., Yan, X. (2012). Novel natural food antimicrobials. Annual review of food science and technology, 3, 381–403. https://doi.org/10.1146/annurev-food-022811-101241
- 14. Leśnierowski G., Yang T. Lysozyme and its modified forms: A critical appraisal of selected properties and potential, Trends in Food Science & Technology,Volume 107, 2021, 333-342, https://doi.org/10.1016/j.tifs.2020.11.004.
- 15. Lollike, K., Kjeldsen, L., Sengeløv, H., Borregaard, N. (1995). Lysozyme in human neutrophils and plasma. A parameter of myelopoietic activity. Leukemia, 9(1), 159–164.
- 16. Mani-López E., Palou E., López-Malo A., 2016. Preservatives: Classifications and Analysis, in Encyclopedia of Food and Health, Editor(s): Benjamin Caballero, Paul M. Finglas, Fidel Toldrá, Academic Press, 497-504, https://doi.org/10.1016/B978-0-12-384947-2.00567-5.
- 17. Morrison H. (2021). Chapter 22 - Lysozyme, Editor(s): Harry Morrison, Enzyme Active Sites and their Reaction Mechanisms, Academic Press, 121-127, https://doi.org/10.1016/B978-0-12-821067-3.00022-2.
- 18. Nawaz, N., Wen, S., Wang, F., Nawaz, S., Raza, J., Iftikhar, M., Usman, M. (2022). Lysozyme and Its Application as Antibacterial Agent in Food Industry. Molecules (Basel, Switzerland), 27(19), 6305.
https://doi.org/10.3390/molecules27196305
- 19. Ragland S.A., Criss A.K. (2017). From bacterial killing to immune modulation: Recent insights into the functions of lysozyme. PLoS Pathogens ;13:e1006512. doi: 10.1371/ journal.ppat.1006512.
- 20. Syngai G. G., Ahmed G. (2019). Chapter 11 - Lysozyme: A Natural Antimicrobial Enzyme of Interest in Food Applications, Editor(s): Mohammed Kuddus, Enzymes in Food Biotechnology, Academic Press, Pages 169-179, https://doi.org/10.1016/B978-0-12-813280-7.00011-6
- 21. Tagashira, A., Nishi, K., Matsumoto, S., Sugahara, T. (2018). Anti-inflammatory effect of lysozyme from hen egg white on mouse peritoneal macrophages. Cytotechnology, 70(3), 929–938. https://doi.org/10.1007 /s10616-017-0184-2
- 22. Thallinger B., Prasetyo E.N., Nyanhongo G.S., Guebitz G.M. (2013) Antimicrobial enzymes: an emerging strategy to fight microbes and microbial biofilms. Biotechnol J. 8:97–109. doi: 10.1002/biot.201200313
- 23. Wu T., Jiang Q., Wu D., Hu Y., Chen S., Ding T., Ye X., Liu D., Chen J. (2019). What is new in lysozyme research and its application in food industry? A review, Food Chemistry,274:698-709, https://doi.org/10.1016/j.foodchem.2018.09.017.
- 24. Carbone D., Faggio C. (2016) Importance of prebiotics in aquaculture as immunostimulants. Effects on immune system of Sparus aurata and Dicentrarchus labrax, Fish & Shellfish Immunology, 54:172-178, https://doi.org/10.1016/j.fsi.2016.04.011.
- 25. Matouskova, P., Marova, I., Bokrova, J., Benesova, P. (2016). Effect of Encapsulation on Antimicrobial Activity of Herbal Extracts with Lysozyme. Food technology and biotechnology, 54(3), 304–316. https://doi.org/10.17113/ftb.54.03.16.4413
- 26. Daglia M. (2012). Polyphenols as antimicrobial agents. Curr Opin Biotechnol.;23:174–81. 10.1016/j.copbio.2011.08.007
- 27. Cushnie T.P.T., Lamb A.J. (2005). Antimicrobial activity of flavonoids. Int J Antimicrob Agents.;26:343–56. 10.1016/j.ijantimicag.2005.09.002
- 28. Azhar, M.K., Anwar, S., Hasan, G.M., Shamsi, A., Islam, A., Parvez, S., Hassan, M.I. (2023) Comprehensive Insights into Biological Roles of Rosmarinic Acid: Implications in Diabetes, Cancer and Neurodegenerative Diseases. Nutrients, 15, 4297. https://doi.org/10.3390/nu15194297
- 29. Abedi, F., Razavi, B. M., Hosseinzadeh, H. (2020). A review on gentisic acid as a plant derived phenolic acid and metabolite of aspirin: Comprehensive pharmacology, toxicology, and some pharmaceutical aspects. Phytotherapy research : PTR, 34(4), 729–741. https://doi.org/10.1002/ptr.6573
- 30. Li H., Pan Y., Li C., Yang Z., Rao J., Chen B. (2023). Lysozyme–phenolics bioconjugates with antioxidant and antibacterial bifunctionalities: Structural basis underlying the dual-function, Food Chemistry, 406,135070, https://doi.org/10.1016 /j.foodchem.2022.135070.
- 31. Rutherford, S. T., Bassler, B. L. (2012). Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harbor perspectives in medicine, 2(11), a012427.
https://doi.org/10.1101/cshperspect.a012427
- 32. Stefanetti, V., Passamonti, F., Rampacci, E. Antimicrobial strategies proposed for the treatment of S. pseudintermedius and other dermato-pathogenic Staphylococcus spp. in Companion Animals: A Narrative Review. Vet. Sci. 2024, 11, 311. https://doi.org/10.3390/ vetsci11070311
- 33. https://apps.who.int/food-additives-contaminants-jecfa-database/Home/ Chemical/3398
- 34. https://openknowledge.fao.org/server/api/core/bitstreams/0e4fcdcd-0979-447c-a88f-f357365490a1/content
- 35. Sharma P. C., Kalkal M. (2018) Chapter 13 - Nutraceutical and Medicinal Importance of Seabuckthorn (Hippophae sp.), in Therapeutic, Probiotic, and Unconventional Foods, Editor(s): Alexandru Mihai Grumezescu, Alina Maria Holban, Academic Press, 227-253, https://doi.org/10.1016/B978-0-12-814625-5.00021-2.
- 36. Criste, A., Urcan, A. C., Bunea, A., Pripon Furtuna, F. R., Olah, N. K., Madden, R. H., & Corcionivoschi, N. (2020). Phytochemical Composition and Biological Activity of Berries and Leaves from Four Romanian Sea Buckthorn (Hippophae Rhamnoides L.) Varieties. Molecules (Basel, Switzerland), 25(5), 1170. https://doi.org/10.3390/molecules25051170
- 37. Mogodan A., Petrea S.M., Simionov I.A., Nică A., Cristea D., Neculiță M. (2020) Effect of rosemary, sea buckthorn and ginger as feed additive on hematological profile and some biochemical parameters of Oreochromis niloticus species, Scientific Papers. Series D. Animal Science. Vol. LXIII, No. 1, 2020 ISSN 2285-5750
- 38. Stef L., Dumitrescu G., Drinceanu D., Stef D., Mot D., Julean C., Tetileanu R., Corcionivoschi N. (2009).The effect of medicinal plants and plant extracted oils on broiler duodenum morphology and immunological profile, Romanian Biotechnological Letters, 14(4): 4606-4614
- 39. Lebedev S., Kazakova, T., Marshinskaia, O. (2024). Cytokine and immunoglobulin profiles of Arbor Acres broiler chickens at different stages of physiological development. Veterinary World. 17. 988-993. 10.14202/vetworld.2024.988-993.
- Hrynkiewicz, R., Bębnowska, D., Niedźwiedzka-Rystwej, P. (2020). Myeloperoxidase and Lysozymes as a Pivotal Hallmark of Immunity Status in Rabbits. Animals : an open access journal from MDPI, 10(9), 1581. https://doi.org/10.3390/ani10091581
DIFFERENTIATED IN VITRO LYSOZYME ACTIVITY IN AVES AND MAMMALIA IN RESPONSE TO SEABUCKTHORN (HIPPOPHAE RHAMNOIDES) STIMULATION
Year 2024,
Volume: 7 Issue: 2, 127 - 134
Vasiu Aurel
,
Carmen Sandru
,
Emoke Pall
,
Florina Marian
,
Diana Olah
,
Emilia Ungureanu
,
Marina Spinu
Abstract
Lysozyme, an intrinsic component of the immune system, is a naturally occurring enzyme with antimicrobial activity (Khorshidian et al., 2022), by hydrolyzing the muramyl dipeptide in the bacteria cell wall. Considered to be an endogenous antibiotic, it differs by species (Ferraboschi et al., 2021). Some of the medicinal plants were cited to inhibit the anti-lysozyme activity and biofilm formation by bacteria (Bukharin et al., 2003).
The aim of this research was to evaluate the differences in the in vitro activity of lysozyme between the classes Aves and Mammalia when treated with a protein-carotenoid extract of Hypopphae rhamnoides compared to well-known immune modulating preparations (selenium or selenium and copper compounds).
The investigations were carried out on serum samples from: a) commercial broiler chickens aged 34 days (n = 19) and b) 5-month-old Supercunirom breed male rabbits (n = 19). The agar gel radial immune diffusion method and the Micrococcus lysodeicticus test strain were used to define the in vitro lysozyme activity. The sera were mixed with serial dilutions (1:2, 1:4, etc.) of the tested compounds. The groups were compared by Student’s t test for statistical significance of the results. He increase in activity (%) versus control were calculated.
Sea buckthorn extract significantly (t= 7.22, p < 0.001) decreased the in vitro activity of lysozyme at both dilutions used (1:2, 1:4). The concentration of serum lysozyme was higher in rabbits than in chickens and its lytic activity was enhanced by selenium and copper combinations in chickens (183.69 ± 37.91%) and less in rabbits (128.45 ± 84.10%) in a dose dependent manner. At lower dilutions (3:4), the lysozyme activity remained below that of the control treated with saline.
The protein-carotenoid extract of sea buckthorn acted inhibiting on lysozyme activity, proving the need for tailored extraction and treatment protocols depending on the bacteria and host species.
Ethical Statement
The animals involved in the experiment were subjected to blood sampling only once, with care for their welfare and health, the minimal amount of blood being sampled from each individual. The procedure used for sampling was the usual one for current checks in the tested species on antibody titers against infectious diseases, approved by the National Veterinary and Food Safety Authority.
Supporting Institution
University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
Thanks
The authors wish to thank for laboratory assistance to biotechnologist eng. Elena Marian and for technical support to senior technician Traian Jucan.
References
- 1. Bîlbîie V., Pozsgi N. 1987. Bacteriologie medicală, Vol. I-II, Ed. Medicală, Bucureşti.
- 2. Bukharin OV, Chelpachenko OE, Usviatsov BIa, Zykova LS, Valyshev AV, Fomicheva SV, Tarasevich AV, Perunova NB, Mikhaĭlova EA. 2003. Effect of medicinal plants on the antilysozyme activity of microorganisms. Antibiot Khimioter.;48(5):11-4.
- 3. Ferraboschi P, Ciceri S, Grisenti P. 2021. Applications of Lysozyme, an Innate Immune Defense Factor, as an Alternative Antibiotic. Antibiotics.; 10(12):1534. https://doi.org/10.3390/antibiotics1012153
- 4. Khorshidian N, Khanniri E, Koushki MR, Sohrabvandi S, Yousefi M. 2022. An Overview of Antimicrobial Activity of Lysozyme and Its Functionality in Cheese. Front Nutr.; 9:833618. doi: 10.3389/fnut.2022.833618.
- 5. Potapova T.V., Spolianski J.V., Nisambaev K.N. - 1988 - Veterinarija, Moskva, 6, 60-62.
- 6. Rainer H. 1984. Lysozym und Immunoglobulinbestimmungen in Tracheobronchialsekret von Pferden mit chronische obstructiver Bronchiolitis, teză de doctorat , Hanover.
- 7. Roitt I.M. 1991. Essential immunology, Blackwell Scientific Publications, 179-203.
- 8. Spînu M., Degen A.A. 1999. Haematological and immunological variables in a domesticated and wild subspecies of ostrich (Struthio camelus), British Poultry Science,40: 613–618.
- 9. Stites D.P., Terr A.I. 1991. Basic & Clinical Immunology, Lange Medical Books, 632-633.
10. Baron F., Nau F., Guérin-Dubiard C., Bonnassie S., Gautier M., Andrews S. C., Jan S. 2016, Egg white versus Salmonella Enteritidis! A harsh medium meets a resilient pathogen, Food Microbiology, Volume 53 (B): 82-93, https://doi.org/10.1016/j.fm.2015.09.009.
- 11. Callewaert, L., Michiels, C.W. Lysozymes in the animal kingdom. (2010). J Biosci 35, 127–160. https://doi.org/10.1007/s12038-010-0015-5
- 12. Gutiérrez T. J. (2019). Chapter 19 - Antibiofilm Enzymes as an Emerging Technology for Food Quality and Safety, Editor(s): Mohammed Kuddus, Enzymes in Food Biotechnology, Academic Press, 321-342, https://doi.org/10.1016/B978-0-12-813280-7.00019-0.
- 13. Juneja, V. K., Dwivedi, H. P., Yan, X. (2012). Novel natural food antimicrobials. Annual review of food science and technology, 3, 381–403. https://doi.org/10.1146/annurev-food-022811-101241
- 14. Leśnierowski G., Yang T. Lysozyme and its modified forms: A critical appraisal of selected properties and potential, Trends in Food Science & Technology,Volume 107, 2021, 333-342, https://doi.org/10.1016/j.tifs.2020.11.004.
- 15. Lollike, K., Kjeldsen, L., Sengeløv, H., Borregaard, N. (1995). Lysozyme in human neutrophils and plasma. A parameter of myelopoietic activity. Leukemia, 9(1), 159–164.
- 16. Mani-López E., Palou E., López-Malo A., 2016. Preservatives: Classifications and Analysis, in Encyclopedia of Food and Health, Editor(s): Benjamin Caballero, Paul M. Finglas, Fidel Toldrá, Academic Press, 497-504, https://doi.org/10.1016/B978-0-12-384947-2.00567-5.
- 17. Morrison H. (2021). Chapter 22 - Lysozyme, Editor(s): Harry Morrison, Enzyme Active Sites and their Reaction Mechanisms, Academic Press, 121-127, https://doi.org/10.1016/B978-0-12-821067-3.00022-2.
- 18. Nawaz, N., Wen, S., Wang, F., Nawaz, S., Raza, J., Iftikhar, M., Usman, M. (2022). Lysozyme and Its Application as Antibacterial Agent in Food Industry. Molecules (Basel, Switzerland), 27(19), 6305.
https://doi.org/10.3390/molecules27196305
- 19. Ragland S.A., Criss A.K. (2017). From bacterial killing to immune modulation: Recent insights into the functions of lysozyme. PLoS Pathogens ;13:e1006512. doi: 10.1371/ journal.ppat.1006512.
- 20. Syngai G. G., Ahmed G. (2019). Chapter 11 - Lysozyme: A Natural Antimicrobial Enzyme of Interest in Food Applications, Editor(s): Mohammed Kuddus, Enzymes in Food Biotechnology, Academic Press, Pages 169-179, https://doi.org/10.1016/B978-0-12-813280-7.00011-6
- 21. Tagashira, A., Nishi, K., Matsumoto, S., Sugahara, T. (2018). Anti-inflammatory effect of lysozyme from hen egg white on mouse peritoneal macrophages. Cytotechnology, 70(3), 929–938. https://doi.org/10.1007 /s10616-017-0184-2
- 22. Thallinger B., Prasetyo E.N., Nyanhongo G.S., Guebitz G.M. (2013) Antimicrobial enzymes: an emerging strategy to fight microbes and microbial biofilms. Biotechnol J. 8:97–109. doi: 10.1002/biot.201200313
- 23. Wu T., Jiang Q., Wu D., Hu Y., Chen S., Ding T., Ye X., Liu D., Chen J. (2019). What is new in lysozyme research and its application in food industry? A review, Food Chemistry,274:698-709, https://doi.org/10.1016/j.foodchem.2018.09.017.
- 24. Carbone D., Faggio C. (2016) Importance of prebiotics in aquaculture as immunostimulants. Effects on immune system of Sparus aurata and Dicentrarchus labrax, Fish & Shellfish Immunology, 54:172-178, https://doi.org/10.1016/j.fsi.2016.04.011.
- 25. Matouskova, P., Marova, I., Bokrova, J., Benesova, P. (2016). Effect of Encapsulation on Antimicrobial Activity of Herbal Extracts with Lysozyme. Food technology and biotechnology, 54(3), 304–316. https://doi.org/10.17113/ftb.54.03.16.4413
- 26. Daglia M. (2012). Polyphenols as antimicrobial agents. Curr Opin Biotechnol.;23:174–81. 10.1016/j.copbio.2011.08.007
- 27. Cushnie T.P.T., Lamb A.J. (2005). Antimicrobial activity of flavonoids. Int J Antimicrob Agents.;26:343–56. 10.1016/j.ijantimicag.2005.09.002
- 28. Azhar, M.K., Anwar, S., Hasan, G.M., Shamsi, A., Islam, A., Parvez, S., Hassan, M.I. (2023) Comprehensive Insights into Biological Roles of Rosmarinic Acid: Implications in Diabetes, Cancer and Neurodegenerative Diseases. Nutrients, 15, 4297. https://doi.org/10.3390/nu15194297
- 29. Abedi, F., Razavi, B. M., Hosseinzadeh, H. (2020). A review on gentisic acid as a plant derived phenolic acid and metabolite of aspirin: Comprehensive pharmacology, toxicology, and some pharmaceutical aspects. Phytotherapy research : PTR, 34(4), 729–741. https://doi.org/10.1002/ptr.6573
- 30. Li H., Pan Y., Li C., Yang Z., Rao J., Chen B. (2023). Lysozyme–phenolics bioconjugates with antioxidant and antibacterial bifunctionalities: Structural basis underlying the dual-function, Food Chemistry, 406,135070, https://doi.org/10.1016 /j.foodchem.2022.135070.
- 31. Rutherford, S. T., Bassler, B. L. (2012). Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harbor perspectives in medicine, 2(11), a012427.
https://doi.org/10.1101/cshperspect.a012427
- 32. Stefanetti, V., Passamonti, F., Rampacci, E. Antimicrobial strategies proposed for the treatment of S. pseudintermedius and other dermato-pathogenic Staphylococcus spp. in Companion Animals: A Narrative Review. Vet. Sci. 2024, 11, 311. https://doi.org/10.3390/ vetsci11070311
- 33. https://apps.who.int/food-additives-contaminants-jecfa-database/Home/ Chemical/3398
- 34. https://openknowledge.fao.org/server/api/core/bitstreams/0e4fcdcd-0979-447c-a88f-f357365490a1/content
- 35. Sharma P. C., Kalkal M. (2018) Chapter 13 - Nutraceutical and Medicinal Importance of Seabuckthorn (Hippophae sp.), in Therapeutic, Probiotic, and Unconventional Foods, Editor(s): Alexandru Mihai Grumezescu, Alina Maria Holban, Academic Press, 227-253, https://doi.org/10.1016/B978-0-12-814625-5.00021-2.
- 36. Criste, A., Urcan, A. C., Bunea, A., Pripon Furtuna, F. R., Olah, N. K., Madden, R. H., & Corcionivoschi, N. (2020). Phytochemical Composition and Biological Activity of Berries and Leaves from Four Romanian Sea Buckthorn (Hippophae Rhamnoides L.) Varieties. Molecules (Basel, Switzerland), 25(5), 1170. https://doi.org/10.3390/molecules25051170
- 37. Mogodan A., Petrea S.M., Simionov I.A., Nică A., Cristea D., Neculiță M. (2020) Effect of rosemary, sea buckthorn and ginger as feed additive on hematological profile and some biochemical parameters of Oreochromis niloticus species, Scientific Papers. Series D. Animal Science. Vol. LXIII, No. 1, 2020 ISSN 2285-5750
- 38. Stef L., Dumitrescu G., Drinceanu D., Stef D., Mot D., Julean C., Tetileanu R., Corcionivoschi N. (2009).The effect of medicinal plants and plant extracted oils on broiler duodenum morphology and immunological profile, Romanian Biotechnological Letters, 14(4): 4606-4614
- 39. Lebedev S., Kazakova, T., Marshinskaia, O. (2024). Cytokine and immunoglobulin profiles of Arbor Acres broiler chickens at different stages of physiological development. Veterinary World. 17. 988-993. 10.14202/vetworld.2024.988-993.
- Hrynkiewicz, R., Bębnowska, D., Niedźwiedzka-Rystwej, P. (2020). Myeloperoxidase and Lysozymes as a Pivotal Hallmark of Immunity Status in Rabbits. Animals : an open access journal from MDPI, 10(9), 1581. https://doi.org/10.3390/ani10091581