Research Article
BibTex RIS Cite

Explicit Exponential Finite Difference Methods for the Numerical Solution of Modified Burgers’ Equation

Year 2017, Volume: 3 Issue: 1, 45 - 50, 30.04.2017

Abstract

In this study, explicit exponential finite difference schemes based on four different linearization techniques are given for the numerical solutions of the Modified Burgers' equation. A model problem is used to verify the efficiency and accuracy of the methods that we proposed. Also comparisons are made with the relevant ones in the literature. It is shown that all results that are found to be in good agreement with those available in the literature. L2 and error norms are calculated. The obtained error norms are suciently small in all computer runs. The results show that the present method is a successful numerical scheme for solving the Modified Burgers' equation. 


References

  • ABDOU, M. A., SOLIMAN, A. A. (2005) Variational iteration method for solving Burger’ s and coupled Burger’ s equations, Journal of Computational and Applied Mathematics 181, 245-251. BAHADIR, A. R. (2005) Exponential finite-difference method applied to Korteweg-de Vries equation for small times, Applied Mathematics and Computation 160, 675-682. BATEMAN, H. (1915) Some recent reseaches on the motion of fluids,Samantaray, Mon. Weather Rev. 43, 163-170. BENTON, E. L., PLATZMAN, G. W. (1972) A table of solutions of the one-dimensional Burgers equations, Quart. Appl. Math. 30, 195-212. BHATTACHARYA, M. C. (1985) An explicit conditionally stable finite difference equation for heat conduction problems, International Journal for Numerical Methods in Engineering, 21, 239- 265. BHATTACHARYA, M. C. (1990) Finite Difference Solutions of Partial Differential Equations, Communications in Applied Numerical Methods, 6, 173-184. BRATSOS, A. G., PETRAKİS, L. A. (2011) An explicit numerical scheme for the modified Burgers' equation, International Journal for Numerical Methods in Biomedical Engneering, 27:232-237. BURGERS, J. M. (1939) Mathematical examples illustrating relations occuring in the theory of turbulent fluid motion, Trans. R. Neth. Acad. Sci. Amst. 17, 1-53. BURGERS, J. M. (1948) A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech. 1, 171-199. DAG, I., IRK, D., SAHIN, A. (2005) B-spline collocation methods for numerical solutions of the Burgers equation, Mathematical Problems in Engineering 2005:5, 521-538. GRIEWANK, A., EL-DANAF, T. S. (2009) Efficientaccurate numerical treatment of the modified Burgers' equation, Applicable Analysis, vol. 88, No. 1, 75-87. HANDSCHUH, R. F., KEITH, T. G. (1992) Applications of an exponential finite-difference technique, Numerical Heat Transfer, 22, 363-378. HARRIS, S. E. (1996) Sonic shocks governed by the modified Burgers' equation, Eur. J. Appl. Math. 7 (2) , 201_222. INAN, B., BAHADIR, A. R. (2013) An explicit exponential finite difference method for the Burgers’ equation, European International Journal of Science and Technology Vol. 2 No. 10, pp. 61-72. INAN, B., BAHADIR, A. R. (2013) Numerical solution of the one-dimensional Burgers’ equation: Implicit and fully implicit exponential finite difference methods, Pramana – J. Phys., Vol. 81, No. 4, pp. 547-556. IRK, D. (2009) Sextic B-spline collocation method for the modified Burgers' equation, Kybernetes, Vol. 38, No. 9, pp. 1599-1620. KUTLUAY, S., BAHADIR, A. R., OZDES, A. (1999) Numerical solution of one-dimensional Burgers equation: explicit and exact-explicit finite difference methods, Journal of Computational and Applied Mathematics 103, 251-261. MILLER, E. L. (1966) Predictor-Corrector studies of Burger's model of turbulnet flow, M.S. Thesis, University of Delaware, Newark, Delaware. ÖZIS, T., AKSAN, E. N., OZDES, A. (2003) A finite element approach for solution of Burgers’ equation, Applied Mathematics and Computation 139, 417-428. RAMADAN, M. A., EL-DANAF, T. S. (2005) Numerical treatment for the modified Burgers equation, Matmematics and Computers in Simulation 70, 90-98. RAMADAN, M. A., EL-DANAF, T. S., ABD ALAAL, F. E. I. (2005) A numerical solution of the Burgers equation using septic B-splines, Chaos, Solitons and Fractals 26, 795-804. ROSHAN, T., BHAMRA, K. S. (2011) Numerical solutions of the modified Burgers' equation by Petrov-Galerkin method, Applied Mathematics and Computation, 218, 3673-3679. SAKA, B., DAG, I. (2007) Quartic B-spline collocation methods to the numerical solutions of the Burgers' equation, Chaos, Solitons & Fractals 32, 1125-1137. SAKA, B., DAG, I. (2008) A numerical study of the Burgers' equation, Journal of the Franklin Institute 345, 328-348.
Year 2017, Volume: 3 Issue: 1, 45 - 50, 30.04.2017

Abstract

References

  • ABDOU, M. A., SOLIMAN, A. A. (2005) Variational iteration method for solving Burger’ s and coupled Burger’ s equations, Journal of Computational and Applied Mathematics 181, 245-251. BAHADIR, A. R. (2005) Exponential finite-difference method applied to Korteweg-de Vries equation for small times, Applied Mathematics and Computation 160, 675-682. BATEMAN, H. (1915) Some recent reseaches on the motion of fluids,Samantaray, Mon. Weather Rev. 43, 163-170. BENTON, E. L., PLATZMAN, G. W. (1972) A table of solutions of the one-dimensional Burgers equations, Quart. Appl. Math. 30, 195-212. BHATTACHARYA, M. C. (1985) An explicit conditionally stable finite difference equation for heat conduction problems, International Journal for Numerical Methods in Engineering, 21, 239- 265. BHATTACHARYA, M. C. (1990) Finite Difference Solutions of Partial Differential Equations, Communications in Applied Numerical Methods, 6, 173-184. BRATSOS, A. G., PETRAKİS, L. A. (2011) An explicit numerical scheme for the modified Burgers' equation, International Journal for Numerical Methods in Biomedical Engneering, 27:232-237. BURGERS, J. M. (1939) Mathematical examples illustrating relations occuring in the theory of turbulent fluid motion, Trans. R. Neth. Acad. Sci. Amst. 17, 1-53. BURGERS, J. M. (1948) A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech. 1, 171-199. DAG, I., IRK, D., SAHIN, A. (2005) B-spline collocation methods for numerical solutions of the Burgers equation, Mathematical Problems in Engineering 2005:5, 521-538. GRIEWANK, A., EL-DANAF, T. S. (2009) Efficientaccurate numerical treatment of the modified Burgers' equation, Applicable Analysis, vol. 88, No. 1, 75-87. HANDSCHUH, R. F., KEITH, T. G. (1992) Applications of an exponential finite-difference technique, Numerical Heat Transfer, 22, 363-378. HARRIS, S. E. (1996) Sonic shocks governed by the modified Burgers' equation, Eur. J. Appl. Math. 7 (2) , 201_222. INAN, B., BAHADIR, A. R. (2013) An explicit exponential finite difference method for the Burgers’ equation, European International Journal of Science and Technology Vol. 2 No. 10, pp. 61-72. INAN, B., BAHADIR, A. R. (2013) Numerical solution of the one-dimensional Burgers’ equation: Implicit and fully implicit exponential finite difference methods, Pramana – J. Phys., Vol. 81, No. 4, pp. 547-556. IRK, D. (2009) Sextic B-spline collocation method for the modified Burgers' equation, Kybernetes, Vol. 38, No. 9, pp. 1599-1620. KUTLUAY, S., BAHADIR, A. R., OZDES, A. (1999) Numerical solution of one-dimensional Burgers equation: explicit and exact-explicit finite difference methods, Journal of Computational and Applied Mathematics 103, 251-261. MILLER, E. L. (1966) Predictor-Corrector studies of Burger's model of turbulnet flow, M.S. Thesis, University of Delaware, Newark, Delaware. ÖZIS, T., AKSAN, E. N., OZDES, A. (2003) A finite element approach for solution of Burgers’ equation, Applied Mathematics and Computation 139, 417-428. RAMADAN, M. A., EL-DANAF, T. S. (2005) Numerical treatment for the modified Burgers equation, Matmematics and Computers in Simulation 70, 90-98. RAMADAN, M. A., EL-DANAF, T. S., ABD ALAAL, F. E. I. (2005) A numerical solution of the Burgers equation using septic B-splines, Chaos, Solitons and Fractals 26, 795-804. ROSHAN, T., BHAMRA, K. S. (2011) Numerical solutions of the modified Burgers' equation by Petrov-Galerkin method, Applied Mathematics and Computation, 218, 3673-3679. SAKA, B., DAG, I. (2007) Quartic B-spline collocation methods to the numerical solutions of the Burgers' equation, Chaos, Solitons & Fractals 32, 1125-1137. SAKA, B., DAG, I. (2008) A numerical study of the Burgers' equation, Journal of the Franklin Institute 345, 328-348.
There are 1 citations in total.

Details

Journal Section Volume 3 Issue 1
Authors

GONCA Çelikten

EMİNE NESLİGÜL Aksan This is me

Publication Date April 30, 2017
Published in Issue Year 2017 Volume: 3 Issue: 1

Cite

APA Çelikten, G., & Aksan, E. N. (2017). Explicit Exponential Finite Difference Methods for the Numerical Solution of Modified Burgers’ Equation. Eastern Anatolian Journal of Science, 3(1), 45-50.
AMA Çelikten G, Aksan EN. Explicit Exponential Finite Difference Methods for the Numerical Solution of Modified Burgers’ Equation. Eastern Anatolian Journal of Science. April 2017;3(1):45-50.
Chicago Çelikten, GONCA, and EMİNE NESLİGÜL Aksan. “Explicit Exponential Finite Difference Methods for the Numerical Solution of Modified Burgers’ Equation”. Eastern Anatolian Journal of Science 3, no. 1 (April 2017): 45-50.
EndNote Çelikten G, Aksan EN (April 1, 2017) Explicit Exponential Finite Difference Methods for the Numerical Solution of Modified Burgers’ Equation. Eastern Anatolian Journal of Science 3 1 45–50.
IEEE G. Çelikten and E. N. Aksan, “Explicit Exponential Finite Difference Methods for the Numerical Solution of Modified Burgers’ Equation”, Eastern Anatolian Journal of Science, vol. 3, no. 1, pp. 45–50, 2017.
ISNAD Çelikten, GONCA - Aksan, EMİNE NESLİGÜL. “Explicit Exponential Finite Difference Methods for the Numerical Solution of Modified Burgers’ Equation”. Eastern Anatolian Journal of Science 3/1 (April 2017), 45-50.
JAMA Çelikten G, Aksan EN. Explicit Exponential Finite Difference Methods for the Numerical Solution of Modified Burgers’ Equation. Eastern Anatolian Journal of Science. 2017;3:45–50.
MLA Çelikten, GONCA and EMİNE NESLİGÜL Aksan. “Explicit Exponential Finite Difference Methods for the Numerical Solution of Modified Burgers’ Equation”. Eastern Anatolian Journal of Science, vol. 3, no. 1, 2017, pp. 45-50.
Vancouver Çelikten G, Aksan EN. Explicit Exponential Finite Difference Methods for the Numerical Solution of Modified Burgers’ Equation. Eastern Anatolian Journal of Science. 2017;3(1):45-50.