Araştırma Makalesi
BibTex RIS Kaynak Göster

Gravite Anomalilerinin Hibrit Metasezgisel Algoritma ile Ters Çözümü

Yıl 2024, , 379 - 388, 27.09.2024
https://doi.org/10.21205/deufmd.2024267804

Öz

Bu çalışmada, basit geometrik şekilli cisimlerden kaynaklanan rezidüel gravite anomalilerin model parametrelerinin kestirimi için bir hibrit algoritmanın (DE/PSO) uygulaması sunulmaktadır. Bu algoritma, Farksal Evrim (DE) ve Parçacık Sürü Optimizasyonunu (PSO) birleştirmektedir. Hibrit algoritmanın performansını araştırmak için kuramsal ve arazi veri setleri kullanılarak test çalışmaları gerçekleştirilmiştir. Kuramsal veri setleri, gürültüsüz ve gürültülü sentetik anomalileri içermektedir. Arazi verileri ise literatürde yer alan Küba ve Kanada gravite anomalileridir. Hibrit algoritmada, DE ve PSO algoritmaları ayrı ayrı [ilksel] çözümler üreterek tekrarlı bir süreç boyunca en iyi çözümlerini paylaşmaktadır. Hibrit algoritmayı gerçekleştirmek için R programlama ortamında açık erişimli bir metasezgisel paket (NMOF) kullanılmıştır. DE/PSO algoritması, kuramsal anomalilerin kullanıldığı simülasyonlarda, iyileştirilmiş sonuçlar sağlamada başarılı olmuştur. Her bir algoritmadan (DE ve PSO) gelen çözümlerle karşılaştırıldığında, DE/PSO algoritmasının, doğruluk ve yakınsama açısından daha etkili olduğu görülmüştür. Gürültüsüz ve gürültülü kuramsal gravite anomalilerinin doğru model parametreleri, hibrit algoritma tarafından daha iyi bir şekilde kestirilmiştir. Arazi örnekleri için ters çözüm sonuçları, gözlenen ve hesaplanan gravite anomalileri arasında düşük hata değerlerine sahiptir.

Kaynakça

  • [1] Blum, C., Roli, A. 2003. Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM computing surveys, 35(3), 268-308. https://doi.org/10.1145/937503.937505.
  • [2] Göktürkler, G. 2011. A hybrid approach for tomographic inversion of crosshole seismic first-arrival times. Journal of Geophysics and Engineering, 8(1), 99-108. https://doi.org/10.1088/1742-2132/8/1/012.
  • [3] Göktürkler, G., Balkaya, Ç., Ekinci, Y.L., Turan, S. 2016. Metaheuristics in applied geophysics (in Turkish). Pamukkale Univ. Journal of Engineering. Sciences, 22(6), 563–580. https://doi. org/10.5505/pajes.2015.81904.
  • [4] Ekinci, Y.L., Balkaya, Ç., Göktürkler, G., Turan, S. 2016. Model parameter estimations from residual gravity anomalies due to simple-shaped sources using differential evolution algorithm. Journal of Applied Geophysics. 129, 133-147. https://doi.org/10.1016/j.jappgeo.2016.03.040.
  • [5] Ekinci, Y.L., Balkaya, Ç., Göktürkler, G., Özyalın, Ş. 2021. Gravity data inversion for the basement relief delineation through global optimization: a case study from the Aegean Graben System, western Anatolia, Turkey. Geophysical Journal International, 224(2), 923-944. https://doi.org/10.1093/gji/ggaa492.
  • [6] Roy, A., Dubey, P. C., Prasad, M. 2021. Gravity inversion for heterogeneous sedimentary basin with b-spline polynomial approximation using differential evolution algorithm. Geophysics, 86(3), F35–F47. https://doi.org/10.1190/geo2019-0779.1.
  • [7] Essa, K.S., Mehanee, S.A., Elhussein, M. 2021. Gravity data interpretation by a two-sided fault-like geologic structure using the global particle swarm technique. Physics of the Earth and Planetary Interiors, 311, 106631. https://doi.org/10.1016/j.pepi.2020.106631.
  • [8] Pallero, J.L.G., Fernandez-Martinez, J.L., Fernandez-Muniz, Z., Bonvalot, S., Gabalda, G., Nalpas, T. 2021. GRAVPSO2D:A matlab package for 2D gravity inversion in sedimentary basins using the Particle Swarm Optimization algorithm. Computers and Geosciences, 146, 104653. https://doi.org/10.1016/j.cageo.2020.104653.
  • [9] Trivedi, S., Kumar, P., Parija, M.P., Biswas, A. 2020. Global optimization of model parameters from the 2-D analytic signal of gravity and magnetic anomalies over geobodies with idealized structure. In: Biswas, A., Sharma, S. (Eds.), Advances in Modeling and Interpretation in near Surface Geophysics. Springer Geophysics. Springer, Cham, 189–221. https://doi.org/10.1007/978-3-030-28909-6_8.
  • [10] Ekinci, Y.L., Balkaya, Ç., Göktürkler, G. 2021. Backtracking Search Optimization: A novel global optimization algorithm for the inversion of gravity anomalies. Pure and Applied Geophysics, 178, 4507–4527. https://doi.org/10.1007/s00024-021-02855-3.
  • [11] Ekinci, Y.L., Balkaya, Ç., Göktürkler, G., Ai, H. 2023. 3D gravity inversion for the basement relief reconstruction through modified success–history–based adaptive differential evolution. Geophysical Journal International, 235(1), 377–400, https://doi.org/10.1093/gji/ggad222.
  • [12] Blum, C., Puchinger, J., Raidl, G.R., Roli, A. 2011. Hybrid metaheuristics in combinatorial optimization: A survey. Applied Soft Computing, 11(6), 4135-4151. https://doi.org/10.1016/j.asoc.2011.02.032.
  • [13] Talbi, EG. 2013. A Unified Taxonomy of Hybrid Metaheuristics with Mathematical Programming, Constraint Programming and Machine Learning. In: Talbi EG (ed) Hybrid Metaheuristics. Springer, Berlin, pp 3-76. https://doi.org/10.1007/978-3-642-30671-6_1.
  • [14] Ting, TO., Yang, XS., Cheng, S., Huang, K. 2015. Hybrid metaheuristic algorithms: past, present, and future. In: Yang XS (ed) Recent Advances in Swarm Intelligence and Evolutionary Computation, Studies in Computational Intelligence. Springer, Berlin, pp 71-83. https://doi.org/10.1007/978-3-319-13826-8_4.
  • [15] Li, R., Yu, N., Li, R., Zhuang, Q., Zhang, H. 2021. Transient electromagnetic inversion based on particle swarm optimization and differential evolution algorithm. Near Surface Geophysics, 19(1), 59-71. https://doi.org/10.1002/nsg.12129.
  • [16] Hosseinzadeh, S., Göktürkler, G., Turan-Karaoğlan, S. 2023. Inversion of self-potential data by a hybrid DE/PSO algorithm. Acta Geodaetica et Geophysica, 58, 241–272. https://doi.org/10.1007/s40328-023-00414-x.
  • [17] Jamasb, A., Motavalli-Anbaran, SH., Ghasemi, K. 2018. A novel hybrid algorithm of particle swarm optimization and evolution strategies for geophysical non-linear inverse problems. Pure and Applied Geophysics, 176(4), 1601-1613. https://doi.org/10.1007/s00024-018-2059-7.
  • [18] Sohouli, AN., Molhem, H., Zare-Dehnavi, N. 2022. Hybrid PSO-GA algorithm for estimation of magnetic anomaly parameters due to simple geometric structures. Pure and Applied Geophysics, 179, 2231-2254. https://doi.org/10.1007/s00024-022-03048-2.
  • [19] Di Maio, R., Rani, P., Piegari, E., Milano, M. 2016. Self-potential data inversion through a Genetic-Price algorithm. Computational Geosciences, 94, 86-95. https://doi.org/10.1016/j.cageo.2016.06.005.
  • [20] Di Maio, R., Piegari, E., Rani, P., Carbonari, R., Vitagliano, E., Milano, L. 2019. Quantitative interpretation of multiple self-potential anomaly sources by a global optimization approach. Journal of Applied Geophysics, 162, 152-163. https://doi.org/10.1016/j.jappgeo.2019.02.004.
  • [21] Di Maio, R., Milano, L., Piegari, E. 2020. Modeling of magnetic anomalies generated by simple geological structures through Genetic-Price inversion algorithm. Physics of the Earth and Planetary Interiors, 305, 106520. https://doi.org/10.1016/j.pepi.2020.106520.
  • [22] Sengupta, S., Basak, S., Peters, RA. 2018. Particle Swarm Optimization: A survey of historical and recent developments with hybridization perspectives. Machine Learning and Knowledge Extraction, 1, 157-191. https://doi.org/10.3390/make1010010.
  • [23] Shami, TM., El-Saleh, AA., Alswaitti, M., Al-Tashi, Q., Summakieh, MA., Mirjalili, S. 2022. Particle swarm optimization: A comprehensive survey. IEEE Access, Vol 10, pp 10031-10061, 2022, https://doi.org/10.1109/ACCESS.2022.3142859.
  • [24] Eltaeib, T., Mahmood, A. 2018. Differential evolution: A survey and analysis. Applied Sciences, 8, 1945. https://doi.org/10.3390/app8101945.
  • [25] Salman, A., Engelbrecht, AP., Omran, MG. 2007. Empirical analysis of self-adaptive differential evolution. European Journal of Operational Research, 183, 785-804. https://doi.org/10.1016/j.ejor.2006.10.020. [26] Gilli, M., Maringer, D., Schumann, E. 2019. Numerical Methods and Optimization in Finance. 2nd edn, Elsevier/Academic Press, Amsterdam.
  • [27] R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
  • [28] Storn, R., Price, K. 1997. Differential Evolution – a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11, 341-359. https://doi.org/10.1023/A:1008202821328.
  • [29] Balkaya, Ç. 2013. An implementation of differential evolution algorithm for inversion of geoelectrical data. Journal of Applied Geophysics, 98, 160-175. https://doi.org/10.1016/j.jappgeo.2013.08.019.
  • [30] Ekinci, Y.L., Balkaya, Ç., Göktürkler, G. 2019. Parameter estimations from gravity and magnetic anomalies due to deep-seated faults: differential evolution versus particle swarm optimization. Turkish Journal of Earth Sciences, 28(6), 860-881. https://doi.org/10.3906/yer-1905-3.
  • [31] Kennedy, J., Eberhart, R. 1995. Particle swarm optimization. In: International Conference on Neural Networks. IEEE, Piscataway, NJ, USA, November 27- December 1, pp. 1942-1948. https://doi.org/10.1109/ICNN.1995.488968.
  • [32] Göktürkler, G., Balkaya, Ç. 2012. Inversion of self-potential anomalies caused by simple geometry bodies using global optimization algorithms. Journal of Geophysics and Engineering, 9(5), 498-507. https://doi.org/10.1088/1742-2132/9/5/498.
  • [33] Abdelrahman, E.M., Bayoumi, A.I., Abdelhady, Y.E., Gobashy, M.M., El-Araby, H.M. 1989. Gravity interpretation using correlation factors between successive least-squares residual anomalies. Geophysics, 54(12), 1614-1621. https://doi.org/10.1190/1.1442629.
  • [34] Turan Karaoğlan, S., Göktürkler, G. 2022. Gravite Anomalilerinin Guguk Kuşu Arama Algoritması ile Ters Çözümü, Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 24(72), 799-813. https://doi.org/10.21205/deufmd.2022247210.
  • [35] Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Alken, P., Booth, M., Rossi, F. 2009. GNU Scientific Library Reference Manual. 3rd Edn (Bristol: Network Theory Ltd), p. 497.
  • [36] Fernández-Martínez, JL., Fernández-Muñiz, Z., Pallero, JLG., Pedruelo-González, LM. 2013. From Bayes to Tarantola: new insights to understand uncertainty in inverse problems. Journal of Applied Geophysics, 98:62-72. https://doi.org/10.1016/j.jappgeo.2013.07.005.
  • [37] Davis, W.E., Jackson, W.H., Richter, D.H. 1957. Gravity prospecting for chromite deposits in Camaguey province, Cuba. Geophysics, 22(4), 848–869. https://doi.org/10.1190/1.1438427.
  • [38] Al-Garni, M. A. 2013. Inversion of residual gravity anomalies using neural network. Arabian Journal of Geosciences. 6(5), 1509-1516. https://doi.org/10.1007/s12517-011-0452-y.
  • [39] Ekinci, Y.L., Balkaya, Ç., Göktürkler, G. 2020. Global Optimization of near-surface potential field anomalies through metaheuristics. In: Biswas, A., Sharma, S. (Eds.), Advances in Modeling and Interpretation in Near Surface Geophysics. Springer Geophysics, Springer, pp. 155–188. https://doi.org/10.1007/978-3-030-28909-6_7.
  • [40] Essa, K.S., Munschy, M. 2019. Gravity data interpretation using the particle swarm optimisation method with application to mineral exploration. Journal of Earth System Science, 128(5), 1-16. https://doi.org/10.1007/s12040-019-1143-4.
  • [41] Grant, F.S., West, G.F. 1965. Interpretation Theory in Applied Geophysics, New York: McGraw-Hill.
  • [42] Clerc, M. 1999. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. In Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), IEEE, July 6-9, Vol. 3, pp. 1951-1957. https://doi.org/10.1109/CEC.1999.785513.
  • [43] Eberhart, R.C., Shi, Y. 2000. Comparing inertia weights and constriction factors in particle swarm optimization. In Proceedings of the 2000 congress on evolutionary computation. CEC00 (Cat. No. 00TH8512), IEEE, July 16-19, Vol. 1, pp. 84-88. http://dx.doi.org/10.1109/CEC.2000.870279.
  • [44] Clerc, M., Kennedy, J. 2002. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6(1), 58-73. https://doi.org/10.1109/4235.985692.
  • [45] Trelea, IC. 2003. The particle swarm optimization algorithm: convergence analysis and parameter selection. Information Processing Letters, 85(6), 317-325. https://doi.org/10.1016/S0020-0190(02)00447-7.
  • [46] Carlisle, A., Dozier, G. 2001. An off-the-shelf PSO. In Proceedings of the Workshop on Particle Swarm Optimization, Indianapolis, IN, USA, pp. 1-6.
  • [47] Jiang, M., Luo, Y.P., Yang, S.Y. 2007. Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm. Information processing letters, 102(1), 8-16. https://doi.org/10.1016/j.ipl.2006.10.005.

Inversion of Gravity Anomalies by a Hybrid Metaheuristic Algorithm

Yıl 2024, , 379 - 388, 27.09.2024
https://doi.org/10.21205/deufmd.2024267804

Öz

In this work, we introduce application of a hybrid algorithm (DE/PSO) to estimate the model parameters from residual gravity anomalies due to some simple geometrical bodies. This algorithm combines differential evolution (DE) and particle swarm optimization (PSO). To investigate the performance of the hybrid algorithm, test studies were carried out using synthetic and field data sets. The synthetic data sets include noise-free and noisy synthetic anomalies. Two published gravity anomalies from Cuba and Canada were used as the field data. In the hybrid algorithm, DE and PSO yield [premature] solutions separately and share their best solutions during an iterative process. An openly accessible metaheuristics package (NMOF) in R programming environment was used to implement the hybrid algorithm. Through simulations using synthetic anomalies, DE/PSO algorithm was successful to provide improved results. In comparison to the solutions from the single algorithms (DE and PSO), the DE/PSO algorithm shows more effectiveness in terms of accuracy and convergence. The true model parameters of noise-free and noisy synthetic gravity anomalies were recovered well by the hybrid algorithm. The results of inversion for the field examples are characterized by low residual values between the observed gravity anomalies and the calculated ones.

Kaynakça

  • [1] Blum, C., Roli, A. 2003. Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM computing surveys, 35(3), 268-308. https://doi.org/10.1145/937503.937505.
  • [2] Göktürkler, G. 2011. A hybrid approach for tomographic inversion of crosshole seismic first-arrival times. Journal of Geophysics and Engineering, 8(1), 99-108. https://doi.org/10.1088/1742-2132/8/1/012.
  • [3] Göktürkler, G., Balkaya, Ç., Ekinci, Y.L., Turan, S. 2016. Metaheuristics in applied geophysics (in Turkish). Pamukkale Univ. Journal of Engineering. Sciences, 22(6), 563–580. https://doi. org/10.5505/pajes.2015.81904.
  • [4] Ekinci, Y.L., Balkaya, Ç., Göktürkler, G., Turan, S. 2016. Model parameter estimations from residual gravity anomalies due to simple-shaped sources using differential evolution algorithm. Journal of Applied Geophysics. 129, 133-147. https://doi.org/10.1016/j.jappgeo.2016.03.040.
  • [5] Ekinci, Y.L., Balkaya, Ç., Göktürkler, G., Özyalın, Ş. 2021. Gravity data inversion for the basement relief delineation through global optimization: a case study from the Aegean Graben System, western Anatolia, Turkey. Geophysical Journal International, 224(2), 923-944. https://doi.org/10.1093/gji/ggaa492.
  • [6] Roy, A., Dubey, P. C., Prasad, M. 2021. Gravity inversion for heterogeneous sedimentary basin with b-spline polynomial approximation using differential evolution algorithm. Geophysics, 86(3), F35–F47. https://doi.org/10.1190/geo2019-0779.1.
  • [7] Essa, K.S., Mehanee, S.A., Elhussein, M. 2021. Gravity data interpretation by a two-sided fault-like geologic structure using the global particle swarm technique. Physics of the Earth and Planetary Interiors, 311, 106631. https://doi.org/10.1016/j.pepi.2020.106631.
  • [8] Pallero, J.L.G., Fernandez-Martinez, J.L., Fernandez-Muniz, Z., Bonvalot, S., Gabalda, G., Nalpas, T. 2021. GRAVPSO2D:A matlab package for 2D gravity inversion in sedimentary basins using the Particle Swarm Optimization algorithm. Computers and Geosciences, 146, 104653. https://doi.org/10.1016/j.cageo.2020.104653.
  • [9] Trivedi, S., Kumar, P., Parija, M.P., Biswas, A. 2020. Global optimization of model parameters from the 2-D analytic signal of gravity and magnetic anomalies over geobodies with idealized structure. In: Biswas, A., Sharma, S. (Eds.), Advances in Modeling and Interpretation in near Surface Geophysics. Springer Geophysics. Springer, Cham, 189–221. https://doi.org/10.1007/978-3-030-28909-6_8.
  • [10] Ekinci, Y.L., Balkaya, Ç., Göktürkler, G. 2021. Backtracking Search Optimization: A novel global optimization algorithm for the inversion of gravity anomalies. Pure and Applied Geophysics, 178, 4507–4527. https://doi.org/10.1007/s00024-021-02855-3.
  • [11] Ekinci, Y.L., Balkaya, Ç., Göktürkler, G., Ai, H. 2023. 3D gravity inversion for the basement relief reconstruction through modified success–history–based adaptive differential evolution. Geophysical Journal International, 235(1), 377–400, https://doi.org/10.1093/gji/ggad222.
  • [12] Blum, C., Puchinger, J., Raidl, G.R., Roli, A. 2011. Hybrid metaheuristics in combinatorial optimization: A survey. Applied Soft Computing, 11(6), 4135-4151. https://doi.org/10.1016/j.asoc.2011.02.032.
  • [13] Talbi, EG. 2013. A Unified Taxonomy of Hybrid Metaheuristics with Mathematical Programming, Constraint Programming and Machine Learning. In: Talbi EG (ed) Hybrid Metaheuristics. Springer, Berlin, pp 3-76. https://doi.org/10.1007/978-3-642-30671-6_1.
  • [14] Ting, TO., Yang, XS., Cheng, S., Huang, K. 2015. Hybrid metaheuristic algorithms: past, present, and future. In: Yang XS (ed) Recent Advances in Swarm Intelligence and Evolutionary Computation, Studies in Computational Intelligence. Springer, Berlin, pp 71-83. https://doi.org/10.1007/978-3-319-13826-8_4.
  • [15] Li, R., Yu, N., Li, R., Zhuang, Q., Zhang, H. 2021. Transient electromagnetic inversion based on particle swarm optimization and differential evolution algorithm. Near Surface Geophysics, 19(1), 59-71. https://doi.org/10.1002/nsg.12129.
  • [16] Hosseinzadeh, S., Göktürkler, G., Turan-Karaoğlan, S. 2023. Inversion of self-potential data by a hybrid DE/PSO algorithm. Acta Geodaetica et Geophysica, 58, 241–272. https://doi.org/10.1007/s40328-023-00414-x.
  • [17] Jamasb, A., Motavalli-Anbaran, SH., Ghasemi, K. 2018. A novel hybrid algorithm of particle swarm optimization and evolution strategies for geophysical non-linear inverse problems. Pure and Applied Geophysics, 176(4), 1601-1613. https://doi.org/10.1007/s00024-018-2059-7.
  • [18] Sohouli, AN., Molhem, H., Zare-Dehnavi, N. 2022. Hybrid PSO-GA algorithm for estimation of magnetic anomaly parameters due to simple geometric structures. Pure and Applied Geophysics, 179, 2231-2254. https://doi.org/10.1007/s00024-022-03048-2.
  • [19] Di Maio, R., Rani, P., Piegari, E., Milano, M. 2016. Self-potential data inversion through a Genetic-Price algorithm. Computational Geosciences, 94, 86-95. https://doi.org/10.1016/j.cageo.2016.06.005.
  • [20] Di Maio, R., Piegari, E., Rani, P., Carbonari, R., Vitagliano, E., Milano, L. 2019. Quantitative interpretation of multiple self-potential anomaly sources by a global optimization approach. Journal of Applied Geophysics, 162, 152-163. https://doi.org/10.1016/j.jappgeo.2019.02.004.
  • [21] Di Maio, R., Milano, L., Piegari, E. 2020. Modeling of magnetic anomalies generated by simple geological structures through Genetic-Price inversion algorithm. Physics of the Earth and Planetary Interiors, 305, 106520. https://doi.org/10.1016/j.pepi.2020.106520.
  • [22] Sengupta, S., Basak, S., Peters, RA. 2018. Particle Swarm Optimization: A survey of historical and recent developments with hybridization perspectives. Machine Learning and Knowledge Extraction, 1, 157-191. https://doi.org/10.3390/make1010010.
  • [23] Shami, TM., El-Saleh, AA., Alswaitti, M., Al-Tashi, Q., Summakieh, MA., Mirjalili, S. 2022. Particle swarm optimization: A comprehensive survey. IEEE Access, Vol 10, pp 10031-10061, 2022, https://doi.org/10.1109/ACCESS.2022.3142859.
  • [24] Eltaeib, T., Mahmood, A. 2018. Differential evolution: A survey and analysis. Applied Sciences, 8, 1945. https://doi.org/10.3390/app8101945.
  • [25] Salman, A., Engelbrecht, AP., Omran, MG. 2007. Empirical analysis of self-adaptive differential evolution. European Journal of Operational Research, 183, 785-804. https://doi.org/10.1016/j.ejor.2006.10.020. [26] Gilli, M., Maringer, D., Schumann, E. 2019. Numerical Methods and Optimization in Finance. 2nd edn, Elsevier/Academic Press, Amsterdam.
  • [27] R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
  • [28] Storn, R., Price, K. 1997. Differential Evolution – a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11, 341-359. https://doi.org/10.1023/A:1008202821328.
  • [29] Balkaya, Ç. 2013. An implementation of differential evolution algorithm for inversion of geoelectrical data. Journal of Applied Geophysics, 98, 160-175. https://doi.org/10.1016/j.jappgeo.2013.08.019.
  • [30] Ekinci, Y.L., Balkaya, Ç., Göktürkler, G. 2019. Parameter estimations from gravity and magnetic anomalies due to deep-seated faults: differential evolution versus particle swarm optimization. Turkish Journal of Earth Sciences, 28(6), 860-881. https://doi.org/10.3906/yer-1905-3.
  • [31] Kennedy, J., Eberhart, R. 1995. Particle swarm optimization. In: International Conference on Neural Networks. IEEE, Piscataway, NJ, USA, November 27- December 1, pp. 1942-1948. https://doi.org/10.1109/ICNN.1995.488968.
  • [32] Göktürkler, G., Balkaya, Ç. 2012. Inversion of self-potential anomalies caused by simple geometry bodies using global optimization algorithms. Journal of Geophysics and Engineering, 9(5), 498-507. https://doi.org/10.1088/1742-2132/9/5/498.
  • [33] Abdelrahman, E.M., Bayoumi, A.I., Abdelhady, Y.E., Gobashy, M.M., El-Araby, H.M. 1989. Gravity interpretation using correlation factors between successive least-squares residual anomalies. Geophysics, 54(12), 1614-1621. https://doi.org/10.1190/1.1442629.
  • [34] Turan Karaoğlan, S., Göktürkler, G. 2022. Gravite Anomalilerinin Guguk Kuşu Arama Algoritması ile Ters Çözümü, Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 24(72), 799-813. https://doi.org/10.21205/deufmd.2022247210.
  • [35] Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Alken, P., Booth, M., Rossi, F. 2009. GNU Scientific Library Reference Manual. 3rd Edn (Bristol: Network Theory Ltd), p. 497.
  • [36] Fernández-Martínez, JL., Fernández-Muñiz, Z., Pallero, JLG., Pedruelo-González, LM. 2013. From Bayes to Tarantola: new insights to understand uncertainty in inverse problems. Journal of Applied Geophysics, 98:62-72. https://doi.org/10.1016/j.jappgeo.2013.07.005.
  • [37] Davis, W.E., Jackson, W.H., Richter, D.H. 1957. Gravity prospecting for chromite deposits in Camaguey province, Cuba. Geophysics, 22(4), 848–869. https://doi.org/10.1190/1.1438427.
  • [38] Al-Garni, M. A. 2013. Inversion of residual gravity anomalies using neural network. Arabian Journal of Geosciences. 6(5), 1509-1516. https://doi.org/10.1007/s12517-011-0452-y.
  • [39] Ekinci, Y.L., Balkaya, Ç., Göktürkler, G. 2020. Global Optimization of near-surface potential field anomalies through metaheuristics. In: Biswas, A., Sharma, S. (Eds.), Advances in Modeling and Interpretation in Near Surface Geophysics. Springer Geophysics, Springer, pp. 155–188. https://doi.org/10.1007/978-3-030-28909-6_7.
  • [40] Essa, K.S., Munschy, M. 2019. Gravity data interpretation using the particle swarm optimisation method with application to mineral exploration. Journal of Earth System Science, 128(5), 1-16. https://doi.org/10.1007/s12040-019-1143-4.
  • [41] Grant, F.S., West, G.F. 1965. Interpretation Theory in Applied Geophysics, New York: McGraw-Hill.
  • [42] Clerc, M. 1999. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. In Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), IEEE, July 6-9, Vol. 3, pp. 1951-1957. https://doi.org/10.1109/CEC.1999.785513.
  • [43] Eberhart, R.C., Shi, Y. 2000. Comparing inertia weights and constriction factors in particle swarm optimization. In Proceedings of the 2000 congress on evolutionary computation. CEC00 (Cat. No. 00TH8512), IEEE, July 16-19, Vol. 1, pp. 84-88. http://dx.doi.org/10.1109/CEC.2000.870279.
  • [44] Clerc, M., Kennedy, J. 2002. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6(1), 58-73. https://doi.org/10.1109/4235.985692.
  • [45] Trelea, IC. 2003. The particle swarm optimization algorithm: convergence analysis and parameter selection. Information Processing Letters, 85(6), 317-325. https://doi.org/10.1016/S0020-0190(02)00447-7.
  • [46] Carlisle, A., Dozier, G. 2001. An off-the-shelf PSO. In Proceedings of the Workshop on Particle Swarm Optimization, Indianapolis, IN, USA, pp. 1-6.
  • [47] Jiang, M., Luo, Y.P., Yang, S.Y. 2007. Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm. Information processing letters, 102(1), 8-16. https://doi.org/10.1016/j.ipl.2006.10.005.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Sanam Hosseinzadeh 0000-0002-3486-4689

Gökhan Göktürkler 0000-0002-2842-0766

Seçil Turan Karaoğlan 0000-0002-3871-4792

Erken Görünüm Tarihi 17 Eylül 2024
Yayımlanma Tarihi 27 Eylül 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Hosseinzadeh, S., Göktürkler, G., & Turan Karaoğlan, S. (2024). Inversion of Gravity Anomalies by a Hybrid Metaheuristic Algorithm. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 26(78), 379-388. https://doi.org/10.21205/deufmd.2024267804
AMA Hosseinzadeh S, Göktürkler G, Turan Karaoğlan S. Inversion of Gravity Anomalies by a Hybrid Metaheuristic Algorithm. DEUFMD. Eylül 2024;26(78):379-388. doi:10.21205/deufmd.2024267804
Chicago Hosseinzadeh, Sanam, Gökhan Göktürkler, ve Seçil Turan Karaoğlan. “Inversion of Gravity Anomalies by a Hybrid Metaheuristic Algorithm”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 26, sy. 78 (Eylül 2024): 379-88. https://doi.org/10.21205/deufmd.2024267804.
EndNote Hosseinzadeh S, Göktürkler G, Turan Karaoğlan S (01 Eylül 2024) Inversion of Gravity Anomalies by a Hybrid Metaheuristic Algorithm. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 26 78 379–388.
IEEE S. Hosseinzadeh, G. Göktürkler, ve S. Turan Karaoğlan, “Inversion of Gravity Anomalies by a Hybrid Metaheuristic Algorithm”, DEUFMD, c. 26, sy. 78, ss. 379–388, 2024, doi: 10.21205/deufmd.2024267804.
ISNAD Hosseinzadeh, Sanam vd. “Inversion of Gravity Anomalies by a Hybrid Metaheuristic Algorithm”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 26/78 (Eylül 2024), 379-388. https://doi.org/10.21205/deufmd.2024267804.
JAMA Hosseinzadeh S, Göktürkler G, Turan Karaoğlan S. Inversion of Gravity Anomalies by a Hybrid Metaheuristic Algorithm. DEUFMD. 2024;26:379–388.
MLA Hosseinzadeh, Sanam vd. “Inversion of Gravity Anomalies by a Hybrid Metaheuristic Algorithm”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, c. 26, sy. 78, 2024, ss. 379-88, doi:10.21205/deufmd.2024267804.
Vancouver Hosseinzadeh S, Göktürkler G, Turan Karaoğlan S. Inversion of Gravity Anomalies by a Hybrid Metaheuristic Algorithm. DEUFMD. 2024;26(78):379-88.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.