Araştırma Makalesi
BibTex RIS Kaynak Göster

Classification of 5D Chaplygin gas models

Yıl 2018, Cilt: 4 Sayı: 2, 10 - 15, 01.11.2018

Öz

In this study, we mainly classify some Chaplygin gas unified dark energy models in a five-dimensional (5D) cosmology. It is known that the background evolution for the Chaplygin gas models is equivalent to that for the dark energy interacting with the dark matter. Here, we assume a space-time governed by the five-dimensional Kaluza-Klein framework in order to rewrite energy densities and pressures of some well-known Chaplygin gas proposals. These new formulations can be taken into account to get original cosmological conclusions in further studies.

Kaynakça

  • ADE P.A.R., ET AL. (2016), Planck 2015 results - XIII. Cosmological parameters. A&A 594: A13.
  • ALAM U., SAHNI V., SAINI T. D. AND STAROBINSKY A.A. (2003), Exploring the expanding Universe and dark energy using the statefinder diagnostic. MNRAS 344: 1057.
  • BAHCALL N.A., OSTRIKER J.P., PERLMUTTER S. AND STEINHARDT P.J. (1999), The Cosmic Triangle: Revealing the State of the Universe. Science 284: 1481.
  • BENNETT C.L., ET AL. (2003), First-Year Wilkinson Microwave Anisotropy Probe (WMAP)* Observations: Preliminary Maps and Basic Results. Astrophys. J. Suppl. 148: 1.
  • BENTO M. C., BERTOLAMI O. AND SEN A.A. (2002), Generalized Chaplygin gas, accelerated expansion, and dark-energy-matter unification. Phys. Rev. D 66: 043507.
  • BOISSEAU B., ESPOSITO-FARESE G., POLARSKI D. AND STAROBINSKY A.A. (2000), PRL 85: 2236.
  • BRIDLE S.L., LAHAV O., OSTRIKER J.P. AND STEINHARDT P.J. (2003), Precision Cosmology? Not Just Yet…. Science 299: 1532.
  • CAI Y.-F., ET AL. (2016), f(T) teleparallel gravity and cosmology. Rept. Prog. Phys. 79: 106901.
  • CALCAGNI G. (2010), Fractal Universe and Quantum Gravity. Phys. Rev. Lett. 104: 251301.
  • CAPOZZIELLO S. (2002), Curvature Quintessence. Int. J. Mod. Phys. D 11: 483.
  • CARDONE V.F., TROISI A. AND CAPOZZIELLO S. (2004), Unified dark energy models: A phenomenological approach. Phys.Rev. D 69: 083517.
  • CHIMENTO L.P. AND JAKUBI A.S. (1996), scalar field cosmologies with perfect fluid in Robertson-Walker metric. Int. J. Mod. Phys. D 5: 71.
  • DEBNATH U., BANERJEE A. AND CHAKRABORTY S. (2004), Role of Modified Chaplygin Gas in Accelerated Universe. Class. Quant. Grav. 21 (2004) 5609.
  • GORINI V., KAMENSHCHIK A. AND MOSCHELLA U. (2003), Can the Chaplygin gas be a plausible model for dark energy? Phys. Rev. D 67: 063509.
  • GUO Z.-K. AND ZHANG Y.-Z. (2007), Cosmology with a Variable Chaplygin Gas. Phys. Lett. B 645: 326.
  • KAHYA E.O., ET. AL. (2015), Higher order corrections of the extended Chaplygin gas cosmology with varying G and Λ. Eur. Phys. J. C 75: 43.
  • KALUZA T. (1921), On the Unification Problem in Physics. Sits. Press. Akad. Wiss. Math. Phys. K 1: 895.
  • KAMENSHCHIK A. YU., MOSCHELLA U. AND PASQUIER V. (2001), An alternative to quintessence. Phys. Lett. B 511 (2001) 265.
  • KLEIN O. (1926), Quantum Theory and Five-Dimensional Theory of Relativity. Zeits. Phys. 37: 895.
  • LU J. (2009), Cosmology with a variable generalized Chaplygin gas. Phys. Lett. B 680: 404.
  • MILLER A.D., ET AL. (1999), A Measurement of the Angular Power Spectrum of the Cosmic Microwave Background from l = 100 to 400. Astrophys. J. Lett.524: L1.
  • OZEL C., Kayhan H. and Khadekar G.S. (2010), Kaluza-Klein Type Cosmological Model with Strange Quark Matter. Ad. Stud. Theor. Phys. 4: 117.
  • PANIGRAHI D. AND CHATTERJEE S. (2016), Thermodynamics of the variable modified Chaplygin gas. J. Cosmol. Astropart. Phys. 05: 052.
  • PANIGRAHI D. AND CHATTERJEE S. (2017), Tolman-Bondi-Lemaˆıtre spacetime with a generalised Chaplygin gas. Gen. Rel. Gravit. 49: 35.
  • PEEBLES P.J.E. AND RATRA B. (2003), The cosmological constant and dark energy. Rev. Mod. Phys. 75: 559.
  • PERLMUTTER S., ET AL. (1998), Discovery of a Supernova Explosion at Half the Age of the Universe and its Cosmological Implications. Nature 391: 51.
  • POURHASSAN B. (2016), Extended Chaplygin Gas in Horava-Lifshitz Gravity. Physics of the Dark Universe 13: 132.
  • SAHNI V. AND STAROBINSKY A.A. (2000), The Case for a Positive Cosmological Lambda-term. Int. J. Mod. Phys. A 9: 373.
  • SAHNI V., SAINI T. D., STAROBINSKY A.A. AND ALAM U. (2003), Statefinder-A new geometrical diagnostic of dark energy. JETP Lett. 77: 201.
  • SALTI, M., et al. (2018a), Variable Chaplygin gas in Kaluza-Klein framework. Can. J. Physics (2018), In Press., Doi: 10.1139/cjp-2017-0873
  • SALTI M., et al. (2018b), Variable generalized Chaplygin gas in a 5D cosmology. Annals of Physics 390: 131.
  • SPERGEL D.N., ET AL. (2003), First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations:Determination of Cosmological Parameters. The Astrophysical Journal Supplement Series 148: 175.
  • STAROBINSKY A.A. (1998), How to determine an effective potential for a variable cosmological term. JETP Lett. 68: 757.
  • TEGMARK M., ET AL. (2004), Cosmological parameters from SDSS and WMAP. Phys. Rev. D 69: 103501.
  • PADMANABHAN T. (2003), Cosmological Constant-the Weight of the Vacuum. Phys.Rept. 380: 235.
  • COPELAND E.J., SAMI M. AND TSUJIKAWA S. (2006), Dynamics of dark energy. Int. J. Mod. Phys. D 15: 1753.
  • URBAN F.R. AND ZHITNITSKY A.R. (2009), Cosmological constant, violation of cosmological isotropy and CMB. JCAP 0909: 018.
  • WEI H. AND CAI R.G. (2008), A New Model of Agegraphic Dark Energy. Phys Lett B 660: 113.
  • WEINBERG S. (1989), The cosmological constant problem. Rev. Mod. Phys. 61: 1.
Yıl 2018, Cilt: 4 Sayı: 2, 10 - 15, 01.11.2018

Öz

Kaynakça

  • ADE P.A.R., ET AL. (2016), Planck 2015 results - XIII. Cosmological parameters. A&A 594: A13.
  • ALAM U., SAHNI V., SAINI T. D. AND STAROBINSKY A.A. (2003), Exploring the expanding Universe and dark energy using the statefinder diagnostic. MNRAS 344: 1057.
  • BAHCALL N.A., OSTRIKER J.P., PERLMUTTER S. AND STEINHARDT P.J. (1999), The Cosmic Triangle: Revealing the State of the Universe. Science 284: 1481.
  • BENNETT C.L., ET AL. (2003), First-Year Wilkinson Microwave Anisotropy Probe (WMAP)* Observations: Preliminary Maps and Basic Results. Astrophys. J. Suppl. 148: 1.
  • BENTO M. C., BERTOLAMI O. AND SEN A.A. (2002), Generalized Chaplygin gas, accelerated expansion, and dark-energy-matter unification. Phys. Rev. D 66: 043507.
  • BOISSEAU B., ESPOSITO-FARESE G., POLARSKI D. AND STAROBINSKY A.A. (2000), PRL 85: 2236.
  • BRIDLE S.L., LAHAV O., OSTRIKER J.P. AND STEINHARDT P.J. (2003), Precision Cosmology? Not Just Yet…. Science 299: 1532.
  • CAI Y.-F., ET AL. (2016), f(T) teleparallel gravity and cosmology. Rept. Prog. Phys. 79: 106901.
  • CALCAGNI G. (2010), Fractal Universe and Quantum Gravity. Phys. Rev. Lett. 104: 251301.
  • CAPOZZIELLO S. (2002), Curvature Quintessence. Int. J. Mod. Phys. D 11: 483.
  • CARDONE V.F., TROISI A. AND CAPOZZIELLO S. (2004), Unified dark energy models: A phenomenological approach. Phys.Rev. D 69: 083517.
  • CHIMENTO L.P. AND JAKUBI A.S. (1996), scalar field cosmologies with perfect fluid in Robertson-Walker metric. Int. J. Mod. Phys. D 5: 71.
  • DEBNATH U., BANERJEE A. AND CHAKRABORTY S. (2004), Role of Modified Chaplygin Gas in Accelerated Universe. Class. Quant. Grav. 21 (2004) 5609.
  • GORINI V., KAMENSHCHIK A. AND MOSCHELLA U. (2003), Can the Chaplygin gas be a plausible model for dark energy? Phys. Rev. D 67: 063509.
  • GUO Z.-K. AND ZHANG Y.-Z. (2007), Cosmology with a Variable Chaplygin Gas. Phys. Lett. B 645: 326.
  • KAHYA E.O., ET. AL. (2015), Higher order corrections of the extended Chaplygin gas cosmology with varying G and Λ. Eur. Phys. J. C 75: 43.
  • KALUZA T. (1921), On the Unification Problem in Physics. Sits. Press. Akad. Wiss. Math. Phys. K 1: 895.
  • KAMENSHCHIK A. YU., MOSCHELLA U. AND PASQUIER V. (2001), An alternative to quintessence. Phys. Lett. B 511 (2001) 265.
  • KLEIN O. (1926), Quantum Theory and Five-Dimensional Theory of Relativity. Zeits. Phys. 37: 895.
  • LU J. (2009), Cosmology with a variable generalized Chaplygin gas. Phys. Lett. B 680: 404.
  • MILLER A.D., ET AL. (1999), A Measurement of the Angular Power Spectrum of the Cosmic Microwave Background from l = 100 to 400. Astrophys. J. Lett.524: L1.
  • OZEL C., Kayhan H. and Khadekar G.S. (2010), Kaluza-Klein Type Cosmological Model with Strange Quark Matter. Ad. Stud. Theor. Phys. 4: 117.
  • PANIGRAHI D. AND CHATTERJEE S. (2016), Thermodynamics of the variable modified Chaplygin gas. J. Cosmol. Astropart. Phys. 05: 052.
  • PANIGRAHI D. AND CHATTERJEE S. (2017), Tolman-Bondi-Lemaˆıtre spacetime with a generalised Chaplygin gas. Gen. Rel. Gravit. 49: 35.
  • PEEBLES P.J.E. AND RATRA B. (2003), The cosmological constant and dark energy. Rev. Mod. Phys. 75: 559.
  • PERLMUTTER S., ET AL. (1998), Discovery of a Supernova Explosion at Half the Age of the Universe and its Cosmological Implications. Nature 391: 51.
  • POURHASSAN B. (2016), Extended Chaplygin Gas in Horava-Lifshitz Gravity. Physics of the Dark Universe 13: 132.
  • SAHNI V. AND STAROBINSKY A.A. (2000), The Case for a Positive Cosmological Lambda-term. Int. J. Mod. Phys. A 9: 373.
  • SAHNI V., SAINI T. D., STAROBINSKY A.A. AND ALAM U. (2003), Statefinder-A new geometrical diagnostic of dark energy. JETP Lett. 77: 201.
  • SALTI, M., et al. (2018a), Variable Chaplygin gas in Kaluza-Klein framework. Can. J. Physics (2018), In Press., Doi: 10.1139/cjp-2017-0873
  • SALTI M., et al. (2018b), Variable generalized Chaplygin gas in a 5D cosmology. Annals of Physics 390: 131.
  • SPERGEL D.N., ET AL. (2003), First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations:Determination of Cosmological Parameters. The Astrophysical Journal Supplement Series 148: 175.
  • STAROBINSKY A.A. (1998), How to determine an effective potential for a variable cosmological term. JETP Lett. 68: 757.
  • TEGMARK M., ET AL. (2004), Cosmological parameters from SDSS and WMAP. Phys. Rev. D 69: 103501.
  • PADMANABHAN T. (2003), Cosmological Constant-the Weight of the Vacuum. Phys.Rept. 380: 235.
  • COPELAND E.J., SAMI M. AND TSUJIKAWA S. (2006), Dynamics of dark energy. Int. J. Mod. Phys. D 15: 1753.
  • URBAN F.R. AND ZHITNITSKY A.R. (2009), Cosmological constant, violation of cosmological isotropy and CMB. JCAP 0909: 018.
  • WEI H. AND CAI R.G. (2008), A New Model of Agegraphic Dark Energy. Phys Lett B 660: 113.
  • WEINBERG S. (1989), The cosmological constant problem. Rev. Mod. Phys. 61: 1.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Mustafa Saltı 0000-0001-9700-8647

Oktay Aydogdu Bu kişi benim

Ahmet Tas

Kenan Sogut

Yayımlanma Tarihi 1 Kasım 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 4 Sayı: 2

Kaynak Göster

APA Saltı, M., Aydogdu, O., Tas, A., Sogut, K. (2018). Classification of 5D Chaplygin gas models. Eastern Anatolian Journal of Science, 4(2), 10-15.
AMA Saltı M, Aydogdu O, Tas A, Sogut K. Classification of 5D Chaplygin gas models. Eastern Anatolian Journal of Science. Kasım 2018;4(2):10-15.
Chicago Saltı, Mustafa, Oktay Aydogdu, Ahmet Tas, ve Kenan Sogut. “Classification of 5D Chaplygin Gas Models”. Eastern Anatolian Journal of Science 4, sy. 2 (Kasım 2018): 10-15.
EndNote Saltı M, Aydogdu O, Tas A, Sogut K (01 Kasım 2018) Classification of 5D Chaplygin gas models. Eastern Anatolian Journal of Science 4 2 10–15.
IEEE M. Saltı, O. Aydogdu, A. Tas, ve K. Sogut, “Classification of 5D Chaplygin gas models”, Eastern Anatolian Journal of Science, c. 4, sy. 2, ss. 10–15, 2018.
ISNAD Saltı, Mustafa vd. “Classification of 5D Chaplygin Gas Models”. Eastern Anatolian Journal of Science 4/2 (Kasım 2018), 10-15.
JAMA Saltı M, Aydogdu O, Tas A, Sogut K. Classification of 5D Chaplygin gas models. Eastern Anatolian Journal of Science. 2018;4:10–15.
MLA Saltı, Mustafa vd. “Classification of 5D Chaplygin Gas Models”. Eastern Anatolian Journal of Science, c. 4, sy. 2, 2018, ss. 10-15.
Vancouver Saltı M, Aydogdu O, Tas A, Sogut K. Classification of 5D Chaplygin gas models. Eastern Anatolian Journal of Science. 2018;4(2):10-5.