Araştırma Makalesi
BibTex RIS Kaynak Göster

Çelik Paletli Yürüyüş Sistemi Baklasının Yapısal Parametrelerinin Belirlenmesi ve Deney Tasarımı Yaklaşımıyla Optimizasyonu

Yıl 2025, , 108 - 120, 30.01.2025
https://doi.org/10.29130/dubited.1472942

Öz

Bu çalışma kapsamında, bir paletli taşıtın çelik paletli yürüyüş sisteminde kullanılan baklanın tasarım ve optimizasyon süreçleri özetlenmiştir. İlk aşamada, uygulanmış tasarım örnekleri ve tasarım kısıtları dikkate alınarak bir ön model oluşturulmuştur. Baklaya etkimesi beklenen maksimum tahrik torku ve
temas kuvvetleri yardımıyla iki farklı Sonlu Elemanlar (SE) modeli kurulmuştur. Bu model yardımıyla parça üzerinde gerilme açısından üç kritik bölge belirlenmiştir. Gerilme yığılmalarının azaltılması için bakla üzerinde yedi adet yapısal tasarım parametresi seçilmiştir. Bu parametreler kullanılarak gerçekleştirilen Deney Tasarımı tabanlı bir optimizasyon çalışması sonucunda elde edilen boyutsal değerler yardımıyla, yeni bakla tasarımı oluşturulmuştur. Motordan sisteme maksimum tork uygulanması durumu için yapılan SE analizleri, birinci, ikinci ve üçüncü kritik bölgelerde gerilme yığılması açısından sırasıyla, yaklaşık %61, %55 ve %20 oranlarında iyileşme elde edildiğini göstermiştir. Düşey ve yanal kuvvet etkisi altında ise iyileşme yüzdeleri, aynı sıralamayla, %63, %26 ve %31'dir. Sonuç olarak, elde edilen parametrelerle gerçekleştirilen yeni bakla tasarımında, kritik bölgelerde elde edilen gerilme değerlerinin, hasar oluşumuna neden olan değerlerin altında kaldığı görülmüştür.

Kaynakça

  • [1] J. Y. Wong and W. Huang, “Wheels vs. tracks – A fundamental evaluation from the traction perspective,” Journal of Terramechanics, vol. 43, no. 1, pp. 27-42, 2006.
  • [2] J. Y. Wong, “Dynamics of tracked vehicles,” Vehicle System Dynamics, vol. 28, no. 2-3, pp. 197-219, 1997.
  • [3] S. M. Bošnjak, M. A. Arsic, N. D. Zrnic, Z. D. Odanovic, and M. D. Dordevic, “Failure analysis of the stacker crawler chain link,” Procedia Engineering, vol. 10, pp. 2244-2249, 2011.
  • [4] Z. W. Yu, X. L. Xu, and X. Mu, “Failure investigation on the cracked crawler pad link,” Engineering Failure Analysis, vol. 17, no. 5, pp. 1102-1109, 2010.
  • [5] S. M. Bošnjak, D. B. Momčilović, Z. D. Petković, M. P. Pantelić, and N. B. Gnjatović, “Failure investigation of the bucket wheel excavator crawler chain link,” Engineering Failure Analysis, vol. 35, pp. 462-469, 2013.
  • [6] Y. Li, D. He, Q. Si, and X. Meng, “Effect of track shoes structural parameters on traction performance of unmanned underwater tracked bulldozer,” Ocean Engineering, vol. 237, p. 109655, 2021.
  • [7] H. Zhao, G. Wang, H. Wang, Q. Bi, and X. Li, “Fatigue life analysis of crawler chain link of excavator,” Engineering Failure Analysis, vol. 79, pp. 737-748, 2017.
  • [8] M. A. Arsić, S. M. Bošnjak, Z. D. Odanović, M. M. Dunjić, and A. M. Simonović, “Analysis of the spreader track wheels premature damages,” Engineering Failure Analysis, vol. 20, pp. 118-136, 2012.
  • [9] M. M. Topaç, K. Polat, ve O. Çolak, “Çelik paletli yürüyüş sisteminde yapısal emniyetin bakla-makara temas konumuna bağlı değişiminin sayısal incelemesi,” INCOHIS 2023: Int. Cong. of New Horizons in Sciences, İstanbul, 2023.
  • [10] D. Dudek, S. Frydman, W. Huss, and G. Pękalski, “The L35GSM cast steel—Possibilities of structure and properties shaping at the example of crawler links,” Archives of Civil and Mechanical Engineering, vol. 11, no. 1, pp. 19-32, 2011.
  • [11] M. G. Bekker, Theory of Land Locomotion, Michigan, USA: University of Michigan Press, 1956, pp. 232-282.
  • [12] J. Y. Wong, Theory of Ground Vehicles, 3rd ed., New York, USA: John Wiley & Sons, 2001, pp. 388-431.
  • [13] T. Amago, “Sizing optimization using response surface method in FOA,” R&D Review of Toyota CRDL, vol. 37, no. 1, pp. 1-7, 2002.
  • [14] M. Aydın and Y. S. Ünlüsoy, “Optimization of suspension parameters to improve impact harshness of road vehicles,” The International Journal of Advanced Manufacturing Technology, vol. 60, pp. 743-754, 2012.
  • [15] D. C. Montgomery, Design and Analysis of Experiments, 5th ed., New Jersey, USA : John Wiley & Sons, 2000, pp. 489-569.
  • [16] R. H. Myers, D. C. Montgomery, and C. M. Anderson-Cook, Response Surface Methodology, Process and Product Optimization Using Design of Experiments, 3rd ed., New Jersey, USA: John Wiley & Sons, 2009, pp. 1-349.
  • [17] B. Gelman and M. Moskvin, Farm Tractors, Moscow, : Mir Publishers, 1975, pp. 100-150.
  • [18] Komatsu D80A-12, D85A-12 Bulldozers Shop Manual, Tokyo, Japan : Komatsu, Ltd., pp. 12/05-12/07.

Determination of Structural Parameters and Design of Experiments Approach-Based Optimisation of Steel Track Undercarriage Link

Yıl 2025, , 108 - 120, 30.01.2025
https://doi.org/10.29130/dubited.1472942

Öz

In this study, the design and optimisation processes of the link to be used in the steel track undercarriage system of a tracked vehicle are summarised. In the first stage, a preliminary model was created by considering existing design examples and constraints. Two different Finite Element (FE) models were built using the maximum driving torque and track - ground contact forces. According to the results obtain from the analyses, three critical regions where stress concentration occurs, were identified. Seven structural design parameters were chosen to minimise stress concentrations in these regions. A Design of Experiments-based optimisation study was performed using these parameters. After obtaining new dimensional values, a new link design was created. The FE analyses conducted for maximum torque case showed that approximately decrease of 61%, 55%, and 20% was obtained in terms of stress concentration at the first, second, and third critical regions, respectively. Under the effect of vertical and lateral forces, the improvement percentages are 63%, 26%, and 31%, in the same order. It was observed that the stress values obtained at the critical regions of the new design under the failure loads, were below the permissible values.

Kaynakça

  • [1] J. Y. Wong and W. Huang, “Wheels vs. tracks – A fundamental evaluation from the traction perspective,” Journal of Terramechanics, vol. 43, no. 1, pp. 27-42, 2006.
  • [2] J. Y. Wong, “Dynamics of tracked vehicles,” Vehicle System Dynamics, vol. 28, no. 2-3, pp. 197-219, 1997.
  • [3] S. M. Bošnjak, M. A. Arsic, N. D. Zrnic, Z. D. Odanovic, and M. D. Dordevic, “Failure analysis of the stacker crawler chain link,” Procedia Engineering, vol. 10, pp. 2244-2249, 2011.
  • [4] Z. W. Yu, X. L. Xu, and X. Mu, “Failure investigation on the cracked crawler pad link,” Engineering Failure Analysis, vol. 17, no. 5, pp. 1102-1109, 2010.
  • [5] S. M. Bošnjak, D. B. Momčilović, Z. D. Petković, M. P. Pantelić, and N. B. Gnjatović, “Failure investigation of the bucket wheel excavator crawler chain link,” Engineering Failure Analysis, vol. 35, pp. 462-469, 2013.
  • [6] Y. Li, D. He, Q. Si, and X. Meng, “Effect of track shoes structural parameters on traction performance of unmanned underwater tracked bulldozer,” Ocean Engineering, vol. 237, p. 109655, 2021.
  • [7] H. Zhao, G. Wang, H. Wang, Q. Bi, and X. Li, “Fatigue life analysis of crawler chain link of excavator,” Engineering Failure Analysis, vol. 79, pp. 737-748, 2017.
  • [8] M. A. Arsić, S. M. Bošnjak, Z. D. Odanović, M. M. Dunjić, and A. M. Simonović, “Analysis of the spreader track wheels premature damages,” Engineering Failure Analysis, vol. 20, pp. 118-136, 2012.
  • [9] M. M. Topaç, K. Polat, ve O. Çolak, “Çelik paletli yürüyüş sisteminde yapısal emniyetin bakla-makara temas konumuna bağlı değişiminin sayısal incelemesi,” INCOHIS 2023: Int. Cong. of New Horizons in Sciences, İstanbul, 2023.
  • [10] D. Dudek, S. Frydman, W. Huss, and G. Pękalski, “The L35GSM cast steel—Possibilities of structure and properties shaping at the example of crawler links,” Archives of Civil and Mechanical Engineering, vol. 11, no. 1, pp. 19-32, 2011.
  • [11] M. G. Bekker, Theory of Land Locomotion, Michigan, USA: University of Michigan Press, 1956, pp. 232-282.
  • [12] J. Y. Wong, Theory of Ground Vehicles, 3rd ed., New York, USA: John Wiley & Sons, 2001, pp. 388-431.
  • [13] T. Amago, “Sizing optimization using response surface method in FOA,” R&D Review of Toyota CRDL, vol. 37, no. 1, pp. 1-7, 2002.
  • [14] M. Aydın and Y. S. Ünlüsoy, “Optimization of suspension parameters to improve impact harshness of road vehicles,” The International Journal of Advanced Manufacturing Technology, vol. 60, pp. 743-754, 2012.
  • [15] D. C. Montgomery, Design and Analysis of Experiments, 5th ed., New Jersey, USA : John Wiley & Sons, 2000, pp. 489-569.
  • [16] R. H. Myers, D. C. Montgomery, and C. M. Anderson-Cook, Response Surface Methodology, Process and Product Optimization Using Design of Experiments, 3rd ed., New Jersey, USA: John Wiley & Sons, 2009, pp. 1-349.
  • [17] B. Gelman and M. Moskvin, Farm Tractors, Moscow, : Mir Publishers, 1975, pp. 100-150.
  • [18] Komatsu D80A-12, D85A-12 Bulldozers Shop Manual, Tokyo, Japan : Komatsu, Ltd., pp. 12/05-12/07.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Tasarımı ve Makine Elemanları
Bölüm Makaleler
Yazarlar

Kübra Polat 0009-0004-7001-6291

Mehmet Murat Topaç 0000-0002-7462-1796

Onur Çolak 0009-0002-2556-1309

Ali Özgür Günay 0009-0002-1943-3802

Yayımlanma Tarihi 30 Ocak 2025
Gönderilme Tarihi 24 Nisan 2024
Kabul Tarihi 9 Eylül 2024
Yayımlandığı Sayı Yıl 2025

Kaynak Göster

APA Polat, K., Topaç, M. M., Çolak, O., Günay, A. Ö. (2025). Determination of Structural Parameters and Design of Experiments Approach-Based Optimisation of Steel Track Undercarriage Link. Duzce University Journal of Science and Technology, 13(1), 108-120. https://doi.org/10.29130/dubited.1472942
AMA Polat K, Topaç MM, Çolak O, Günay AÖ. Determination of Structural Parameters and Design of Experiments Approach-Based Optimisation of Steel Track Undercarriage Link. DÜBİTED. Ocak 2025;13(1):108-120. doi:10.29130/dubited.1472942
Chicago Polat, Kübra, Mehmet Murat Topaç, Onur Çolak, ve Ali Özgür Günay. “Determination of Structural Parameters and Design of Experiments Approach-Based Optimisation of Steel Track Undercarriage Link”. Duzce University Journal of Science and Technology 13, sy. 1 (Ocak 2025): 108-20. https://doi.org/10.29130/dubited.1472942.
EndNote Polat K, Topaç MM, Çolak O, Günay AÖ (01 Ocak 2025) Determination of Structural Parameters and Design of Experiments Approach-Based Optimisation of Steel Track Undercarriage Link. Duzce University Journal of Science and Technology 13 1 108–120.
IEEE K. Polat, M. M. Topaç, O. Çolak, ve A. Ö. Günay, “Determination of Structural Parameters and Design of Experiments Approach-Based Optimisation of Steel Track Undercarriage Link”, DÜBİTED, c. 13, sy. 1, ss. 108–120, 2025, doi: 10.29130/dubited.1472942.
ISNAD Polat, Kübra vd. “Determination of Structural Parameters and Design of Experiments Approach-Based Optimisation of Steel Track Undercarriage Link”. Duzce University Journal of Science and Technology 13/1 (Ocak 2025), 108-120. https://doi.org/10.29130/dubited.1472942.
JAMA Polat K, Topaç MM, Çolak O, Günay AÖ. Determination of Structural Parameters and Design of Experiments Approach-Based Optimisation of Steel Track Undercarriage Link. DÜBİTED. 2025;13:108–120.
MLA Polat, Kübra vd. “Determination of Structural Parameters and Design of Experiments Approach-Based Optimisation of Steel Track Undercarriage Link”. Duzce University Journal of Science and Technology, c. 13, sy. 1, 2025, ss. 108-20, doi:10.29130/dubited.1472942.
Vancouver Polat K, Topaç MM, Çolak O, Günay AÖ. Determination of Structural Parameters and Design of Experiments Approach-Based Optimisation of Steel Track Undercarriage Link. DÜBİTED. 2025;13(1):108-20.