Research Article
BibTex RIS Cite

Year 2025, Volume: 5 Issue: 4, 113 - 120
https://doi.org/10.56016/dahudermj.1737156

Abstract

References

  • 1. Bengelloun AK, Ortega GJ, Ancochea J, Sanz-Garcia A, Rodríguez-Serrano DA, Fernández-Jiménez G, et al. Usefulness of the CONUT index upon hospital admission as a potential prognostic indicator of COVID-19 health outcomes. Chin Med J (Engl). 2021;26;135(2):187-93. doi:10.1097/ CM9.0000000000001798.
  • 2. Zhang L, Liu Y. Potential interventions for novel coronavirus in China: a systematic review. J Med Virol. 2020;92(5):479-90. doi:10.1002/jmv.25707.
  • 3. Correia MITD, Waitzberg DL. The impact of malnutrition on morbidity, mortality, length of hospital stay, and costs was evaluated through a multivariate model analysis. Clin Nutr. 2003;22(3):235-9. doi:10.1016/s02615614(02)00215-7.
  • 4. Westergren A, Lindholm C, Axelsson C, Ulander K. Prevalence of eating difficulties and malnutrition among persons within hospital care and special accommodations. J Nutr Health Aging. 2008;12(1):39-43. doi:10.1007/BF02982162.
  • 5. Ignacio de Ulíbarri J, González-Madroño A, de Villar NGP, González P, González B, Mancha A, et al. CONUT: A tool for controlling nutritional status. First validation in a hospital population. Nutr Hosp. 2005;20(1):38-45. PMID:15762418.
  • 6. Wei C, Liu Y, Li Y, Zhang Y, Zhong M, Meng X. Evaluation of the nutritional status in patients with COVID-19. J Clin Biochem Nutr. 2020;67(2):116-21. doi:10.3164/jcbn.20-91.
  • 7. Wang R, He M, Yue J, Bai L, Liu D, Huang Z, Zhu T, Kang Y. CONUT score is associated with mortality in patients with COVID-19: a retrospective study in Wuhan [preprint]. Research Square. 2020;12. doi:10.21203/rs.3.rs-32889/v1.
  • 8. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: A severity of disease classification system. Crit Care Med. 1985 Oct;13(10):818-29. PMID:3928249.
  • 9. Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, et al. The SOFA (Sepsisrelated Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Med. 1996;22(7):707-10. doi:10.1007/BF01709751.
  • 10. Sargento L, Longo S, Lousada N, dos Reis RP. The importance of assessing nutritional status in elderly patients with heart failure. Curr Heart Fail Rep. 2014;11(2):220-6. doi:10.1007/s11897-014-0189-5.
  • 11. Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Singlecell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020;14(2):185-92. doi:10.1007/s11684-020-0754-0.
  • 12. Thibault R, Seguin P, Tamion F, Pichard C, Singer P. Nutrition of the COVID-19 patient in the intensive care unit (ICU): a practical guidance. Crit Care. 2020;20;24(1):447. doi:10.1186/s13054-020-03159-z.
  • 13. Arentz M, Yim E, Klaff L, Lokhandwala S, Riedo FX, Chong M, et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington State. JAMA. 2020;28;323(16):1612-4. doi:10.1001/jama.2020.4326.
  • 14. Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475-81. doi:10.1016/S2213-2600(20)30079-5.
  • 15. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020;26;323(20):2052-9. doi:10.1001/jama.2020.6775.
  • 16. Wang R, He M, Yue J, Bai L, Liu D, Huang Z, et al. CONUT score is associated with mortality in patients with COVID-19: a retrospective study in Wuhan. Res Sq [Preprint]. 2020;8. doi:10.21203/rs.3.rs-32889/v1.
  • 17. Bodolea C, Nemes A, Avram L, Craciun R, Coman M, Ene-Cocis M, et al. Nutritional risk assessment scores effectively predict mortality in critically ill patients with severe COVID-19. Nutrients. 2022;10;14(10):2105. doi:10.3390/nu14102105.
  • 18. Alhazzani W, Møller MH, Arabi YM, Loeb M, Gong MN, Fan E, et al. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19). Crit Care Med. 2020;48(6):e440-69. doi:10.1097/CCM.0000000000004363.
  • 19. Wolfe KS, Patel BK, MacKenzie EL, Giovanni SP, Pohlman AS, Churpek MM, et al. Impact of Vasoactive Medications on ICU-Acquired Weakness in Mechanically Ventilated Patients. Chest. 2018;154:781–787. doi:10.1016/j.chest.2018.07.016
  • 20. Xie J, Tong Z, Guan X, Du B, Qiu H, Slutsky AS. Critical care crisis and some recommendations during the COVID-19 epidemic in China. Intensive Care Med. 2020;46(5):837-40. doi:10.1007/s00134-020-05979-7.
  • 21. Fox S, Vashisht R, Siuba M, Dugar S. Evaluation and management of shock in patients with COVID-19. Cleve Clin J Med. 2020;17. doi:10.3949/ccjm.87a.ccc052.
  • 22. Honda H, Qureshi AR, Heimbürger O, Barany P, Wang K, Pecoits-Filho R, et al. Serum albumin, C-reactive protein, interleukin 6, and fetuin A as predictors of malnutrition, cardiovascular disease, and mortality in patients with ESRD. Am J Kidney Dis. 2006;47(1):139-48. doi:10.1053/j.ajkd.2005.09.014.
  • 23. Margarson MP, Soni N. Serum albumin: touchstone or totem? Anaesthesia. 1998;53(8):789-803. doi:10.1046/j.1365-2044.1998.00438.x.
  • 24. Vicente Conesa MA, Garcia-Martinez E, Gonzalez Billalabeitia E, Chaves Benito A, Garcia Garcia T, Vicente Garcia V, et al. Predictive value of peripheral blood lymphocyte count in breast cancer patients treated with primary chemotherapy. Breast. 2012;21(5):468-74. doi:10.1016/j.breast.2011.11.002.
  • 25. Ulldemolins M, Roberts JA, Rello J, Paterson DL, Lipman J. The effects of hypoalbuminaemia on optimizing antibacterial dosing in critically ill patients. Clin Pharmacokinet. 2011;50(2):99-110. doi:10.2165/11539220-000000000-00000.
  • 26. Thongprayoon C, Cheungpasitporn W, Chewcharat A, Mao MA, Thirunavukkarasu S, Kashani KB. Risk of acute respiratory failure among hospitalized patients with various admission serum albumin levels: a cohort study. Medicine (Baltimore). 2020;99(26):e19352. doi:10.1097/MD.0000000000019352.
  • 27. Violi F, Cangemi R, Romiti GF, Ceccarelli G, Oliva A, Alessandri F, et al. Is albumin predictor of mortality in COVID-19? Antioxid Redox Signal. 2021;1;35(2):139-42. doi:10.1089/ars.2020.8142.
  • 28. Issever K, Genc AC, Cekic D, Yildirim I, Genc AB, Yaylaci S. Prealbumin: a new biomarker for predicting prognosis in patients with severe COVID-19. J Coll Physicians Surg Pak. 2021;31(Suppl 2):S99-103. doi:10.29271/jcpsp.2021.Supp2.S99.
  • 29. Mubarak A, Alturaiki W, Hemida MG. Middle East respiratory syndrome coronavirus (MERS-CoV): infection, immunological response, and vaccine development. J Immunol Res. 2019;31;2019(1):6491738. doi:10.1155/2019/6491738.
  • 30. Tan L, Wang Q, Zhang D, Ding J, Huang Q, Tang YQ, et al. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Transduct Target Ther. 2020;27;5(1):33. doi:10.1038/s41392-020-0148-4.
  • 31. Bentz MH, Magnette J. Hypocholestérolémie au cours de la phase aiguë de la réaction inflammatoire d’origine infectieuse: à propos de 120 cas. Rev Med Interne. 1998;19(2):168-72. doi:10.1016/s0248-8663(97)80715-1.
  • 32. Hofmaenner DA, Arina P, Kleyman A, Page Black L, Salomao R, Tanaka S, et al. Association between hypocholesterolemia and mortality in critically ill patients with sepsis: a systematic review and meta-analysis. Crit Care Explor. 2023;5(2):e0860. doi:10.1097/CCE.0000000000000860.
  • 33. Hofmaenner DA, Kleyman A, Press A, Bauer M, Singer M. The many roles of cholesterol in sepsis: a review. Am J Respir Crit Care Med. 2022;15;205(4):388-96. doi:10.1164/rccm.202105-1197TR.
  • 34. Mitani A, Iwai T, Shichinohe T, Takeda H, Kumagai S, Nishida M, et al. The combined usage of the Global Leadership Initiative on Malnutrition criteria and Controlling Nutrition Status score in acute care hospitals. Ann Nutr Metab. 2021;77(3):178-84.doi:10.1159/000516994.
  • 35. Gamarra-Morales Y, Molina-López J, Machado-Casas JF, Herrera-Quintana L, Vázquez-Lorente H, Castaño-Pérez J, et al. Influence of nutritional parameters on the evolution, severity and prognosis of critically ill patients with COVID-19. Nutrients. 2022;6;14(24):5363. doi:10.3390/nu14245363.

The Relationship Between Nutritional Status Control (CONUT) Score and Mortality in COVID-19 Infection

Year 2025, Volume: 5 Issue: 4, 113 - 120
https://doi.org/10.56016/dahudermj.1737156

Abstract

Background: COVID-19, a transmissible disease, has prompted global emergency responses and contributed to widespread outbreaks. Nutritional status is critical in infection defense, as malnutrition elevates risk and mortality. The Controlling Nutritional Status (CONUT) score assesses nutritional health and prognosis. This study investigates the association between the CONUT score and mortality in COVID-19 patients.
Methods: Medical records of 502 COVID-19 patients over 18 at Sakarya University Hospital’s ICU from January to December 2021 were reviewed. Data included demographics, comorbidities, laboratory results, ICU interventions, and mortality. Nutritional status was assessed using the CONUT score based on serum albumin, cholesterol, and lymphocyte counts, ranging from 0 to 12, with classifications for normal to severe malnutrition. Chi-square tests were used to compare categorical variables between two groups.
Results: The study comprised 502 COVID-19 patients, with a 34.6% survival rate. Mean age was 69.9±14.4 years. The length of ICU stay differed significantly between survivors and non-survivors (p = 0.013). Albumin levels were significantly lower in the non-survivors (p=0.002). Vasoactive infusion, inotropes, APACHE-II, and SOFA
scores were significantly higher in non-survivors (p < 0.001). Mortality risk was significantly higher for vasopressor infusion, endotracheal intubation, and non-invasive ventilatory support (p<0.001). The CONUT score showed significant differences between survivors and non-survivors (p < 0.001), particularly between mild and moderate/severe malnutrition (p < 0.001).
Conclusion: The CONUT score allows for early prognosis prediction in patients, enabling the treatment course to be tailored accordingly.

References

  • 1. Bengelloun AK, Ortega GJ, Ancochea J, Sanz-Garcia A, Rodríguez-Serrano DA, Fernández-Jiménez G, et al. Usefulness of the CONUT index upon hospital admission as a potential prognostic indicator of COVID-19 health outcomes. Chin Med J (Engl). 2021;26;135(2):187-93. doi:10.1097/ CM9.0000000000001798.
  • 2. Zhang L, Liu Y. Potential interventions for novel coronavirus in China: a systematic review. J Med Virol. 2020;92(5):479-90. doi:10.1002/jmv.25707.
  • 3. Correia MITD, Waitzberg DL. The impact of malnutrition on morbidity, mortality, length of hospital stay, and costs was evaluated through a multivariate model analysis. Clin Nutr. 2003;22(3):235-9. doi:10.1016/s02615614(02)00215-7.
  • 4. Westergren A, Lindholm C, Axelsson C, Ulander K. Prevalence of eating difficulties and malnutrition among persons within hospital care and special accommodations. J Nutr Health Aging. 2008;12(1):39-43. doi:10.1007/BF02982162.
  • 5. Ignacio de Ulíbarri J, González-Madroño A, de Villar NGP, González P, González B, Mancha A, et al. CONUT: A tool for controlling nutritional status. First validation in a hospital population. Nutr Hosp. 2005;20(1):38-45. PMID:15762418.
  • 6. Wei C, Liu Y, Li Y, Zhang Y, Zhong M, Meng X. Evaluation of the nutritional status in patients with COVID-19. J Clin Biochem Nutr. 2020;67(2):116-21. doi:10.3164/jcbn.20-91.
  • 7. Wang R, He M, Yue J, Bai L, Liu D, Huang Z, Zhu T, Kang Y. CONUT score is associated with mortality in patients with COVID-19: a retrospective study in Wuhan [preprint]. Research Square. 2020;12. doi:10.21203/rs.3.rs-32889/v1.
  • 8. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: A severity of disease classification system. Crit Care Med. 1985 Oct;13(10):818-29. PMID:3928249.
  • 9. Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, et al. The SOFA (Sepsisrelated Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Med. 1996;22(7):707-10. doi:10.1007/BF01709751.
  • 10. Sargento L, Longo S, Lousada N, dos Reis RP. The importance of assessing nutritional status in elderly patients with heart failure. Curr Heart Fail Rep. 2014;11(2):220-6. doi:10.1007/s11897-014-0189-5.
  • 11. Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Singlecell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020;14(2):185-92. doi:10.1007/s11684-020-0754-0.
  • 12. Thibault R, Seguin P, Tamion F, Pichard C, Singer P. Nutrition of the COVID-19 patient in the intensive care unit (ICU): a practical guidance. Crit Care. 2020;20;24(1):447. doi:10.1186/s13054-020-03159-z.
  • 13. Arentz M, Yim E, Klaff L, Lokhandwala S, Riedo FX, Chong M, et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington State. JAMA. 2020;28;323(16):1612-4. doi:10.1001/jama.2020.4326.
  • 14. Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475-81. doi:10.1016/S2213-2600(20)30079-5.
  • 15. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020;26;323(20):2052-9. doi:10.1001/jama.2020.6775.
  • 16. Wang R, He M, Yue J, Bai L, Liu D, Huang Z, et al. CONUT score is associated with mortality in patients with COVID-19: a retrospective study in Wuhan. Res Sq [Preprint]. 2020;8. doi:10.21203/rs.3.rs-32889/v1.
  • 17. Bodolea C, Nemes A, Avram L, Craciun R, Coman M, Ene-Cocis M, et al. Nutritional risk assessment scores effectively predict mortality in critically ill patients with severe COVID-19. Nutrients. 2022;10;14(10):2105. doi:10.3390/nu14102105.
  • 18. Alhazzani W, Møller MH, Arabi YM, Loeb M, Gong MN, Fan E, et al. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19). Crit Care Med. 2020;48(6):e440-69. doi:10.1097/CCM.0000000000004363.
  • 19. Wolfe KS, Patel BK, MacKenzie EL, Giovanni SP, Pohlman AS, Churpek MM, et al. Impact of Vasoactive Medications on ICU-Acquired Weakness in Mechanically Ventilated Patients. Chest. 2018;154:781–787. doi:10.1016/j.chest.2018.07.016
  • 20. Xie J, Tong Z, Guan X, Du B, Qiu H, Slutsky AS. Critical care crisis and some recommendations during the COVID-19 epidemic in China. Intensive Care Med. 2020;46(5):837-40. doi:10.1007/s00134-020-05979-7.
  • 21. Fox S, Vashisht R, Siuba M, Dugar S. Evaluation and management of shock in patients with COVID-19. Cleve Clin J Med. 2020;17. doi:10.3949/ccjm.87a.ccc052.
  • 22. Honda H, Qureshi AR, Heimbürger O, Barany P, Wang K, Pecoits-Filho R, et al. Serum albumin, C-reactive protein, interleukin 6, and fetuin A as predictors of malnutrition, cardiovascular disease, and mortality in patients with ESRD. Am J Kidney Dis. 2006;47(1):139-48. doi:10.1053/j.ajkd.2005.09.014.
  • 23. Margarson MP, Soni N. Serum albumin: touchstone or totem? Anaesthesia. 1998;53(8):789-803. doi:10.1046/j.1365-2044.1998.00438.x.
  • 24. Vicente Conesa MA, Garcia-Martinez E, Gonzalez Billalabeitia E, Chaves Benito A, Garcia Garcia T, Vicente Garcia V, et al. Predictive value of peripheral blood lymphocyte count in breast cancer patients treated with primary chemotherapy. Breast. 2012;21(5):468-74. doi:10.1016/j.breast.2011.11.002.
  • 25. Ulldemolins M, Roberts JA, Rello J, Paterson DL, Lipman J. The effects of hypoalbuminaemia on optimizing antibacterial dosing in critically ill patients. Clin Pharmacokinet. 2011;50(2):99-110. doi:10.2165/11539220-000000000-00000.
  • 26. Thongprayoon C, Cheungpasitporn W, Chewcharat A, Mao MA, Thirunavukkarasu S, Kashani KB. Risk of acute respiratory failure among hospitalized patients with various admission serum albumin levels: a cohort study. Medicine (Baltimore). 2020;99(26):e19352. doi:10.1097/MD.0000000000019352.
  • 27. Violi F, Cangemi R, Romiti GF, Ceccarelli G, Oliva A, Alessandri F, et al. Is albumin predictor of mortality in COVID-19? Antioxid Redox Signal. 2021;1;35(2):139-42. doi:10.1089/ars.2020.8142.
  • 28. Issever K, Genc AC, Cekic D, Yildirim I, Genc AB, Yaylaci S. Prealbumin: a new biomarker for predicting prognosis in patients with severe COVID-19. J Coll Physicians Surg Pak. 2021;31(Suppl 2):S99-103. doi:10.29271/jcpsp.2021.Supp2.S99.
  • 29. Mubarak A, Alturaiki W, Hemida MG. Middle East respiratory syndrome coronavirus (MERS-CoV): infection, immunological response, and vaccine development. J Immunol Res. 2019;31;2019(1):6491738. doi:10.1155/2019/6491738.
  • 30. Tan L, Wang Q, Zhang D, Ding J, Huang Q, Tang YQ, et al. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Transduct Target Ther. 2020;27;5(1):33. doi:10.1038/s41392-020-0148-4.
  • 31. Bentz MH, Magnette J. Hypocholestérolémie au cours de la phase aiguë de la réaction inflammatoire d’origine infectieuse: à propos de 120 cas. Rev Med Interne. 1998;19(2):168-72. doi:10.1016/s0248-8663(97)80715-1.
  • 32. Hofmaenner DA, Arina P, Kleyman A, Page Black L, Salomao R, Tanaka S, et al. Association between hypocholesterolemia and mortality in critically ill patients with sepsis: a systematic review and meta-analysis. Crit Care Explor. 2023;5(2):e0860. doi:10.1097/CCE.0000000000000860.
  • 33. Hofmaenner DA, Kleyman A, Press A, Bauer M, Singer M. The many roles of cholesterol in sepsis: a review. Am J Respir Crit Care Med. 2022;15;205(4):388-96. doi:10.1164/rccm.202105-1197TR.
  • 34. Mitani A, Iwai T, Shichinohe T, Takeda H, Kumagai S, Nishida M, et al. The combined usage of the Global Leadership Initiative on Malnutrition criteria and Controlling Nutrition Status score in acute care hospitals. Ann Nutr Metab. 2021;77(3):178-84.doi:10.1159/000516994.
  • 35. Gamarra-Morales Y, Molina-López J, Machado-Casas JF, Herrera-Quintana L, Vázquez-Lorente H, Castaño-Pérez J, et al. Influence of nutritional parameters on the evolution, severity and prognosis of critically ill patients with COVID-19. Nutrients. 2022;6;14(24):5363. doi:10.3390/nu14245363.
There are 35 citations in total.

Details

Primary Language English
Subjects ​Internal Diseases
Journal Section Research Articles
Authors

Hüseyin Özkök 0000-0001-9948-4233

Şeyma Şenocak 0009-0003-7756-324X

Özlem Aktürk 0009-0008-9747-1082

Ahmed Cihad Genç 0000-0002-7725-707X

Deniz Çekiç 0000-0002-7114-9334

Yusuf Durmaz 0000-0002-3455-2722

Ahmed Bilal Genç 0000-0002-1607-6355

Selçuk Yaylacı 0000-0002-6768-7973

Early Pub Date October 28, 2025
Publication Date October 29, 2025
Submission Date July 8, 2025
Acceptance Date October 19, 2025
Published in Issue Year 2025 Volume: 5 Issue: 4

Cite

EndNote Özkök H, Şenocak Ş, Aktürk Ö, Genç AC, Çekiç D, Durmaz Y, Genç AB, Yaylacı S (October 1, 2025) The Relationship Between Nutritional Status Control (CONUT) Score and Mortality in COVID-19 Infection. DAHUDER Medical Journal 5 4 113–120.

INDEXING & ABSTRACTING & ARCHIVING

        35061


DAHUDER Medical Journal, hosted by Turkish JournalPark ACADEMIC, is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

35194