Research Article
BibTex RIS Cite

Year 2025, Volume: 8 Issue: 2, 51 - 59

Abstract

References

  • 1. Andrews J. M. (2001). Determination of minimum inhibitory concentrations. The Journal of antimicrobial chemotherapy, 48 Suppl 1, 5–16. https://doi.org/10.1093/jac/48.suppl_1.5
  • 2. Bigos, M., Wasiela, M., Kalemba, D., & Sienkiewicz, M. (2012). Antimicrobial Activity of Geranium Oil against Clinical Strains of Staphylococcus aureus. Molecules, 17(9), 10276-10291. https:// doi.org/ 10.3390/ molecules170910276
  • 3. Boyen F., Eeckhaut V., Van Immerseel F., Pasmans F., Ducatelle R., Haesebrouck F. (2009) Quorum sensing in veterinary pathogens : mechanisms, clinical importance and future perspectives, Veterinary Microbiology. Vol. 135. pag. 187-195.
  • 4. CLSI. M100 (2019) Performance Standars for Antimicrobial Susceptibility Testing, 29th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA,.
  • 5. Cox, H. U., Hoskins, J. D., Newman, S. S., Foil, C. S., Turnwald, G. H., Roy, A. F. (1988). Temporal study of staphylococcal species on healthy dogs. American journal of veterinary research, 49(6), 747–751.
  • 6. Damborg, P., Moodley, A., Aalbaek, B., Nielsen, S. S., Guardabassi, L. (2016). Bacterial zoonoses transmitted by household pets: state-of-the-art and future perspectives for targeted research and policy. Veterinary Microbiology, 182, 1-12. https://doi.org/10.1016/j.jcpa.2015.03.004
  • 7. Ebani, V. V., Bertelloni, F., Najar, B., Nardoni, S., Pistelli, L., & Mancianti, F. (2020). Antimicrobial Activity of Essential Oils against Staphylo-coccus and Malassezia Strains Isolated from Canine Dermatitis. Microorganisms, 8(2), 252. https:// doi.org/10.3390/microorganisms8020252
  • 8. Ebani, V. V., Mancianti, F. (2020). Use of Essential Oils in Veterinary Medicine to Combat Bacterial and Fungal Infections. Veterinary sciences, 7(4), 193. https://doi.org/10.3390 /vetsci7040193
  • 9. Edwards-Jones, V., Buck, R., Shawcross, S. G., Dawson, M. M., & Dunn, K. (2004). The effect of essential oils on methicillin-resistant Staphylococcus aureus using a dressing model. Burns : journal of the International Society for Burn Injuries, 30(8), 772–777. https://doi.org/ 10.1016/j.burns.2004.06.006
  • 10. Foster T. Staphylococcus. (1996) In: Baron S, editor. Medical Microbiology. 4th edition. Galveston (TX): University of Texas Medical Branch at Galveston; Chapter 12. Available from: https://www.ncbi.nlm.nih.gov/books/NBK8448/
  • 11. Gharaibeh, M. H., Khalifeh, M. S., Zattout, E. M., & Abu-Qatouseh, L. F. (2019). Potential antimicrobial effect of plant essential oils and virulence genes expression in methicillin-resistant Staphylococcus aureus isolates. Veterinary world, 13(4), 669–675. https://doi.org/10.14202/vetworld.2020.669-675
  • 12. Goossens H, Ferech M, Vander Stichele R. (2005) Outpatient antibiotic use in Europe and association with resistance: across-national database study Lancet 365:579–87
  • 13. Hartmann, F. A., White, D. G., West, S. E., Walker, R. D., Deboer, D. J. (2005). Molecular characterization of Staphylococcus intermedius carriage by healthy dogs and comparison of antimicrobial susceptibility patterns to isolates from dogs with pyoderma. Veterinary microbiology, 108(1-2), 119–131. https://doi.org/ 10.1016/j.vetmic. 2005.03.006
  • 14. Jorgensen, J. H., Turnidge J. D. (2007) Susceptibility test methods: dilution and disk diffusion methods, p. 1152–1172. In P. R. Murray, E. J. Baron, J. H. Jorgensen, M. L. Landry, and M. A. Pfaller (ed.), Manual of clinical microbiology, 9th ed. ASM Press, Washington, D.C.
  • 15. Leonard, F. C., & Markey, B. K. (2008). Meticillin-resistant Staphylococcus aureus in animals: a review. Veterinary Journal, 175(1), 27-36. https://doi.org/10.1016/j.tvjl.2006.11.008.
  • 16. Mutai, C., Bii, C., Vagias, C., Abatis, D., & Roussis, V. (2009). Antimicrobial activity of Acacia mellifera extracts and lupane triterpenes. Journal of ethnopharmacology, 123(1), 143–148. https://doi.org/10.1016/j.jep.2009.02.007
  • 17. Neisari, N., Sharifzadeh, A., Fasaei, B. N., Asadi, S., Khosravi, A., Rafati Zomorodi, A., & Malakootikhah, J. (2025). Evaluating the Antimicrobial and Antibiofilm Efficacy of Lavender Essential Oil and Linalool on Dual Candida albicans Biofilms With Staphylococcus aureus and Staphylococcus epidermidis From Canine External Otitis. Veterinary medicine and science, 11(3), e70407. https://doi.org/10.1002/vms3.70407
  • 18. Nocera, F. P., Mancini, S., Najar, B., Bertelloni, F., Pistelli, L., De Filippis, A., Fiorito, F., De Martino, L., & Fratini, F. (2020). Antimicrobial Activity of Some Essential Oils against Methicillin-Susceptible and Methicillin-Resistant Staphylococcus pseudintermedius-Associated Pyoderma in Dogs. Animals : an open access journal from MDPI, 10(10), 1782. https://doi.org/10.3390/ ani10101782
  • 19. Prescott J.F. (2014) The resistance tsunami, antimicrobial stewardship, and the golden age of microbiology, Vet Microbiol. 2014 171(3-4):273-278.
  • 20. Ríos, J. L., Recio, M. C. (2005). Medicinal plants and antimicrobial activity. Journal of ethno-pharmacology, 100(1-2), 80–84. https://doi. org/10.1016/j.jep.2005.04.025
  • 21. Rodríguez-Melcón, C., Alonso-Calleja, C., García-Fernández, C., Carballo, J., & Capita, R. (2022). Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) for Twelve Antimicrobials (Biocides and Antibiotics) in Eight Strains of Listeria monocytogenes. Biology, 11(1), 46. https://doi.org/ 10.3390/biology11010046
  • 22. Sezener Kabay, M. G., Inal, S., Gökmen, S., Ergüden, V. E., Fındık, A., Güvenç, T., Kayhan, H., & Güvenç, D. (2024). Antibacterial Effects of Essential Oils on P. aeruginosa, Methicillin-Resistant S. aureus, and Staphylococcus spp. Isolated from Dog Wounds. Pharmaceuticals, 17(11), 1494. https:// doi. org /10.3390/ph17111494
  • 23. Truong, S., & Mudgil, P. (2023). The antibacterial effectiveness of lavender essential oil against methicillin-resistant Staphylococcus aureus: a systematic review. Frontiers in pharmacology, 14, 1306003. https://doi.org/10.3389/fphar.2023. 1306003
  • 24. Wang, X., Shen, Y., Thakur, K., Han, J., Zhang, J. G., Hu, F., & Wei, Z. J. (2020). Antibacterial Activity and Mechanism of Ginger Essential Oil against Escherichia coli and Staphylococcus aureus. Molecules (Basel, Switzerland), 25(17), 3955. https://doi.org/10.3390 /molecules 25173955
  • 25. http://www.who.int/mediacentre/factsheets/antibiotic-resistance/en/

The Antimicrobial Potential of Certain Essential Oils Against Antibiotic Resistant Staphylococcus spp. Strains in Dogs

Year 2025, Volume: 8 Issue: 2, 51 - 59

Abstract

Objective: This study monitored the level of antimicrobial resistance levels as well as the susceptibility to some essential oils in commensal, but potentially zoonotic Staphylococcus species isolated from healthy dogs’ skin.
Material and Methods: The study was conducted on 24 dogs (n = 24), of various ages, from two habitats differentiated by the frequency of antibiotic usage. To identify the bacterial strains and their susceptibility to antimicrobial agents against nine antibiotics the Kirby Bauer disc diffusion and Vitek 2 Compact system were implied. The in vitro activity of essential oils of dill (Anethum graveolens), ginger (Zingiber officinale), geranium (Geranium spp), lavender (Lavandula angustifolia) was tested by aromatogram and quantifying the minimal inhibitory (MIC) and minimal bactericidal (MBC) concentrations. Student’s t- test was used to calculate the statistical significance of the differences.
Results and Discussion: Using classical microbiological methods, 12 strains belonging to Staphylococcus genus were isolated. Nine strains of S. pseudintermedius (p<0.01), and one strain of each S. aureus, S. xylosus, and S. equorum were identified, against which amikacin proved to be most effective. The highest anti-staphyococcal efficacy was recorded in the essential oil of geranium, while the lowest activity was noted for the dill oil (p< 0.05-0.001).
Conclusion: Geranium essential oil, which proved to be the most effective, offers, through its more bactericidal than bacteriostatic capacity, the possibility of interrupting the transfer of antibiotic resistance genes following preventive use. The biological activity of the tested extracts was plantand bacterial species dependent.

References

  • 1. Andrews J. M. (2001). Determination of minimum inhibitory concentrations. The Journal of antimicrobial chemotherapy, 48 Suppl 1, 5–16. https://doi.org/10.1093/jac/48.suppl_1.5
  • 2. Bigos, M., Wasiela, M., Kalemba, D., & Sienkiewicz, M. (2012). Antimicrobial Activity of Geranium Oil against Clinical Strains of Staphylococcus aureus. Molecules, 17(9), 10276-10291. https:// doi.org/ 10.3390/ molecules170910276
  • 3. Boyen F., Eeckhaut V., Van Immerseel F., Pasmans F., Ducatelle R., Haesebrouck F. (2009) Quorum sensing in veterinary pathogens : mechanisms, clinical importance and future perspectives, Veterinary Microbiology. Vol. 135. pag. 187-195.
  • 4. CLSI. M100 (2019) Performance Standars for Antimicrobial Susceptibility Testing, 29th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA,.
  • 5. Cox, H. U., Hoskins, J. D., Newman, S. S., Foil, C. S., Turnwald, G. H., Roy, A. F. (1988). Temporal study of staphylococcal species on healthy dogs. American journal of veterinary research, 49(6), 747–751.
  • 6. Damborg, P., Moodley, A., Aalbaek, B., Nielsen, S. S., Guardabassi, L. (2016). Bacterial zoonoses transmitted by household pets: state-of-the-art and future perspectives for targeted research and policy. Veterinary Microbiology, 182, 1-12. https://doi.org/10.1016/j.jcpa.2015.03.004
  • 7. Ebani, V. V., Bertelloni, F., Najar, B., Nardoni, S., Pistelli, L., & Mancianti, F. (2020). Antimicrobial Activity of Essential Oils against Staphylo-coccus and Malassezia Strains Isolated from Canine Dermatitis. Microorganisms, 8(2), 252. https:// doi.org/10.3390/microorganisms8020252
  • 8. Ebani, V. V., Mancianti, F. (2020). Use of Essential Oils in Veterinary Medicine to Combat Bacterial and Fungal Infections. Veterinary sciences, 7(4), 193. https://doi.org/10.3390 /vetsci7040193
  • 9. Edwards-Jones, V., Buck, R., Shawcross, S. G., Dawson, M. M., & Dunn, K. (2004). The effect of essential oils on methicillin-resistant Staphylococcus aureus using a dressing model. Burns : journal of the International Society for Burn Injuries, 30(8), 772–777. https://doi.org/ 10.1016/j.burns.2004.06.006
  • 10. Foster T. Staphylococcus. (1996) In: Baron S, editor. Medical Microbiology. 4th edition. Galveston (TX): University of Texas Medical Branch at Galveston; Chapter 12. Available from: https://www.ncbi.nlm.nih.gov/books/NBK8448/
  • 11. Gharaibeh, M. H., Khalifeh, M. S., Zattout, E. M., & Abu-Qatouseh, L. F. (2019). Potential antimicrobial effect of plant essential oils and virulence genes expression in methicillin-resistant Staphylococcus aureus isolates. Veterinary world, 13(4), 669–675. https://doi.org/10.14202/vetworld.2020.669-675
  • 12. Goossens H, Ferech M, Vander Stichele R. (2005) Outpatient antibiotic use in Europe and association with resistance: across-national database study Lancet 365:579–87
  • 13. Hartmann, F. A., White, D. G., West, S. E., Walker, R. D., Deboer, D. J. (2005). Molecular characterization of Staphylococcus intermedius carriage by healthy dogs and comparison of antimicrobial susceptibility patterns to isolates from dogs with pyoderma. Veterinary microbiology, 108(1-2), 119–131. https://doi.org/ 10.1016/j.vetmic. 2005.03.006
  • 14. Jorgensen, J. H., Turnidge J. D. (2007) Susceptibility test methods: dilution and disk diffusion methods, p. 1152–1172. In P. R. Murray, E. J. Baron, J. H. Jorgensen, M. L. Landry, and M. A. Pfaller (ed.), Manual of clinical microbiology, 9th ed. ASM Press, Washington, D.C.
  • 15. Leonard, F. C., & Markey, B. K. (2008). Meticillin-resistant Staphylococcus aureus in animals: a review. Veterinary Journal, 175(1), 27-36. https://doi.org/10.1016/j.tvjl.2006.11.008.
  • 16. Mutai, C., Bii, C., Vagias, C., Abatis, D., & Roussis, V. (2009). Antimicrobial activity of Acacia mellifera extracts and lupane triterpenes. Journal of ethnopharmacology, 123(1), 143–148. https://doi.org/10.1016/j.jep.2009.02.007
  • 17. Neisari, N., Sharifzadeh, A., Fasaei, B. N., Asadi, S., Khosravi, A., Rafati Zomorodi, A., & Malakootikhah, J. (2025). Evaluating the Antimicrobial and Antibiofilm Efficacy of Lavender Essential Oil and Linalool on Dual Candida albicans Biofilms With Staphylococcus aureus and Staphylococcus epidermidis From Canine External Otitis. Veterinary medicine and science, 11(3), e70407. https://doi.org/10.1002/vms3.70407
  • 18. Nocera, F. P., Mancini, S., Najar, B., Bertelloni, F., Pistelli, L., De Filippis, A., Fiorito, F., De Martino, L., & Fratini, F. (2020). Antimicrobial Activity of Some Essential Oils against Methicillin-Susceptible and Methicillin-Resistant Staphylococcus pseudintermedius-Associated Pyoderma in Dogs. Animals : an open access journal from MDPI, 10(10), 1782. https://doi.org/10.3390/ ani10101782
  • 19. Prescott J.F. (2014) The resistance tsunami, antimicrobial stewardship, and the golden age of microbiology, Vet Microbiol. 2014 171(3-4):273-278.
  • 20. Ríos, J. L., Recio, M. C. (2005). Medicinal plants and antimicrobial activity. Journal of ethno-pharmacology, 100(1-2), 80–84. https://doi. org/10.1016/j.jep.2005.04.025
  • 21. Rodríguez-Melcón, C., Alonso-Calleja, C., García-Fernández, C., Carballo, J., & Capita, R. (2022). Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) for Twelve Antimicrobials (Biocides and Antibiotics) in Eight Strains of Listeria monocytogenes. Biology, 11(1), 46. https://doi.org/ 10.3390/biology11010046
  • 22. Sezener Kabay, M. G., Inal, S., Gökmen, S., Ergüden, V. E., Fındık, A., Güvenç, T., Kayhan, H., & Güvenç, D. (2024). Antibacterial Effects of Essential Oils on P. aeruginosa, Methicillin-Resistant S. aureus, and Staphylococcus spp. Isolated from Dog Wounds. Pharmaceuticals, 17(11), 1494. https:// doi. org /10.3390/ph17111494
  • 23. Truong, S., & Mudgil, P. (2023). The antibacterial effectiveness of lavender essential oil against methicillin-resistant Staphylococcus aureus: a systematic review. Frontiers in pharmacology, 14, 1306003. https://doi.org/10.3389/fphar.2023. 1306003
  • 24. Wang, X., Shen, Y., Thakur, K., Han, J., Zhang, J. G., Hu, F., & Wei, Z. J. (2020). Antibacterial Activity and Mechanism of Ginger Essential Oil against Escherichia coli and Staphylococcus aureus. Molecules (Basel, Switzerland), 25(17), 3955. https://doi.org/10.3390 /molecules 25173955
  • 25. http://www.who.int/mediacentre/factsheets/antibiotic-resistance/en/
There are 25 citations in total.

Details

Primary Language English
Subjects Industrial Crops
Journal Section Research Articles
Authors

Diana Olah 0000-0002-1943-3119

Adrian Valentin Potarniche 0000-0002-7749-8543

Emoke Pall 0000-0002-7919-7381

Emilia Ungureanu 0000-0003-3438-8931

Florina Marian 0000-0002-6111-7881

Vasiu Aurel 0000-0002-3160-8401

Marina Spinu 0000-0003-0005-9638

Early Pub Date July 28, 2025
Publication Date November 19, 2025
Submission Date July 23, 2025
Acceptance Date July 26, 2025
Published in Issue Year 2025 Volume: 8 Issue: 2

Cite

APA Olah, D., Potarniche, A. V., Pall, E., … Ungureanu, E. (2025). The Antimicrobial Potential of Certain Essential Oils Against Antibiotic Resistant Staphylococcus spp. Strains in Dogs. Current Perspectives on Medicinal and Aromatic Plants, 8(2), 51-59.

-------------------------------------------------------------------------------------------------------------------------------

csm_neu_ezb_logo_670e8bf80b.jpg  Google_Scholar_logo_2015.PNG index_copernicus.jpg wclogo_block.png  logo.png  

Akademia_sosyal_bilimler_indeksi_logosu.gif  wide.png424-4243430_reviewers-for-these-journals-can-track-verify-and.png  orcid_logo.png?version=1&modificationDate=1473862307894&api=v2  1*mvsP194Golg0Dmo2rjJ-oQ.jpeg  aji.png citefactor-e1553074491226.png    logo1.jpg  semantci.png

-------------------------------------------------------------------------------------------------------------------------

88x31.png CUPMAP Journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

-----------------------------------------------------------------------------------------------------------------------------------------

Open_Access_PLoS.svg

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or  use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.