Fracture Strength and Stress Distribution Analyses of CAD/CAM Titanium and Zirconia Abutments Restored with Resin-Based Ceramic and Monolithic Zirconia Crowns
Year 2025,
Volume: 52 Issue: 2, 55 - 62, 31.08.2025
Nazire Esra Özer
,
Ece İrem Oğuz
,
A. Ersoy
Abstract
Purpose: The aim of this study was to evaluate the effect of two different crown and abutment types produced with CAD/CAM systems on the biomechanical behavior of implant-supported fixed restorations.
Material and methods: Thirty-six titanium implants received either custom-made zirconia abutments cemented on a ti-base (Zi) or single-piece custom titanium abutment (Ti). Then, resin-based ceramic crowns (RBC) crowns were manufactured for half of each abutment type and monolithic zirconia crowns (MZ) were manufactured for the other half. Thus, 4 study groups were formed as follows: Zi-RBC, Zi-MZ, Ti-RBC, Ti-MZ. Fracture resistance of the groups was tested using a universal testing machine and the failure types were determined. The stress distribution on abutments and crowns was evaluated with finite element analysis (FEA) analysis.
Results: Zirconia, as the abutment type, showed higher fracture strength for both crown types. Considering the crown material, monolithic zirconia showed higher fracture strength for both abutment types. None of the groups showed screw or implant deformation. Ti-RBC and Ti-MZ groups showed only crown failures while 22% of Group Zi-RBC and 44% of Group Zi-MZ showed abutment fractures in addition to crown fractures. FEA analysis did not show significant differences for crowns while differences were observed for abutments.
Conclusion: Zirconia abutments cemented on titanium bases can be considered an acceptable alternative to titanium abutments. Monolithic zirconia may provide longer intraoral service than resin-based ceramic as the crown material considering its higher resistance to fracture.
Project Number
13L3334004
References
-
Elsayed A, Yazigi C, Kern M, Chaar MS. Mechanical behavior of nano-hybrid composite in comparison to lithium disilicate as posterior cement-retained implant-supported crowns restoring different abutments. Dent Mater. 2021;37(8):e435–e442. doi:10.1016/j.dental.2021.03.015.
-
Cevik P, Schimmel M, Yilmaz B. New generation CAD-CAM materials for implant-supported definitive frameworks fabricated by using subtractive technologies. Biomed Res Int. 2022;2022:3074182. doi:10.1155/2022/3074182.
-
Magne P, Silva M, Oderich E, Boff LL, Enciso R. Damping behavior of implant-supported restorations. Clin Oral Implants Res. 2013;24(2):143–148. doi:10.1111/j.1600-0501.2011.02311.x.
-
Zarb GA, Lewis DW. Dental implants and decision making. J Dent Educ. 1992;56(12):863–872. doi:10.1002/j.0022-0337.1992.56.12.tb02713.x.
-
Misch CE. Dental Implant Prosthetics. Elsevier Mosby; 2005.
-
Al-Thobity AM. Titanium Base Abutments in Implant Prosthodontics: A Literature Review. Eur J Dent. 2022;16(1):49–55. doi:10.1055/s-0041-1735423.
-
Ilić G, Vulović S, Bukorović J, Dragović M, Marković A, Todorović A, et al. The impact of abutment type on abutment screw removal torque value after experimental aging. J Prosthodont. 2024. doi:10.1111/jopr.13978.
-
Nouh I, Kern M, Sabet AE, Aboelfadl AK, Hamdy AM, Chaar MS. Mechanical behavior of posterior all-ceramic hybrid-abutment-crowns versus hybrid-abutments with separate crowns: a laboratory study. Clin Oral Implants Res. 2019;30(1):90–98. doi:10.1111/clr.13395.
-
Menini M, Conserva E, Tealdo T, Bevilacqua M, Pera F, Signori A, et al. Shock absorption capacity of restorative materials for dental implant prostheses: an in vitro study. Int J Prosthodont. 2013;26(6):549–556. doi:10.11607/ijp.3241.
-
Akan E, Velioğlu E, Çömlekoğlu ME, Çömlekoğlu MD. Fatigue and stress distribution analyses of ceramic-reinforced PEEK abutments restored with monolithic zirconia crowns as an alternative to conventional esthetic abutments. Int J Oral Maxillofac Implants. 2022;37(3):533–542. doi:10.11607/jomi.9334.
-
Pitta J, Zarauz C, Pjetursson B, Sailer I, Liu X, Pradies G. A systematic review and meta-analysis of the influence of abutment material on peri-implant soft tissue color measured using spectrophotometry. Int J Prosthodont. 2020;33(1):39–47. doi:10.11607/ijp.6393.
-
Singh R, Patel TA, Barui AK, Verma M, Kerketta J, Majumder P. Comparison of fracture strength in implant-supported zirconia-titanium base abutments. Bioinformation. 2024;20(6):665–668. doi:10.6026/973206300200665.
-
Kerstein RB, Radke J. A comparison of fabrication precision and mechanical reliability of two zirconia implant abutments. Int J Oral Maxillofac Implants. 2008;23(6):1029–1036.
-
Miura S, Fujita T, Fujisawa M. Zirconia in fixed prosthodontics: a review of the literature. Odontology. 2024;113(2):466–487. doi:10.1007/s10266-024-01019-8.
-
Rosentritt M, Schneider-Feyrer S, Behr M, Preis V. In vitro shock absorption tests on implant-supported crowns: influence of crown materials and luting agents. Int J Oral Maxillofac Implants. 2018;33(1):116–122. doi:10.11607/jomi.5463.
-
Papathanasiou I, Kamposiora P, Dimitriadis K, Papavasiliou G, Zinelis S. In vitro evaluation of CAD/CAM composite materials. J Dent. 2023;136:104623. doi:10.1016/j.jdent.2023.104623.
-
Shim JS, Lee JS, Lee JY, Choi YJ, Shin SW, Ryu JJ. Effect of software version and parameter settings on the marginal and internal adaptation of crowns fabricated with the CAD/CAM system. J Appl Oral Sci. 2015;23(5):515–522. doi:10.1590/1678-775720150081.
-
Chen C, Trindade FZ, de Jager N, Kleverlaan CJ, Feilzer AJ. The fracture resistance of a CAD/CAM resin nano ceramic (RNC) and a CAD ceramic at different thicknesses. Dent Mater. 2014;30(9):954–962. doi:10.1016/j.dental.2014.05.018.
-
Lin CL, Wang JC, Kuo YC. Numerical simulation on the biomechanical interactions of tooth/implant-supported system under various occlusal forces with rigid/non-rigid connections. J Biomech. 2006;39(3):453–463. doi:10.1016/j.jbiomech.2004.12.020.
-
Mobilio N, Stefanoni F, Contiero P, Mollica F, Catapano S. Experimental and numeric stress analysis of titanium and zirconia one-piece dental implants. Int J Oral Maxillofac Implants. 2013;28(3):e135–e142. doi:10.11607/jomi.2335
-
Huang Y, Wang J. Comparison of notch fatigue and fracture behavior of dental implant fixtures with different materials and designs. Mater Sci Eng C Mater Biol Appl. 2015;50:266–273. doi:10.1016/j.msec.2015.01.093.
-
Rosentritt M, Preis V, Behr M, Hahnel S, Handel G, Kolbeck C. Two-body wear of dental porcelain and substructure oxide ceramics. Clin Oral Investig. 2012;16(3):935–943. doi:10.1007/s00784-011-0564-y.
-
Nakamura K, Kanno T, Milleding P, Örtengren U. Zirconia as a dental implant abutment material: a systematic review. Int J Prosthodont. 2010;23(4):299–309.
-
Stawarczyk B, Özcan M, Schmutz F, Trottmann A, Roos M, Hämmerle CH. Two-body wear rate of CAD/CAM resin blocks and their enamel antagonists. J Prosthet Dent. 2013;109(5):325–332. doi:10.1016/S0022-3913(13)60309-0.
-
Yilmaz B, Seidt JD, McGlumphy EA, Clelland NL. Displacement of implant abutments following screw tightening and subsequent removal. Int J Oral Maxillofac Implants. 2014;29(2):364–372. doi:10.11607/jomi.3297.
-
Worni A, Gholami H, Marchand L, Katsoulis J, Sailer I, Monnier V, et al. Three-dimensional cervical and internal fit of titanium and zirconia implant abutments and the effect of luting space settings. Int J Oral Maxillofac Implants. 2017;32(2):398–405. doi:10.11607/jomi.5204.
-
Joda T, Ferrari M, Brägger U. Monolithic implant-supported lithium disilicate (LS2) crowns in a complete digital workflow: A prospective clinical trial with a 2-year follow-up. Clin Implant Dent Relat Res. 2017;19(3):505–511. doi:10.1111/cid.12475.
-
Elsayed A, Wille S, Al-Akhali M, Kern M. Comparison of fracture strength and failure mode of different ceramic implant abutments. J Prosthet Dent. 2019;121(3):421–426. doi:10.1016/j.prosdent.2018.05.006.
-
Bagegni A, Abuzayeda M, Alsubaiy L, Helal M, Al-Kahtani F, Al Jabbari YS. Marginal and internal fit of lithium disilicate crowns fabricated with chairside CAD-CAM system. J Prosthodont. 2021;30(4):318–323. doi:10.1111/jopr.13238.
-
Yao J, Li J, Wang Y, Huang H. Comparison of the flexural strength and marginal accuracy of traditional and CAD/CAM interim materials before and after thermal cycling. J Prosthet Dent. 2014;112(3):649–657. doi:10.1016/j.prosdent.2014.01.007.
-
Zandinejad A, Lin WS, Atarodi M, Abdel-Azim T, Metz MJ, Morton D. Digital workflow for virtually designing and milling ceramic lithium disilicate veneers: a clinical report. Oper Dent. 2015;40(3):241–246. doi:10.2341/13-389-S.
-
Schriwer C, Skjold A, Gjerdet NR, Øilo M. Monolithic zirconia dental crowns. Internal fit, margin quality, fracture mode and load at fracture. Dent Mater. 2017;33(9):1012–1020. doi:10.1016/j.dental.2017.06.004.
-
Cekic-Nagas I, Egilmez F, Ergun G, Kaya BM, Bozkaya S. Mechanical durability of CAD/CAM materials versus composite resin. J Prosthodont. 2018;27(5):419–424. doi:10.1111/jopr.12697.
-
Castillo-Oyagüe R, Sánchez-Turrión A, López-Lozano JF, Albaladejo A. Fracture-failure risks in CAD/CAM monolithic ceramic restorations. Int J Prosthodont. 2016;29(1):38–44. doi:10.11607/ijp.4261.
Year 2025,
Volume: 52 Issue: 2, 55 - 62, 31.08.2025
Nazire Esra Özer
,
Ece İrem Oğuz
,
A. Ersoy
Project Number
13L3334004
References
-
Elsayed A, Yazigi C, Kern M, Chaar MS. Mechanical behavior of nano-hybrid composite in comparison to lithium disilicate as posterior cement-retained implant-supported crowns restoring different abutments. Dent Mater. 2021;37(8):e435–e442. doi:10.1016/j.dental.2021.03.015.
-
Cevik P, Schimmel M, Yilmaz B. New generation CAD-CAM materials for implant-supported definitive frameworks fabricated by using subtractive technologies. Biomed Res Int. 2022;2022:3074182. doi:10.1155/2022/3074182.
-
Magne P, Silva M, Oderich E, Boff LL, Enciso R. Damping behavior of implant-supported restorations. Clin Oral Implants Res. 2013;24(2):143–148. doi:10.1111/j.1600-0501.2011.02311.x.
-
Zarb GA, Lewis DW. Dental implants and decision making. J Dent Educ. 1992;56(12):863–872. doi:10.1002/j.0022-0337.1992.56.12.tb02713.x.
-
Misch CE. Dental Implant Prosthetics. Elsevier Mosby; 2005.
-
Al-Thobity AM. Titanium Base Abutments in Implant Prosthodontics: A Literature Review. Eur J Dent. 2022;16(1):49–55. doi:10.1055/s-0041-1735423.
-
Ilić G, Vulović S, Bukorović J, Dragović M, Marković A, Todorović A, et al. The impact of abutment type on abutment screw removal torque value after experimental aging. J Prosthodont. 2024. doi:10.1111/jopr.13978.
-
Nouh I, Kern M, Sabet AE, Aboelfadl AK, Hamdy AM, Chaar MS. Mechanical behavior of posterior all-ceramic hybrid-abutment-crowns versus hybrid-abutments with separate crowns: a laboratory study. Clin Oral Implants Res. 2019;30(1):90–98. doi:10.1111/clr.13395.
-
Menini M, Conserva E, Tealdo T, Bevilacqua M, Pera F, Signori A, et al. Shock absorption capacity of restorative materials for dental implant prostheses: an in vitro study. Int J Prosthodont. 2013;26(6):549–556. doi:10.11607/ijp.3241.
-
Akan E, Velioğlu E, Çömlekoğlu ME, Çömlekoğlu MD. Fatigue and stress distribution analyses of ceramic-reinforced PEEK abutments restored with monolithic zirconia crowns as an alternative to conventional esthetic abutments. Int J Oral Maxillofac Implants. 2022;37(3):533–542. doi:10.11607/jomi.9334.
-
Pitta J, Zarauz C, Pjetursson B, Sailer I, Liu X, Pradies G. A systematic review and meta-analysis of the influence of abutment material on peri-implant soft tissue color measured using spectrophotometry. Int J Prosthodont. 2020;33(1):39–47. doi:10.11607/ijp.6393.
-
Singh R, Patel TA, Barui AK, Verma M, Kerketta J, Majumder P. Comparison of fracture strength in implant-supported zirconia-titanium base abutments. Bioinformation. 2024;20(6):665–668. doi:10.6026/973206300200665.
-
Kerstein RB, Radke J. A comparison of fabrication precision and mechanical reliability of two zirconia implant abutments. Int J Oral Maxillofac Implants. 2008;23(6):1029–1036.
-
Miura S, Fujita T, Fujisawa M. Zirconia in fixed prosthodontics: a review of the literature. Odontology. 2024;113(2):466–487. doi:10.1007/s10266-024-01019-8.
-
Rosentritt M, Schneider-Feyrer S, Behr M, Preis V. In vitro shock absorption tests on implant-supported crowns: influence of crown materials and luting agents. Int J Oral Maxillofac Implants. 2018;33(1):116–122. doi:10.11607/jomi.5463.
-
Papathanasiou I, Kamposiora P, Dimitriadis K, Papavasiliou G, Zinelis S. In vitro evaluation of CAD/CAM composite materials. J Dent. 2023;136:104623. doi:10.1016/j.jdent.2023.104623.
-
Shim JS, Lee JS, Lee JY, Choi YJ, Shin SW, Ryu JJ. Effect of software version and parameter settings on the marginal and internal adaptation of crowns fabricated with the CAD/CAM system. J Appl Oral Sci. 2015;23(5):515–522. doi:10.1590/1678-775720150081.
-
Chen C, Trindade FZ, de Jager N, Kleverlaan CJ, Feilzer AJ. The fracture resistance of a CAD/CAM resin nano ceramic (RNC) and a CAD ceramic at different thicknesses. Dent Mater. 2014;30(9):954–962. doi:10.1016/j.dental.2014.05.018.
-
Lin CL, Wang JC, Kuo YC. Numerical simulation on the biomechanical interactions of tooth/implant-supported system under various occlusal forces with rigid/non-rigid connections. J Biomech. 2006;39(3):453–463. doi:10.1016/j.jbiomech.2004.12.020.
-
Mobilio N, Stefanoni F, Contiero P, Mollica F, Catapano S. Experimental and numeric stress analysis of titanium and zirconia one-piece dental implants. Int J Oral Maxillofac Implants. 2013;28(3):e135–e142. doi:10.11607/jomi.2335
-
Huang Y, Wang J. Comparison of notch fatigue and fracture behavior of dental implant fixtures with different materials and designs. Mater Sci Eng C Mater Biol Appl. 2015;50:266–273. doi:10.1016/j.msec.2015.01.093.
-
Rosentritt M, Preis V, Behr M, Hahnel S, Handel G, Kolbeck C. Two-body wear of dental porcelain and substructure oxide ceramics. Clin Oral Investig. 2012;16(3):935–943. doi:10.1007/s00784-011-0564-y.
-
Nakamura K, Kanno T, Milleding P, Örtengren U. Zirconia as a dental implant abutment material: a systematic review. Int J Prosthodont. 2010;23(4):299–309.
-
Stawarczyk B, Özcan M, Schmutz F, Trottmann A, Roos M, Hämmerle CH. Two-body wear rate of CAD/CAM resin blocks and their enamel antagonists. J Prosthet Dent. 2013;109(5):325–332. doi:10.1016/S0022-3913(13)60309-0.
-
Yilmaz B, Seidt JD, McGlumphy EA, Clelland NL. Displacement of implant abutments following screw tightening and subsequent removal. Int J Oral Maxillofac Implants. 2014;29(2):364–372. doi:10.11607/jomi.3297.
-
Worni A, Gholami H, Marchand L, Katsoulis J, Sailer I, Monnier V, et al. Three-dimensional cervical and internal fit of titanium and zirconia implant abutments and the effect of luting space settings. Int J Oral Maxillofac Implants. 2017;32(2):398–405. doi:10.11607/jomi.5204.
-
Joda T, Ferrari M, Brägger U. Monolithic implant-supported lithium disilicate (LS2) crowns in a complete digital workflow: A prospective clinical trial with a 2-year follow-up. Clin Implant Dent Relat Res. 2017;19(3):505–511. doi:10.1111/cid.12475.
-
Elsayed A, Wille S, Al-Akhali M, Kern M. Comparison of fracture strength and failure mode of different ceramic implant abutments. J Prosthet Dent. 2019;121(3):421–426. doi:10.1016/j.prosdent.2018.05.006.
-
Bagegni A, Abuzayeda M, Alsubaiy L, Helal M, Al-Kahtani F, Al Jabbari YS. Marginal and internal fit of lithium disilicate crowns fabricated with chairside CAD-CAM system. J Prosthodont. 2021;30(4):318–323. doi:10.1111/jopr.13238.
-
Yao J, Li J, Wang Y, Huang H. Comparison of the flexural strength and marginal accuracy of traditional and CAD/CAM interim materials before and after thermal cycling. J Prosthet Dent. 2014;112(3):649–657. doi:10.1016/j.prosdent.2014.01.007.
-
Zandinejad A, Lin WS, Atarodi M, Abdel-Azim T, Metz MJ, Morton D. Digital workflow for virtually designing and milling ceramic lithium disilicate veneers: a clinical report. Oper Dent. 2015;40(3):241–246. doi:10.2341/13-389-S.
-
Schriwer C, Skjold A, Gjerdet NR, Øilo M. Monolithic zirconia dental crowns. Internal fit, margin quality, fracture mode and load at fracture. Dent Mater. 2017;33(9):1012–1020. doi:10.1016/j.dental.2017.06.004.
-
Cekic-Nagas I, Egilmez F, Ergun G, Kaya BM, Bozkaya S. Mechanical durability of CAD/CAM materials versus composite resin. J Prosthodont. 2018;27(5):419–424. doi:10.1111/jopr.12697.
-
Castillo-Oyagüe R, Sánchez-Turrión A, López-Lozano JF, Albaladejo A. Fracture-failure risks in CAD/CAM monolithic ceramic restorations. Int J Prosthodont. 2016;29(1):38–44. doi:10.11607/ijp.4261.