Research Article
BibTex RIS Cite

Aşil Tendonunun Sonoelastografisinde Farklı Cihazlar ve Gözleyiciler Arasındaki Uyumluluğun Değerlendirilmesi

Year 2019, Volume: 21 Issue: 3, 156 - 161, 30.12.2019
https://doi.org/10.18678/dtfd.570027

Abstract

Amaç: Aynı prensiple çalışan farklı sonoelastografi cihazlarında, farklı gözleyiciler tarafından sağlıklı gönüllülerden elde edilen aşil tendonu gerinim oranlarını karşılaştırarak sonoelastografinin güvenilirliğini araştırmak.

Gereç ve Yöntemler: Kronik hastalığı olmayan 40 gönüllüde toplam 80 aşil tendonu, real-time elastografi prensibi ile çalışan Toshiba ve Hitachi marka cihazlar kullanılarak değerlendirildi. Gerinim oranı ölçümü için Kager yağ planı seçildi. Her bir tendon, her iki cihazda her iki gözleyici tarafından iki kez değerlendirildi. Gözleyici içi ve gözleyiciler arası uyum, iki yönlü ANOVA modelinden mutlak uyum için elde edilen sınıf içi korelasyon katsayısı (SKK) ile incelenerek Ko ve Li’nin (11) önerdiği sınıflandırmaya göre yorumlandı.

Bulgular: Hitachi marka cihazda yapılan birinci ve ikinci ölçümlerde, Toshiba marka cihazda yapılan ikinci ölçümde gözleyiciler arası uyumun iyi seviyede olduğu tespit edildi. (ortalama SKK>0,75). Toshiba marka cihazda yapılan birinci ölçümde ise gözleyiciler arası uyumun daha düşük olduğu saptandı (ortalama SKK=0,729, p<0,001). Her iki cihazda da gözleyiciler içi uyumun mükemmel seviyede olduğu izlendi (SKK>0,90). Toshiba marka cihaz için gözleyiciler arası uyumun Hitachi marka cihaza göre daha düşük olduğu görüldü. Gerinim oranlarının ortalaması Hitachi marka cihaz için 2.96±1.07 ve Toshiba marka cihaz için 3.54±1.03 idi. Toshiba marka cihazdan elde edilen ölçümlerin, Hitachi marka cihazdan elde edilen ölçümlere göre anlamlı düzeyde yüksek olduğu belirlendi.

Sonuç: Farklı cihazlarla yapılan çalışmalarda cihazların kompresyon uygulama sınırlarına bağlı olarak gerinim oranlarında farklılıklar olabilir. Bu nedenle her cihaz için gözleyici içi ve gözleyiciler arası uyum ayrı ayrı değerlendirilmelidir.

References

  • Lyshchik A, Higashi T, Asato R, Tanaka S, Ito J, Mai JJ, et al. Thyroid gland tumor diagnosis at US elastography. Radiology. 2005;237(1):202-11.
  • Vorländer C, Wolff J, Saalabian S, Lienenlüke RH, Wahl RA. Real-time ultrasound elastography a non invasive diagnostic procedure for evaluating dominant thyroid nodules. Langenbecks Arch Surg. 2010;395(7):865-71.
  • Ning CP, Jiang SQ, Zhang T, Sun LT, Liu YJ, Tian JW. The value of strain ratio in differential diagnosis of thyroid solid nodules. Eur J Radiol. 2012;81(2):286-91.
  • Lerner RM, Huang SR, Parker KJ. "Sonoelasticity" images derived from ultrasound signals in mechanically vibrated tissues. Ultrasound Med Biol. 1990;16(3):231-9.
  • Ophir J, Alam SK, Garra B, Kallel F, Konofagou E, Krouskop T, et al. Elastography: ultrasonic estimation and imaging of the elastic properties of tissues. Proc Inst Mech Eng H. 1999;213(3):203-33.
  • Rago T, Santini F, Scutari M, Pinchera A, Vitti P. Elastography: new developments in ultrasound for predicting malignancy in thyroid nodules. J Clin Endocrinol Metab. 2007;92(8):2917-22.
  • Garra BS, Cespedes EI, Ophir J, Spratt SR, Zuurbier RA, Magnant CM, et al. Elastography of breast lesions: initial clinical results. Radiology. 1997;202(1):79-86.
  • Cochlin DL, Ganatra RH, Griffiths DF. Elastography in the detection of prostatic cancer. Clin Radiol. 2002;57(11):1014-20.
  • De Zordo T, Fink C, Feuchtner GM, Smekal V, Reindl M, Klauser AS. Real-time sonoelastography findings in healthy Achilles tendons. AJR Am J Roentgenol. 2009;193(2):W134-8.
  • Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175-91.
  • Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155-63.
  • Varghese T. Quasi-static ultrasound elastography. Ultrasound Clin. 2009;4(3):323-38.
  • Wang H, Brylka D, Sun LN, Lin YQ, Sui GQ, Gao J. Comparison of strain ratio with elastography score system in differentiating malignant from benign thyroid nodules. Clin Imaging. 2013;37(1):50-5.
  • Park SH, Kim SJ, Kim EK, Kim MJ, Son EJ, Kwak JY. Interobserver agreement in assessing the sonographic and elastographic features of maligant thyroid nodules. AJR Am J Roentgenol. 2009;193(5):W416-23.
  • Wang Y, Dan HJ, Dan HY, Li T, Hu B. Differential diagnosis of small single solid thyroid nodules using real-time ultrasound elastography. J Int Med Res. 2010;38(2):466-72.
  • Chong Y, Shin JH, Ko ES, Han BK. Ultrasonographic elastography of thyroid nodules: Is adding strain ratio to colour mappingn better? Clin Radiol. 2013;68(12):1241-6.
  • Kuo PL, Li PC, Shun CT, Lai JS. Strain measurements of rabbit Achilles tendons by ultrasound. Ultrasound Med Biol. 1999;25(8):1241-50.
  • Maganaris CN. Tensile properties of in vivo human tendinous tissue. J Biomech. 2002;35(8):1019-27.
  • Mahieu NN, Witvrouw E, Stevens V, Van Tiggelen D, Roget P. Intrinsic risk factors for the development of achilles tendon overuse injury: a prospective study. Am J Sports Med. 2006;34(2):226-35.
  • Babic J, Lenarcic J. In vivo determination of triceps surae muscleetendon complex viscoelastic properties. Eur J Appl Physiol. 2004;92(4-5):477-84.
  • Drakonaki EE, Allen GM, Wilson DJ. Real-time ultrasound elastography of the normal Achilles tendon: reproducibility and pattern description. Clin Radiol. 2009;64(12):1196-202.
  • Kubo K, Kanehisa H, Fukunaga T. Gender differences in the viscoelastic properties of tendon structures. Eur J Appl Physiol. 2003;88(6):520-6.
  • Turan A, Teber MA, Yakut ZI, Unlu HA, Hekimoglu B. Sonoelastographic assessment of the age-releated changes of the Achilles tendon. Med Ultrason. 2015;17(1):58-61.
  • Ooi CC, Schneider ME, Malliaras P, Chadwick M, Connell DA. Diagnostic performance of axial-strain sonoelastography in confirming clinically diagnosed Achilles tendinopathy: comparison with B-mode ultrasound and color Doppler imaging. Ultrasound Med Biol. 2015;41(1):15-25.
  • Balleyguier C, Canale S, Ben Hassen W, Vielh P, Bayou EH, Mathieu MC, et al. Breast elasticitiy: principles, technique, results: an update and over-view of commercially available software. Eur J Radiol. 2013;82(3):427-34.
  • Soila K, Karjalainen PT, Aronen HJ, Pihlajamaki HK, Tirman PJ. High-resolution MR imaging of the asymptomatic Achilles tendon: new observations. AJR Am J Roentgenol. 1999;173(2):323-8.

Evaluation of Sonoelastography Compatibility on the Achilles Tendon Between Different Devices and Observers

Year 2019, Volume: 21 Issue: 3, 156 - 161, 30.12.2019
https://doi.org/10.18678/dtfd.570027

Abstract

Aim: To investigate the reliability of sonoelastography by comparing the Achilles tendon strain ratio obtained in healthy volunteers by different observers with different sonoelastography devices working on the same principle.

Material and Methods: A total of 80 Achilles tendons in 40 volunteers without chronic disease were evaluated using Toshiba and Hitachi devices using real-time elastography principle. The Kager fat pad was selected for strain ratio measurement. Each tendon was evaluated with both devices twice by both observers. The intraobserver and interobserver agreement were examined by intraclass correlation coefficient (ICC) obtained by two-way mixed ANOVA model for absolute agreement and interpreted as Ko and Li (11) suggested.

Results: Interobserver agreement in the first and second measurements of the Hitachi device and in the second measurements of the Toshiba device was found to be good (average ICC>0.75). The interobserver agreement in the first measurements made on the Toshiba device was found to be lower (average ICC=0.729, p<0.001). The intraobserver agreement was found to be excellent (ICC>0.90) for both device. The interobserver agreement for the Toshiba device was found lower than for the Hitachi device. Mean strain ratio was 2.96±1.07 for the Hitachi device and 3.54±1.03 for the Toshiba device. Measurements obtained from the Toshiba device were determined as significantly higher than those from the Hitachi device.

Conclusion: There may be differences in strain rates depending on the compression application limits of the devices, in studies carried out using different devices. Therefore, intraobserver and interobserver agreement should be evaluated separately for each device.

References

  • Lyshchik A, Higashi T, Asato R, Tanaka S, Ito J, Mai JJ, et al. Thyroid gland tumor diagnosis at US elastography. Radiology. 2005;237(1):202-11.
  • Vorländer C, Wolff J, Saalabian S, Lienenlüke RH, Wahl RA. Real-time ultrasound elastography a non invasive diagnostic procedure for evaluating dominant thyroid nodules. Langenbecks Arch Surg. 2010;395(7):865-71.
  • Ning CP, Jiang SQ, Zhang T, Sun LT, Liu YJ, Tian JW. The value of strain ratio in differential diagnosis of thyroid solid nodules. Eur J Radiol. 2012;81(2):286-91.
  • Lerner RM, Huang SR, Parker KJ. "Sonoelasticity" images derived from ultrasound signals in mechanically vibrated tissues. Ultrasound Med Biol. 1990;16(3):231-9.
  • Ophir J, Alam SK, Garra B, Kallel F, Konofagou E, Krouskop T, et al. Elastography: ultrasonic estimation and imaging of the elastic properties of tissues. Proc Inst Mech Eng H. 1999;213(3):203-33.
  • Rago T, Santini F, Scutari M, Pinchera A, Vitti P. Elastography: new developments in ultrasound for predicting malignancy in thyroid nodules. J Clin Endocrinol Metab. 2007;92(8):2917-22.
  • Garra BS, Cespedes EI, Ophir J, Spratt SR, Zuurbier RA, Magnant CM, et al. Elastography of breast lesions: initial clinical results. Radiology. 1997;202(1):79-86.
  • Cochlin DL, Ganatra RH, Griffiths DF. Elastography in the detection of prostatic cancer. Clin Radiol. 2002;57(11):1014-20.
  • De Zordo T, Fink C, Feuchtner GM, Smekal V, Reindl M, Klauser AS. Real-time sonoelastography findings in healthy Achilles tendons. AJR Am J Roentgenol. 2009;193(2):W134-8.
  • Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175-91.
  • Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155-63.
  • Varghese T. Quasi-static ultrasound elastography. Ultrasound Clin. 2009;4(3):323-38.
  • Wang H, Brylka D, Sun LN, Lin YQ, Sui GQ, Gao J. Comparison of strain ratio with elastography score system in differentiating malignant from benign thyroid nodules. Clin Imaging. 2013;37(1):50-5.
  • Park SH, Kim SJ, Kim EK, Kim MJ, Son EJ, Kwak JY. Interobserver agreement in assessing the sonographic and elastographic features of maligant thyroid nodules. AJR Am J Roentgenol. 2009;193(5):W416-23.
  • Wang Y, Dan HJ, Dan HY, Li T, Hu B. Differential diagnosis of small single solid thyroid nodules using real-time ultrasound elastography. J Int Med Res. 2010;38(2):466-72.
  • Chong Y, Shin JH, Ko ES, Han BK. Ultrasonographic elastography of thyroid nodules: Is adding strain ratio to colour mappingn better? Clin Radiol. 2013;68(12):1241-6.
  • Kuo PL, Li PC, Shun CT, Lai JS. Strain measurements of rabbit Achilles tendons by ultrasound. Ultrasound Med Biol. 1999;25(8):1241-50.
  • Maganaris CN. Tensile properties of in vivo human tendinous tissue. J Biomech. 2002;35(8):1019-27.
  • Mahieu NN, Witvrouw E, Stevens V, Van Tiggelen D, Roget P. Intrinsic risk factors for the development of achilles tendon overuse injury: a prospective study. Am J Sports Med. 2006;34(2):226-35.
  • Babic J, Lenarcic J. In vivo determination of triceps surae muscleetendon complex viscoelastic properties. Eur J Appl Physiol. 2004;92(4-5):477-84.
  • Drakonaki EE, Allen GM, Wilson DJ. Real-time ultrasound elastography of the normal Achilles tendon: reproducibility and pattern description. Clin Radiol. 2009;64(12):1196-202.
  • Kubo K, Kanehisa H, Fukunaga T. Gender differences in the viscoelastic properties of tendon structures. Eur J Appl Physiol. 2003;88(6):520-6.
  • Turan A, Teber MA, Yakut ZI, Unlu HA, Hekimoglu B. Sonoelastographic assessment of the age-releated changes of the Achilles tendon. Med Ultrason. 2015;17(1):58-61.
  • Ooi CC, Schneider ME, Malliaras P, Chadwick M, Connell DA. Diagnostic performance of axial-strain sonoelastography in confirming clinically diagnosed Achilles tendinopathy: comparison with B-mode ultrasound and color Doppler imaging. Ultrasound Med Biol. 2015;41(1):15-25.
  • Balleyguier C, Canale S, Ben Hassen W, Vielh P, Bayou EH, Mathieu MC, et al. Breast elasticitiy: principles, technique, results: an update and over-view of commercially available software. Eur J Radiol. 2013;82(3):427-34.
  • Soila K, Karjalainen PT, Aronen HJ, Pihlajamaki HK, Tirman PJ. High-resolution MR imaging of the asymptomatic Achilles tendon: new observations. AJR Am J Roentgenol. 1999;173(2):323-8.
There are 26 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Research Article
Authors

Özlem Ünal 0000-0003-4297-4930

Şule Güzel This is me 0000-0002-0692-3952

Sinem Şiğit İkiz This is me 0000-0001-5342-9589

Ayşenur Şirin Özcan This is me 0000-0003-0019-8515

Publication Date December 30, 2019
Submission Date July 7, 2019
Published in Issue Year 2019 Volume: 21 Issue: 3

Cite

APA Ünal, Ö., Güzel, Ş., Şiğit İkiz, S., Şirin Özcan, A. (2019). Evaluation of Sonoelastography Compatibility on the Achilles Tendon Between Different Devices and Observers. Duzce Medical Journal, 21(3), 156-161. https://doi.org/10.18678/dtfd.570027
AMA Ünal Ö, Güzel Ş, Şiğit İkiz S, Şirin Özcan A. Evaluation of Sonoelastography Compatibility on the Achilles Tendon Between Different Devices and Observers. Duzce Med J. December 2019;21(3):156-161. doi:10.18678/dtfd.570027
Chicago Ünal, Özlem, Şule Güzel, Sinem Şiğit İkiz, and Ayşenur Şirin Özcan. “Evaluation of Sonoelastography Compatibility on the Achilles Tendon Between Different Devices and Observers”. Duzce Medical Journal 21, no. 3 (December 2019): 156-61. https://doi.org/10.18678/dtfd.570027.
EndNote Ünal Ö, Güzel Ş, Şiğit İkiz S, Şirin Özcan A (December 1, 2019) Evaluation of Sonoelastography Compatibility on the Achilles Tendon Between Different Devices and Observers. Duzce Medical Journal 21 3 156–161.
IEEE Ö. Ünal, Ş. Güzel, S. Şiğit İkiz, and A. Şirin Özcan, “Evaluation of Sonoelastography Compatibility on the Achilles Tendon Between Different Devices and Observers”, Duzce Med J, vol. 21, no. 3, pp. 156–161, 2019, doi: 10.18678/dtfd.570027.
ISNAD Ünal, Özlem et al. “Evaluation of Sonoelastography Compatibility on the Achilles Tendon Between Different Devices and Observers”. Duzce Medical Journal 21/3 (December 2019), 156-161. https://doi.org/10.18678/dtfd.570027.
JAMA Ünal Ö, Güzel Ş, Şiğit İkiz S, Şirin Özcan A. Evaluation of Sonoelastography Compatibility on the Achilles Tendon Between Different Devices and Observers. Duzce Med J. 2019;21:156–161.
MLA Ünal, Özlem et al. “Evaluation of Sonoelastography Compatibility on the Achilles Tendon Between Different Devices and Observers”. Duzce Medical Journal, vol. 21, no. 3, 2019, pp. 156-61, doi:10.18678/dtfd.570027.
Vancouver Ünal Ö, Güzel Ş, Şiğit İkiz S, Şirin Özcan A. Evaluation of Sonoelastography Compatibility on the Achilles Tendon Between Different Devices and Observers. Duzce Med J. 2019;21(3):156-61.